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Toffoli gate based on a three-body fine-structure-state-changing Förster resonance in Rydberg atoms
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We have developed an improved scheme of a three-qubit Toffoli gate based on a fine-structure-state-changing
three-body Stark-tuned Rydberg interaction. This scheme is a substantial improvement of our previous proposal
[I. I. Beterov et al., Phys. Rev. A 98, 042704 (2018)]. Due to the use of a different type of three-body Förster
resonance we substantially simplified the scheme of laser excitation and phase dynamics of collective three-body
states. This type of Förster resonance exists only in systems with more than two atoms, while the two-body
resonance is absent. We reduced the sensitivity of the gate fidelity to fluctuations of external electric field
and eliminated the necessity to use external magnetic field for fine-tuning of the resonant electric-field value,
compared to the previous scheme of Toffoli gate based on Rydberg atoms. A gate fidelity of >99% was
demonstrated in the calculations.
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I. INTRODUCTION

Recent advances in quantum information with ultracold
neutral atoms include demonstration of quantum phases of
matter on a large-scale quantum simulator [1], demonstration
of high-fidelity entanglement [2,3], and CNOT gates in atomic
arrays with individual addressing [4]. These achievements are
based on creation of defect-free arrays of optical dipole traps
loaded with single atoms using spatial rearrangement by a
movable optical tweezer [5], high-fidelity coherent laser Ry-
dberg excitation of trapped atoms [2], and strong interatomic
interaction, resulting in Rydberg blockade [6,7]. Note that the
highest Bell state entanglement fidelities in atomic registers,
recently demonstrated by Madjarov et al., are above 99.1%
[8], which is close to the best results achieved on alternative
platforms (ultracold ions [9], superconductors [10], etc.).

Of particular interest today is the implementation of con-
trolled three-qubit quantum gates [11], such as the Toffoli
gate (described in Sec. III A), the Deutsch gate, the Fredkin
gate, etc. Such gates are key components for many important
quantum algorithms, notably Shor’s algorithm [12], quantum
error correction [13], and fault-tolerant computation [14]. In
addition, these gates greatly facilitate the implementation of
quantum computing in large-scale registers.

Although multiqubit gates can be decomposed into se-
quences of single-qubit and two-qubit gates, the lack of
precision of two-qubit operations rapidly reduces the fidelity
of composite multiqubit gates [15]. In this regard, we propose
to use three-body Förster resonances to implement three-qubit
quantum operations. Förster resonance is a special type of
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dipole-dipole interaction that occurs when the energy levels
of the collective states of atoms intersect in an external elec-
tric field [16]. Depending on the number of atoms involved
in the interaction, it can be either two body [17] or many
body [18,19]. A three-body Förster resonance energy transfer
(FRET) was first observed for an ensemble of ∼105 cold Cs
Rydberg atoms [18]. This type of resonance corresponds to a
transition when the three interacting atoms change their states
simultaneously. One of the atoms here acts as a mediator of
the interaction, carrying away the excess energy. This leads
to a Borromean type of the Förster energy transfer, when the
ordinary two-body resonance gives a negligible contribution
to the population transfer, as the three-body resonance appears
at a different dc electric field, with respect to the two-body
resonance. It thus represents an effective three-body operator,
which can be used to directly implement Rydberg quantum
gates.

Previously, we have demonstrated three-body Förster reso-
nances experimentally [20] and proved theoretically that these
resonances can be used to implement three-qubit quantum
gates [21]. We have also designed a scheme of a high fidelity
(>98%) three-qubit Toffoli gate for neutral atoms, based on
the coherent phase dynamics of collective atomic states in
the vicinity of such a resonance [22]. However, this scheme
was quite complex for experimental implementation due to
the need for individual excitation of the atoms into Rydberg
states with different principal quantum numbers, as well as for
extremely high precision electric-field control and for adjust-
ment of the positions of the resonances in electric-field scale
using an external magnetic field.

