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Quantum sensing of supersensitivity for the Ohmic quantum reservoir
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We propose an approach to implement a supersensitive estimation of the key parameters of the Ohmic-family
spectral density with coherent spin states as the quantum sensor. This method can dramatically improve the
estimation precision of the reservoir coupling strength as well as the cutoff frequency of the spectral density, by
using both the number of spins N and encoding time t as effective resources. The quantum Fisher information
indicates that the estimation sensitivity of the spectral density can surpass the shot-noise limit for all the sub-
Ohmic, Ohmic, and super-Ohmic reservoirs. In particular, for super-Ohmic reservoirs, the precision can achieve a
scaling ∝1/(Nt ). We also present the measurement scheme which can saturate the quantum Cramér-Rao bound.
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I. INTRODUCTION

Quantum systems inevitably interact with an environment
that causes the loss of quantum coherence, called quantum
decoherence [1]. Understanding and preventing decoherence
is at the center of the field of quantum information [2]. In
fact, many quantum optimal control protocols [3–7], which
are used to suppress decoherence, require as much informa-
tion as possible about the environment. A complex quantum
reservoir can be characterized by a spectral density function
which determines how and how fast a quantum system loses
coherence. The key parameters of spectral density are not
directly observable, and hence detecting a spectral density will
play a vital role in controlling the reservoir causing decoher-
ence to quantum systems. Recently, many schemes have been
proposed to measure the spectral density [8–16].

Quantum sensing of an environment aims at extracting
precise information about the environment [17–19], such as
the spectral density, via the interaction of a simple quantum
system with the environment. This topic has a natural connec-
tion with the theory of quantum metrology [20–24], where the
aim is to attain a precision that surpasses the shot-noise limit
(SNL) by using quantum resources. According to the protocol
of quantum metrology [25], one of the most important steps is
parametrization, where usually the parameter to be estimated
is encoded into the probe’s state by a unitary rotation. How-
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ever, to sense a spectral density via coupling the sensor with
a reservoir will make the dynamics of the sensor nonunitary.
This nonunitary-encoding quantum sensing scheme in turn
degrades the quantum resources of the sensors and will en-
counter a so-called error-divergency problem [12–14], which
makes the sensing precision to the spectral density worse and
worse with increased encoding time. Reference [15] reported
that the initial correlations between the sensor and the envi-
ronment can improve the precision when sensing sub-Ohmic
reservoirs. Reference [16] found that a bound-state mecha-
nism can efficiently eliminate the error-divergence problem of
sensing quantum reservoirs, and showed that the precision can
reach a scaling ∝1/t in the long encoding time regime. There,
the encoding time t is recovered as a resource to enhance
the precision of the sensing of a quantum reservoir. However,
previous works [12–16] concerning the estimation of bosonic
spectral density parameters have only focused on single- or
two-qubit probes. A natural question is whether the precision
can be further improved by using the qubit ensemble as the
sensor. Can both the number of qubits N and encoding time t
be used as resources to improve the estimation accuracy?

In this paper, we propose a supersensitive sensing scheme
for the spectral density of a quantum reservoir by using an
N two-level system as the quantum sensor. We find that the
information of the spectral density is written in the sensor’s
quantum state through both unitary encoding and nonunitary
encoding: a reservoir-induced nonlinear interaction and deco-
herence function. The nonlinear interaction can dramatically
improve the estimation precision of the quantum reservoir.
Especially, in the super-Ohmic regime, the decoherence
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effect of the reservoir will be significantly suppressed, then the
unitary encoding will play a leading role. By calculating the
quantum Fisher information (QFI) [26,27], a key quantity in
quantum metrology, we find that for a super-Ohmic reservoir
the sensing sensitivity of the spectral density can reach a
scaling ∝1/(Nt ). It indicates that both the number of spins
N and encoding time t can be used as resources to enhance
the estimation accuracy of a quantum reservoir when using
coherent spin states (CSSs) as the quantum sensor.