In this paper, we propose and theoretically investigate an
improved scheme for the implementation of a three-qubit
Toffoli quantum gate based on a fine-structure-state-changing
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FIG. 1. (a) Numerically calculated Stark structure of the collective energy levels, involved in three-body Förster resonance
|70P3/2〉⊗3 → |70S1/2; 71S1/2; 70P1/2〉. The intersections 1–4 mark the positions of three-body resonances. (b) Numerically calculated de-
pendence of the fraction ρ of atoms in the final |71S1/2〉 state after three-body interaction on the external dc electric field for the initial state
|70P3/2(m = 1/2)〉⊗3 [marked as 1 in Fig. 1(a)]. The atoms are located along the Z axis at interatomic distance R = 10 microns.

three-body Förster resonance, which we described in a pre-
vious paper [23]. In particular, we consider a scheme for
implementing a fast, high-fidelity Toffoli quantum gate. A
specific advantage of this scheme is the simplicity of its
experimental implementation in large-scale registers (for in-
teratomic distances of ∼10 μm). An analysis of the sensitivity
of the gate fidelity to variations in experimental parameters is
also given.

II. COHERENT THREE-BODY
FINE-STRUCTURE-STATE-CHANGING

FÖRSTER RESONANCES

The dipole-dipole interaction operator between two neigh-
boring atoms located along the quantization axis (Z) can be
expressed as [24]

Vdd = e2

4πε0R3
(a · b − 3azbz )

= −
√

6e2

4πε0R3

1∑
q=−1

C20
1q 1−qaqb−q. (1)

Here ε0 is the vacuum dielectric constant; e is the electron
charge; a and b are the vectorial positions of the Rydberg
electrons. The radial matrix elements of the dipole moment
are calculated using a quasiclassical approximation [25].

As described in our article [23], sets of three-body reso-
nances are observed in real Rydberg atoms instead of a single
resonance. This is due to the large number of interaction
channels in real Rydberg systems. To reduce the number of
observed resonances, it is necessary to choose the optimal
geometry of the atomic register. We have proved that the
linear arrangement of atoms at the same distances from each
other along the quantization axis coinciding in the direction
with the external control dc electric field (Z axis) is optimal

[21]. Note that in this case the Vdd operator couples only
two-atom collective states with �M = 0, where M is the total
momentum projection of the collective state.

Throughout the article, we will describe the behav-
ior of the collective states of three Rb Rydberg atoms
in the spatial configuration described above, as well as
the interactions between them. These states have the form
|n1l1 j1(mj1); n2l2 j2(mj2); n3l3 j3(mj3)〉 in Dirac notation. The
Förster energy defect is the difference between the energies of
the final and initial collective states.

In our recent paper [22], the following scheme of three-
body Förster resonance for ultracold Rb atoms was proposed
for implementing a Toffoli gate:

|nP3/2; (n + 1)P3/2; (n + 1)P3/2(m)〉
→ |nS1/2; (n + 2)S1/2; (n + 1)P3/2(m∗)〉. (2)

Here m is the projection of the angular momentum of the third
atom on Z axis and m∗ is the changed value of this projection.
It indicates that the states of all three atoms have been changed
during the interaction. For n = 80 our numeric simulations
predicted relatively high fidelity (∼98%) of the Toffoli gate
operation. Nevertheless, the need to initialize atoms into states
with different values of the principal quantum number is a
significant difficulty for experimental implementation. Since
the excitation of several atoms into different atomic states ne-
cessitates the simultaneous use of two or more lasers, the main
problem during the experiment is the difficulty to keep the dif-
ferent radiation sources mutually coherent. Other limitations
are related to the high sensitivity of the gate to changes in the
electric field, as well as the need to use external magnetic field
to adjust the positions of resonances. The alternative scheme
of three-body resonances, proposed in [23], is advantageous,
since all atoms are initially excited into the same state:

|nP3/2〉⊗3 → |nS1/2; (n + 1)S1/2; nP1/2〉. (3)
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Note that |nP3/2〉⊗3 here denotes the product of three identical
ket vectors. In this configuration of three-body interaction,
the two-body Förster resonance is known to be absent in
rubidium for principal quantum numbers above n = 38 due
to the specific values of quantum defects and polarizabilities
of Rydberg states nP and nS [23,24]. Therefore, off-resonant
two-body interactions induce small phase shifts but no siz-
able population transfer, in contrast to the scheme, previously
considered in [22]. This substantially simplifies the population
and phase dynamics of the collective three-body states, as will
be shown below.

In Fig. 1(a), the energies of the collective Rydberg states
involved in three-body Förster resonance (3) are depicted as
functions of the external electric field. These dependencies
of energy levels are calculated for different fine-structure
components of Rb 70P state. The intersections with the final
quantum state, indicated as 1–4, mark the positions of possible
three-body resonances.