II. QUANTUM PARAMETER ESTIMATION
AND QUANTUM FISHER INFORMATION

In quantum metrology, the estimation precision for an
unknown parameter X can be characterized by the quantum
Cramér-Rao bound

�X � 1/
√

νFX , (1)

which gives a theoretically achievable limit on the precision.
Here, ν is the number of independent measurements (we set
ν = 1), and the QFI FX , with respect to X , is defined by FX =
Tr[ρX L2

X ], in which ρX is the quantum states depending on the
parameter X , and LX is the so-called symmetric logarithmic
derivative determined by the equation ∂ρX /∂X = [ρX LX +
LX ρX ]/2. Physically, the QFI also can be expressed in terms of
the Uhlmann fidelity f (ρ1, ρ2) = (Tr

√√
ρ1ρ2

√
ρ1)2 via the

relation [28,29]

FX = lim
ε→0

8(1 − √
f [ρX (t ), ρX+ε (t )])

ε2
, (2)

which unveils the distinguishability between two infinitesi-
mally distant quantum states. Based on the quantum Cramér-
Rao bound, a large QFI means a high precision of the
estimation. It is equivalent to enhancing the ability of dis-
tinguishing between neighboring states, depending on X , and
reducing the error associated with the estimation procedure.
Thus increasing the QFI is important in enhancing the pre-
cision of the parameter estimation. In general, QFI improves
with an increasing number of probes (N) or the encoding time
(t) employed in the measurement. For classical strategies, op-
timal QFI scales as N , called SNL. By exploiting the quantum
resources, the QFI can achieve N2 scaling. This is known as
Heisenberg scaling. In what follows we will utilize a spin
ensemble as a probe to obtain N2 scaling in a number of spins
and t2 scaling in the encoding time, for sensing the quantum
reservoir. That is, �X ∝ 1/(Nt ) [30], in which both N and t
are used as resources to improve the precision.

III. QUANTUM SENSING TO THE QUANTUM RESERVOIR

We now consider the case of N spins, acting as the quan-
tum sensor, coupled to a common reservoir with a dephasing
interaction. We employ the sensor to estimate the parameters
of a bosonic reservoir, and the total Hamiltonian of the sensor
plus the quantum reservoir is described as [1]

H = ωsJz +
∑

k

ωka†
kak +

∑
k

Jz(gka†
k + g∗

kak ), (3)

where ωs is the frequency of the sensor system, and Jz =∑N
i=1

1
2σ (i)

z is the collective angular momentum operator with

N the number of spins and σ (i)
z the Pauli matrix for the ith spin.

a†
k (ak) denotes the bosonic creation (annihilation) operator

for mode k, ωk is the frequency of the kth mode, and gk

is the corresponding coupling constant with the qubits. The
couplings gk are distributed according to different spectral
distributions of the reservoir, and hence lead to different dy-
namical properties for the qubits. The effect of the reservoir
on the system is encapsulated by the spectral density J (ω) ≡∑

k |gk|2δ(ω − ωk ) in the continuum limit of the frequency.
In this paper we will consider Ohmic-family spectral den-

sities of the form

J (ω) = ηωsω1−s
c e−ω/ωc , (4)

where η is the coupling (damping) strength of reservoir, and
ωc is the cutoff frequency which characterizes the correlation
timescale of the reservoir. Both η and ωc are important pa-
rameters of the spectral density that we want to estimate. The
value of s classifies the nature of the reservoir, often referred
to as sub-Ohmic when 0 < s < 1, Ohmic when s = 1, and
super-Ohmic when s > 1. The Ohmic-family spectral den-
sities are proper choices for a spin-boson model [31]. For
instance, Ohmic spectral density was widely considered for
electron transfer dynamics [32] or biomolecular complexes
[33], as well as Josephson junctions [34]. When charge qubits
are subjected to a phonon bath, super-Ohmic spectral density
may be a good choice [35]. Moreover, when an impurity
qubit is immersed in a dipolar Bose-Einstein condensate, the
properties of the environment (collective excitations) can be
engineered from sub-Ohmic to super-Ohmic spectral density
by tuning the relative strength of the dipolar and contact
interactions [36].

Taking the interaction picture with respect to the reservoir
operator

∑
k ωka†

kak → ∫ ∞
0 dωa†

ωaω in the continuum limit of
the frequency, the time evolution operator can be obtained by
using the Magnus expansion [37–40] (see the Appendix for
details)

U (t ) = exp
{−i

[
ωstJz + �(t )J2

z

]}
V (t ). (5)

The noise-induced nonlinear interaction strengthens �(t ) =∫ ∞
0 dωJ (ω)ωt−sin(ωt )

ω2 , which carries all the message on J (ω),
and can be obtained as

�(t ) =
{
η�(s)[ωct − (1 + t2ω2

c )−s/2�(s, t )], s �= 1,

η[ωct − arctan(ωct )], s = 1,
(6)

where

�(s, t ) = sin[s arctan(ωct )] − ωct cos[s arctan(ωct )]

s − 1

and �(s) is the Euler gamma function defined as �(s) =∫ ∞
0 e−xxs−1dx.

In Eq. (3), the interaction term between the sensor and
reservoir reads

V (t ) = exp

{
Jz

∫ ∞

0
dω[αω(t )a†

ω − α∗
ω(t )aω]

}
, (7)

with αω(t ) = √
J (ω)(1 − eiωt )/ω, which determines the

nonunitary dynamics of the system.
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At time t = 0, the sensor and reservoir are assumed to be
in a factorized state

ρ(0) = |�(0)〉〈�(0)| ⊗ ρB. (8)

Here, |�(0)〉 = |θ, φ〉 is the coherent spin state (CSS)

|θ, φ〉 =
m=J∑

m=−J

cm|J, m〉, (9)

with J = N/2 being the total spin, and the probability ampli-
tudes are given by

cm =
(

2J
J + m

) 1
2

cosJ+m

(
θ

2

)
sinJ−m

(
θ

2

)
ei(J−m)φ,

in which θ and φ are the polar and azimuth angles, respec-
tively. The thermal equilibrium state ρB of the reservoir is
defined by

ρB =
⊗

ω

[1 − exp(−βω)] exp(−βωa†
ωaω ), (10)

with β = 1/(kBT ) being the inverse temperature.
Then, the exact matrix elements of the sensor’s density

matrix can be determined from the relation

ρm,n(t ) = TrB[〈J, m|U (t )ρ(0)U −1(t )|J, n〉]
= e−iϕ(t )e−i(m2−n2 )�(t )e−(m−n)2R(t )ρm,n(0), (11)

with ϕ(t ) = (m − n)ωst and ρm,n(0) = cmc∗
n . Here, R(t ) is the

decoherence function which also depends upon the spectral
density of the reservoir,

R(t ) =
∫ ∞

0
J (ω) coth

(
βω

2

)
1 − cos(ωt )

ωt
. (12)

For a zero-temperature environment (T = 0), the explicit ex-
pression of the decoherent function can be obtained as [41,42]

R(t ) =
{
η�(s − 1)

{
1 − cos[(s−1) arctan(ωct )]

(1+ω2
c t2 )(s−1)/2

}
, s �= 1,

η

2 ln[(1 + ω2
ct2)], s = 1.

(13)

Based on Eq. (11), we can find that the message of J (ω) is
written into the sensor’s density matrix by both �(t ) (unitary
encoding) and R(t ) (nonunitary encoding). To clearly see how
�(t ) and R(t ) affect the quantum state of the sensor for differ-
ent quantum reservoirs, in Fig. 1 we plot both �(t ) and R(t )
as a function of ωst for various Ohmicity parameters s. It is
shown that the noise-induced nonlinear term �(t ) ≈ η�(s)ωct
for all the values of s, which is consistent with Eq. (6). As it is
seen in Fig. 1(b), when s � 1 the decoherence function R(t )
will tend to be infinite in the long-time limit. While the case
is completely different for the super-Ohmic reservoir (s > 1),
it will tend to a constant value R(∞) → η�(s − 1). Hence we
can conclude that the decoherence effect of the reservoir can
be effectively suppressed for super-Ohmic spectral density.