Figure 1(b) shows the dependence of the calculated prob-
abilities of the Förster resonant energy transfer on the
external electric field when all atoms are initially in the state
|70P3/2(m = 1/2)〉. This corresponds to case 1 in Fig. 1(a).
Two resonant features are clearly seen. The splitting and
shift of the resonances are caused by multiple channels of
three-body Förster interaction through different intermediate
quantum states.

III. TOFFOLI GATE

A. Gate scheme

The Toffoli quantum gate (or CCNOT gate) is a universal
three-qubit quantum gate. It is very important for the effective
implementation of many quantum algorithms, in particular,
for quantum error correction. This gate can also be repre-
sented as a CCZ gate wrapped with Hadamard gates, as shown
in Fig. 2(a).

The implementation of the Toffoli quantum gate in a sys-
tem of neutral atoms was described by Levine et al. in [4].
The proposed implementation is based on a strong blockade of
the nearest neighbors in a trimerized 1D array. The achievable
gate fidelity in this case was F = 0.87(4) (after state prepa-
ration and measurement (SPAM) errors correction). These
results compare quite well with Toffoli gate implementations
with trapped ions (F = 0.896 [26]) and superconducting cir-
cuits (F = 0.78 [27]). However, these values are far from
the threshold required for the implementation of fault-tolerant
quantum computing in atomic registers (F � 0.99). Equally
important is the fact that quantum gates based on the Ryd-
berg blockade effect require a sufficiently close arrangement
of atoms [28]. The use of strong resonant dipole-dipole in-
teractions is one of the promising solutions for working in
large-scale registers, where it is required to implement gates
between qubits spatially isolated from each other at distances
of about 10 microns or more. In this case, possible quantum
gate schemes can be based on adiabatic passage along the dark
state of the Rydberg system [29], as well as on the use of
Förster resonances, which are studied in this article.

The proposed scheme for the implementation of the Toffoli
gate is shown in Fig. 2(b). Three Rb atoms are confined in
three optical dipole traps located along the direction of the

FIG. 2. (a) General scheme of the three-qubit Toffoli gate.
(b) Scheme of the Toffoli gate based on three-body Rydberg inter-
actions. Three atoms are located in the individual optical dipole traps
aligned along the Z axis, which is codirected with the controlling dc
electric field. Laser Raman (or microwave) pulses 1 and 8 drive tran-
sitions between the logical states |0〉 and |1〉 of the target qubit. Laser
pulses 2–7 excite and deexcite the chosen Rydberg states of the three
atoms. The π phase shift due to the three-body interaction appears
only if all three atoms are excited into Rydberg states. The green
and blue arrows here indicate |70P3/2〉⊗3 → |70S1/2; 70P3/2; 71S1/2〉
and |70S1/2; 70P3/2; 71S1/2〉 → |70S1/2; 71S1/2; 70P1/2〉 intermediate
two-body transitions, respectively. (c) Timing diagram of the pulses
in the proposed gate scheme. The whole gate scheme includes the
following five steps: application of pulse 1, simultaneous application
of pulses 2–4, application of a constant external electric field, simul-
taneous application of pulses 5–7, and application of pulse 8.

external electric field (Z axis) with interatomic distance R.
To couple the logical states of qubits (namely, |0〉 and |1〉),
we propose to use two-photon Raman laser pulses that do
not populate the intermediate excited state 5P. An alternative
approach based on the use of microwave laser pulses with
individual addressing can also be applied. This will require

032601-3



I. N. ASHKARIN et al. PHYSICAL REVIEW A 106, 032601 (2022)

the use of an intense off-resonant laser acting on a selected
qubit to ac Stark shift its energy levels into resonance with
the microwave radiation [30–32]. A three-photon excitation
scheme can be used to pair the logical states of qubits with
Rydberg levels [33]. The effects associated with the phase
and intensity noise of the laser were considered in detail by
de Léséleuc et al. in [34].

Eight laser pulses are used to implement the gate. As the
first step, the pulse 1 is used, which is an Y rotation by π/2,
carrying out the action of the first Hadamard gate. Then, the
pulses 2–4 required for the |1〉 → |70P3/2(1/2)〉 transitions
are applied simultaneously to all three qubits. The number in
parentheses indicates the projection of the momentum mj on
the Z axis.