Below, we will calculate the QFIs for ωc and η of the spec-
tral density based on the encoded quantum state in Eq. (11).
Generally, for many-body open systems, the analytical expres-
sion of QFIs are very hard to get. With the help of Eq. (2), we
can present numerical simulations of the behavior for QFIs
with ωc and η, respectively, for various s and N . Numeri-
cally, it is convenient to introduce the following dimensionless

(a) (b)

FIG. 1. The functions �(t ) and R(t ) evolve with dimensionless
time ωst for various Ohmicity parameters s. Other dimensionless
parameters are chosen as η = 0.1ωs, ωc = ωs, and T = 0.

units: h̄ωs for energy, ω−1
s for time, and we set h̄ = kB = 1

throughout this paper.
To demonstrate more clearly the sensing supersensitivity of

the parameters of the spectral density, we introduce the ratio of
QFIs to (Nt )2, read as FX /(Nt )2 with X = {η, ωc}. In Fig. 2,
we present the dynamical behaviors of the ratios of Fη/(Nt )2

and Fωc/(Nt )2 for all the cases of sub-Ohmic (s < 1), Ohmic
(s = 1), and super-Ohmic (s > 1) reservoirs with different
N . From Fig. 2, we can see that in both the sub-Ohmic and
Ohmic regimes the ratios FX /(Nt )2 show a downward trend
after reaching the maximum values, as the same as the error-
divergency problem for a single-qubit case, while we can still
obtain a precision that surpasses the SNL, since there is the
trade-off between unitary encoding and nonunitary encoding
for the spectral density. However, in the super-Ohmic regime
we can clearly see that the ratios tend to constant values de-
pending on N , which means that we can obtain the Heisenberg
scaling, for sensing the parameters ωc and η, and both N and
t can be viewed as resources to improve the precision.

Next, we will focus on the analysis of the Heisenberg
scaling precision of the sensing for a quantum reservoir in
the super-Ohmic regime. Recalling Fig. 1, we know when
s > 1 the decoherence function R(t ) will tend to a constant
value η�(s − 1) in the long-time limit. Particularly, in the
weak-coupling limit η/ωs  1, we may have R → 0 when
s > 1. Thus, the unitary-encoding scheme plays a major role
in the super-Ohmic spectral regime, that is,

UX={ωc,η} ≈ exp
[−it�(s)ηωcJ2

z

]
. (14)

As reported in Ref. [43], this is second-order nonlinearity
in Jz and a sensitivity limit of �(ηωct ) ∝ N−3/2 can be
achieved even in the absence of entanglement, called “super-
Heisenberg” scaling [23,44,45]. Therefore, for X = {η, ωc},
the QFIs FX ∝ 4[〈J4

z 〉 − (〈J2
z 〉)2] can be calculated analyti-

cally as follows,

Fη ≈ ω2
c�

2(s)t2Q, Fωc ≈ η2�2(s)t2Q, (15)

where

Q = N (2N − 3)(N − 1)

8
sin2(2θ ) + N (N − 1)

2
sin2 θ.
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(a) (b) (c)

(d) (e) (f)

s = 0.5 s = 1.0 s = 3.0

s = 0.5  s = 1.0 s = 3.0

FIG. 2. (a)–(c) plot the behaviors of Fη/(Nt )2 as a function of the dimensionless time ωst for various s and N with η = 0.01ωs and
ωc = ωs. (d)–(f) plot the behaviors of Fωc/(Nt )2 as a function of the dimensionless time ωst for various s and N with η = 0.1ωs and ωc = ωs.
Here, we choose T = 0 and θ = π/6.

Note that the QFIs FX depend on θ but not φ, thus without a
special statement, we shall choose φ = 0 throughout our dis-
cussions. In terms of Eq. (15), then the QFIs can be expressed
as FX = k(N, s, ωc, η, θ )(Nt )2, and the optimal values F∗

X
can be achieved when θ∗ ≈ π/4. It is further verified that
the Heisenberg scaling precision can be obtained in the super-
Ohmic spectral regime.