In accordance with the proposal [23], we consider the ex-
citation into Rydberg states with the same principal quantum
number n = 70. This configuration allows us to achieve high
fidelity of the quantum gate due to long lifetimes, large dipole
moments, and coherence of the chosen three-body interaction
channels. At the same time, it facilitates the experimental
implementation of the scheme, compared to our previous
proposal [22].

Depending on the initial state of the system, after laser
pulses 2–4 have been applied, the number of the excited Ry-
dberg atoms varies from zero to three. When all three atoms
are excited, the phase of the collective atomic state is shifted
by π , due to the three-body Förster resonance, tuned by an
external electric field.

At the final stage, Rydberg atoms are deexcited by laser
pulses 5–7. Raman laser or microwave pulse 8 drives the
additional −π/2 rotation of the target qubit around the Y axis,
which is equivalent to the second Hadamard gate in Fig. 2(a).
The timing diagram of all controlling pulses is shown in
Fig. 2(c).

To calculate the phase and population dynamics of the
atomic system, we used the method described in [22]. We
solved the non-Hermitian Hamiltonian based Schrödinger
equation for the probability amplitudes of the 360 collective
states taking into account Rydberg lifetimes [35]. For simplic-
ity, we considered an open system and neglected the return of
the population from Rydberg states to the ground states due to
spontaneous decay.

B. Phase and population dynamics

To implement the Toffoli gate, it is necessary to find the
conditions under which different interatomic interactions lead
to the required phase shifts of the initially excited collective
states. Therefore, it is necessary to optimize the parame-
ters of the atomic system: the interatomic distance R, the
interaction time T , and the value of the external dc elec-
tric field. Taking into account the technical limitations of
experimental implementations, it is necessary to pay atten-
tion to the required accuracy of the parameter values. In
particular, we found the following requirements for accu-
racy thresholds: the interatomic distance must be controlled
with an accuracy of 0.1 μm; the interaction time, 0.01 μs;
the external electric field, 10−4 V/cm. Here we assume that
the maximum allowable deviation of the gate fidelity cannot
exceed 1%.

Figure 3 shows the numerically calculated phase and pop-
ulation dynamics of the initially excited collective two- and
three-body Rydberg atomic states for optimized system pa-
rameters. Left-hand and right-hand panels of Fig. 3 show the
time dependencies of the populations and phases of initial col-
lective states for interatomic distances R = 10 μm and R =
8.5 μm, respectively. When calculating the gate scheme, both
two-body and three-body interactions in the atomic system
were taken into account. Note that for the successful execution
of the gate, it is extremely important that the populations of the
initial states are close to unity after the end of the interaction.

If all three atoms are excited into Rydberg states, we
observe almost resonant Rabi-like population oscillations
[Figs. 3(a) and 3(g)]. In this case, the phase of the state
changes by π after the interaction time due to the three-body
resonance |70P3/2(m = 1/2)〉⊗3 → |70S1/2; 71S1/2; 70P1/2〉
[Figs. 3(b) and 3(h)]. This phase shift is sensitive to the
electric field which acts directly on the Förster energy
defect. It corresponds to the controlled phase shift when all
three atoms are in state |1〉 prior to the Rydberg excitation
in Fig. 2(b). Note that Fig. 2(b) shows only one of the
possible transition schemes. In the resonant process, we
cannot attribute |70P3/2〉 → |70S1/2〉, |70P3/2〉 → |71S1/2〉,
and |70P3/2〉 → |70P1/2〉 transitions to a specific atom 1, 2,
or 3. The population of initial state after the completion of
the interaction is 91.5% due to the finite Rydberg lifetimes
and the leakage of population to other collective levels by
Rydberg interactions. These are found to be the major sources
of the gate error.

Consider the case when only two of the three atoms
are in Rydberg states. Then, due to the selection
rule �M = 0, only off-resonant two-body interactions
|70P3/2(m = 1/2)〉⊗2 ↔ |70S1/2(m = 1/2); 71S1/2(m = 1/2)〉
are possible. The state |70S1/2; 71S1/2〉 can also interact
off resonantly with |70P1/2〉⊗2 and |70P3/2; 70P1/2〉 states.
A detailed analysis of two-body interactions in three-body
systems of Rydberg atoms is given in our other article [36].

If the atomic ensemble is initially excited to state |rgr〉
(here |g〉 is the ground state which can be either |0〉 or |1〉; |r〉
is the Rydberg state |70P3/2(m = 1/2)〉), we can consider the
influence of the interactions described above on the population
and the phase of the final state as negligible [Figs. 3(c), 3(d),
3(i), and 3(j)]. This is due to the fact that two Rydberg atoms
are too far apart from each other. According to Eq. (1), an
increase in the distance between atoms by a factor of two
causes an eightfold decrease in the strength of the dipole-
dipole interaction.

Alternatively, when the ensemble is initially excited into
one of the states |grr〉 or |rrg〉, we can observe a significant
influence of the off-resonant two-body interactions on the
phase of the collective state [Figs. 3(f) and 3(l)]. This leads to
the phase shift of the initially excited state, which can be com-
pensated to zero during the interaction time T [see Fig. 2(c)].
This phase shift is found to be sensitive to the external electric
field. Two-body interactions also have a significant impact on
the population of the initial state, leading to weak (with an
amplitude of 5%–10%) Rabi-like oscillations [Figs. 3(e) and
3(k)].

Finally, when only one atom in the ensemble is temporarily
excited into the Rydberg state, the π and −π pulses, shown
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FIG. 3. Numerically calculated time dependences of the populations and phases of the initially excited collective states of three interacting
atoms. The upper row [(a), (b), (g), (h)] depicts the multiparticle state population and phase evolution when all three atoms are excited into
Rydberg states (|rrr〉). The middle [(c), (d), (i), (j)] and lower [(e), (f), (k), (l)] rows belong to configurations |rgr〉 and |grr〉 (|rrg〉), respectively.
Here |g〉 is the ground state which can be either |0〉 or |1〉; |r〉 is the Rydberg state |70P3/2(m = 1/2)〉. The phase values are presented in ordinary
units in the range (−π , π ). System parameters: (a)–(f) R = 10 μm; E = 0.14235 V/cm; T = 1.15 μs; (g)–(l) R = 8.5 μm; E = 0.1469 V/cm;
T = 0.42 μs.

in Fig. 2(b), will return the system into the initial state with
zero phase shift. However, temporary Rydberg excitation will
result in population loss due to the finite lifetimes of Rydberg
states. The trivial case is when no Rydberg atoms are excited.
The pulses 2–7 will have no effect in this instance.

In contrast to our previous proposal [22], we obtained the
required phase dynamics without the need to use an external
magnetic field for fine-tuning of the position of three-body
Förster resonance in the electric-field scale. Moreover, the
absence of the two-body Förster resonance in the vicinity of
the three-body Förster resonance substantially simplifies the
phase dynamics of the collective three-atom states.

C. Optimization of gate parameters

The optimal values of the system parameters (interatomic
distance R, interaction time T , and electric-field value E ) were
calculated by performing multiobjective optimization using
the Nelder-Mead method in order to increase the gate fidelity.
As mentioned above, for experimental implementation, these
parameters must be controlled with high accuracy. Thus, when
developing a gate scheme, it is necessary to take into account
all possible sources of the gate fidelity losses arising from in-
sufficient control of parameters and suggest ways to minimize
their total effect.

The greatest control accuracy is necessary for the dc elec-
tric field: as can be seen from Fig. 1, the resonance peaks are

extremely narrow and even a field variation of 10−4 V/cm can
critically affect the gate fidelity. To mitigate this disadvantage,
we propose to reduce the interatomic distances.

Figure 4 shows the dependence of the gate fidelity on
the external electric field for two different interatomic dis-
tances. It can be seen that with a decrease in distance the
requirements for the accuracy of field value control are sig-
nificantly reduced. At a distance of R = 10 μm, a fidelity loss
of 1% (with a maximum fidelity of 99.05%) is obtained for
a field mismatch of 10−4 V/cm. At R = 8.5 μm, the same
fidelity loss is obtained only at a field mismatch of about
4×10−4 V/cm.

It should also be noted that the distance reduction has a
positive effect on the timing of the quantum gate. Specifically,
the time required for gate implementation is 0.42 μs when
the distance between atoms is 8.5 μm. In the case when the
interatomic distance is 10 microns, the required time is about
three times higher.