However, as can be predicted, with increasing η, i.e.,
η/ωs > 0.01, the analytical results given in Eq. (15) will be
invalid. To illustrate that the Heisenberg scaling precision is
still the same for large η, in Figs. 3(a) and 3(b) the optimal
ratios F∗

η /(Nt )2 and F∗
ωc

/(Nt )2 are presented, respectively, as
a function of η for s = 3 (as an example). As they are shown,
we can see that the values of F∗

η /(Nt )2 degrade with an in-
crease of η, because of the decoherence effect. The maximum
ratio can be obtained F∗

η /(Nt )2 → ω2
c�(s)2N/4 when η → 0,

while F∗
ωc

/(Nt )2 shows the opposite trend, that moderately
large η can improve the QFI. In both cases, large N can help
to improve the ratios FX /(Nt )2. In Fig. 3(c), we also show
the corresponding optimal polar angles θ∗ of the initial CSS

as a function of η, where we can see that the optimal polar
angles θ∗ depend on both η and N , that is, θ∗ decreases with
increasing η and N . When η → 0, we have θ∗ ≈ π/4, which
is consistent with Eq. (15).

IV. MEASUREMENT

In practical experiments, finding the optimal measurement
that can lead to the highest precision of the estimated parame-
ter is of practical importance. Here, we choose the observable
〈Jx〉 as the measurement signal with Jx = 1/2

∑N
i=1 σ (i)

x and
σ (i)

x being the Pauli matrix, and the estimation fluctuation is
�J2

x . Based on the error propagation formula, the minimum
standard deviation for an unknown parameter X = {η, ωc} is
given by

�X = �Jx

|∂〈Jx〉/∂X | . (16)

(a) (b) (c)

FIG. 3. (a) and (b) plot the optimal QFIs F∗
η /(Nt )2 and F∗

ωc
/(Nt )2 as a function of dimensionless coupling strength η with particle numbers

N = 50 and 100, respectively. (c) The optimal polar angle θ∗ of the initial CSS as a function of dimensionless coupling strength η with particle
numbers N = 50 and 100. Here, we choose T = 0, ωc = ωs, ωst = 100, and s = 3 corresponding to the super-Ohmic reservoir.
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(a)

(b)

FIG. 4. (a) The precision �η on the dimensionless parameter
η with ωc = ωs. (b) The precision �ωc on the dimensionless pa-
rameter ωc with η = 0.1ωs. The solid lines (blue) and the dotted
lines (orange), respectively, correspond to the precisions given by
Eq. (16) and the quantum Cramér-Rao bound �XQCR = 1/

√
FX with

X = {η, ωc}. Here, other parameters are chosen as follows: N = 50,
T = 0, ωst = 100, θ = π/6, φ = 0, and s = 2.5.

The variance �J2
x and the mean value 〈Jx〉, respectively, read

as [46]

�J2
x = 1

2
{J (J − 1/2) sin2(θ ) + J + Re[〈J2

+〉]} − 〈Jx〉2,

〈Jx〉 = Re[〈J+〉], (17)

where Re[C] represents the real part of C, and

〈J+〉 = ei(ωst+φ)e−R(t )J sin(θ )

×{cos[�(t )] − i cos(θ ) sin[�(t )]}2J−1, (18)〈
J2
+
〉 = e2i(ωst+φ)e−4R(t )J (J − 1/2) sin2(θ )

×{cos[2�(t )] − i cos(θ ) sin[2�(t )]}2J−2. (19)

After some calculations, we can get |∂〈Jx〉/∂X |, which reflects
the sensitivity of the measurement signal to parameter X . For
the super-Ohmic spectral density, when ωct � 1, we have

∂〈Jx〉
∂η

≈ Re{[ωct�(s)(2J − 1)�(s, θ, t ) − �(s − 1)]〈J+〉},
∂〈Jx〉
∂ωc

≈ ηt�(s)(2J − 1)Re[〈J+〉�(s, θ, t )] (20)

with

�(s, θ, t ) = − sin[η�(s)tωc] + i cos(θ ) cos[η�(s)tωc]

cos[η�(s)tωc] − i cos(θ ) sin[η�(s)tωc]
.

Then, following the error propagation formula given in
Eq. (16), we can directly obtain the estimation precisions of
�ωc and �η.