To estimate the gate fidelity, the method proposed in [37]
was used. We considered six single-qubit configuration states:
|0〉, |1〉, (|0〉 + |1〉)/

√
2, (|0〉 − |1〉)/

√
2, (|0〉 + i|1〉)/

√
2, and

(|0〉 − i|1〉)/
√

2. We formed a set of three-qubit states as all
63 = 216 combinations of three single-qubit basis states. We
simulated the density matrices ρsim of all final states after Tof-
foli gate was applied to each initial state. Then we calculated
the fidelity of each final state comparing to the etalon state ρet ,
which is the final state of the ensemble after the perfect Toffoli
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FIG. 4. Dependence of the fidelity of the Toffoli gate on the
dc electric field for two different interatomic distances: R = 10 μm
(red curve) and R = 8.5 μm (blue curve). The maximum fidelity of
99.05% is achieved with an electric field of 0.14232 V/cm. The
interaction times coincide with those indicated in the description of
Fig. 3 for both cases. (a) For a wide range of electric-field values
(0.1–0.2 V/cm). (b) Near the fidelity maxima.

gate is performed [38]:

F =
√√

ρetρsim
√

ρet . (4)

Averaging over all 216 states, we calculated the gate fidelity
of 99.05%.

Note that the losses of the gate fidelity occurring at the
stages of excitation and deexcitation of the Rydberg levels
were not taken into account in this calculation. These losses
arise mainly due to degeneracy of the Zeeman sublevels of
Rydberg atoms in a zero electric field, which leads to undesir-
able two- and three-body interactions between the collective
Rydberg states. According to our estimate, the maximum
fidelity leakage caused by these processes does not exceed
0.88%. To reduce this effect, it is possible to conduct ex-
citation in an external electric field. We found that using
the electric field of 0.2 V/cm one can reduce the fidelity
loss to 0.23%. Additional multiparametric optimization al-
lows one to adjust the fidelity values to fully compensate
for the described effect. Thus a fidelity loss of 0.03% was
obtained for the Toffoli gate model with the following pa-
rameter values: R = 10 μm, E = 0.14225 V/cm, T = 1.12 μs,
E0 = 0.2 V/cm, and τ = 0.01 μs. Here E0 is the described
external excitation field and τ is the duration of the excitation
pulse. In this study, these two parameters were chosen for
analytical reasons and were not included in the optimization
process. Finally, we can summarize that the theoretical fidelity
of the proposed gate is F > 99%.

Since the excitation electric-field value and the durations
of the exciting and deexciting pulses are variable parame-
ters, they provide an additional opportunity to control the
interaction in a three-body system. We are confident that,
by performing multiparametric optimization taking into ac-
count these parameters, the gate fidelity can be significantly
increased. A similar approach to boost the fidelity of quan-
tum operations was demonstrated in [39]. However, this issue
requires additional research.

As mentioned above, the limited lifetimes of Rydberg
states are major sources of the gate error in the proposed gate
scheme. A possible solution to this problem may be the use of
a cryogenic environment [40].

IV. CONCLUSION

In this paper we proposed a scheme to implement a three-
qubit Toffoli gate based on a three-body Förster resonant
energy transfer in the ensemble of Rb Rydberg atoms isolated
in three individual optical dipole traps. This type of resonance
is based on a change of fine-structure state of one of the atoms
involved in the interaction [23]. The collective phase shifts
induced by Rydberg interactions are controlled by an external
electric field. We have shown that it is possible to reach a
fidelity exceeding 99% for a short gate duration from 0.4 μs
to 1.2 μs.

Note that, in the proposed scheme, off-resonant two-body
interactions lead to relatively weak phase dynamics. This re-
duces the effect of the complex structure of Rydberg energy
levels on gate fidelity, which appears to be the major source of
gate error if the Rydberg interactions are strong [41]. This also
makes it possible to implement quantum gates in large-scale
registers (for interatomic distances of ∼10 μm).

Compared to our previous proposal [22], the improved
scheme of Toffoli gate is more suitable for experimental
implementation, since the initial states of atomic qubits are
completely identical. It also does not require the use of a
magnetic field to fine-tune the resonance position. In or-
der to minimize the decrease in gate fidelity, we found a
compromise between the control accuracies of various ex-
perimental parameters (interaction time, interatomic distance,
and dc electric-field value). We managed to achieve a signifi-
cant reduction in the sensitivity of the circuit to electric-field
deviations by reducing the interatomic distance, avoiding a
decrease in the gate fidelity.
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