In Fig. 4, we plot the estimation precisions of the coupling
strength �η and cutoff frequency �ωc as functions of η

and ωc, respectively. Here, we choose s = 2.5 as an example
of super-Ohmic spectral density and N = 50, ωst = 100. As
shown in Fig. 4, we find that the accuracy of �η and �ωc

can be in accordance with the best precisions given by the
Cramér-Rao bound at some optimal points. This means that
both the precisions of �η and �ωc can achieve a scaling
∝1/(Nt ).

V. CONCLUSION

In summary, we have presented a scheme to attain su-
persensitive quantum sensing for the spectral density of a
quantum reservoir by using uncorrelated CSS as the quantum
sensor. We discovered that the information of the spectral
density can be encoded into the sensor’s quantum state via
two different mechanisms. In addition to nonunitary encoding,
there is also a unitary encoding. Through calculating the QFIs
of the sensor, we found that the unitary-encoding mechanism
can remarkably improve the estimation precision of both the
sensor-reservoir coupling strength and the cutoff frequency of
the Ohmic-family spectral density. Compared with the case of
sub-Ohmic and Ohmic spectral densities, for the super-Ohmic
case the estimation precision can achieve 1/N scaling in a
number of spins and 1/t scaling in the encoding time. It
indicates that both the number of spins and encoding time can
be used as resources to enhance the estimation accuracy of
a quantum reservoir, owing to the decoherence effect of the
reservoir being greatly suppressed and the unitary encoding
playing a leading role. Furthermore, we have demonstrated
that the superprecision given by the QCR bound can be re-
alized by implementing the measurement of the collective
angular momentum operator Jx on the sensor. Our studies pave
a way to realize high-precision sensing of a quantum reservoir
by utilizing a spin ensemble as a probe, and the results can be
also helpful for the estimation of environmental noise param-
eters in other settings such as quantum noise spectroscopy.
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APPENDIX: DERIVATION OF THE TIME EVOLUTION OPERATOR U (t )

In this Appendix, we present a detailed derivation of Eq. (5). First, we substitute the spectral density into Eq. (3) in the
continuum limit of the frequency. After taking the interaction picture with respect to

∫ ∞
0 dωa†

ωaω, the Hamiltonian H then
becomes [14]

H ′(t ) = ωsJz + Jz

∫ ∞

0
dω

√
J (ω)(aωe−iωt + a†

ωeiωt ), (A1)

by using the commutation relation [aω,a
†
ω′ ] = δ(ω − ω′). The time evolution operator associated with H ′(t ) can be obtained by

using the Magnus expansion as [37]

U (t ) = T+ exp

[
−i

∫ t

0
H (t ′)dt ′

]
= exp

[ ∞∑
n=1

(−i)n

n!
Fn(t )

]
, (A2)

where T+ is the time-ordering operator, and Fn(t ) are given as

F1(t ) =
∫ t

0
H ′(t1)dt1,

F2(t ) =
∫ t

0
dt1

∫ t1

0
dt2[H ′(t1), H ′(t2)],

F3(t ) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3([H ′(t1), [H ′(t2), H ′(t3)]] + [H ′(t3), [H ′(t2), H ′(t1)]]),

· · · . (A3)

Since the commutator [H ′(s), H ′(s′)] = −2iJ2
z sin[ω(s − s′)] commutes with H ′(t ), therefore in our case only the first two terms

of Fn(t ) are nonzero,

F1(t ) = ωstJz + Jz

∫ ∞

0
dω[αω(t )a†

ω − α∗
ω(t )aω], (A4)

F2(t ) = −2iJ2
z

∫ ∞

0
J (ω)

ωt − sin(ωt )

ω2
, (A5)

with αω(t ) = √
J (ω)(1 − e−iωt )/ω. Then the time evolution operator can be obtained as

U (t ) = exp

[
−iF1(t ) − F2(t )

2

]
= exp

{−i
[
ωstJz + �(t )J2

z

]}
V (t ), (A6)

with �(t ) = ∫ ∞
0 J (ω)ωt−sin(ωt )

ω2 and V (t ) = exp{Jz
∫ ∞

0 dω[αω(t )a†
ω − α∗

ω(t )aω]}, which corresponds to Eqs. (6) and (7) in the
main text. Then, Eq. (5) in the main text is obtained.
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