PHYSICAL REVIEW A 106, 032435 (2022)

Dynamics of two central spins immersed in spin baths
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In this article we derive the exact dynamics of a two-qubit (spin 1/2) system interacting centrally with separate
spin baths composed of qubits in a thermal state. Furthermore, each spin of the bath is coupled to every other
spin of the same bath. The corresponding dynamical map is constructed. It is used to analyze the non-Markovian
nature of the two qubit central spin dynamics. We further observe the evolution of quantum correlations like
entanglement and discord under the influence of the environmental interaction. Moreover, we demonstrate the
comparison between this exact two-qubit dynamics and the locally acting central spin model in a spin bath.
This work is a stepping stone towards the realization of non-Markovian heat engines and other quantum thermal

devices.
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I. INTRODUCTION

In the interactive world of quantum particles, it is almost
impossible to create a physical system devoid of any external
noisy influence. Quantum systems conducive for informa-
tion theoretic tasks, i.e., trapped ions [1], quantum dots [2],
NMR qubits [3], Josephson junctions [4], and many more,
are subjected to environmental interactions. It is therefore a
necessary task to investigate the dynamics of such quantum
systems, which are under the influence of environmental in-
teractions. The theory of open quantum systems [5,6], has
found numerous applications in recent times in quantum in-
formation and its interface with various facets of quantum
physics [7-25]. Over the past few decades, our understand-
ing of such systems has stretched from the limitations of
Markovian dynamics to the more intriguing and challenging
domain of non-Markovian quantum systems [17,26-50]. Even
now, it is a challenging task to construct the reduced dynamics
of such a system without the Born-Markov and stationary-
bath approximations [5]. One often associates a deviation
from quantum dynamical semigroup evolution of a system to
a non-Markovian process [49]. In a non-Markovian evolution,
the timescales of the system and the environment are often not
well separated, which can result in information backflow from
the environment to the system [28,51]. This generally leads to
recurrences of quantum properties which is important for a
fundamental understanding of system dynamics.

It would be pertinent to add here that a number of tech-
niques have been developed in recent times to tackle this
problem [52]. Thus, for example, there are the embedding
methods, such as the pseudomodes technique wherein the

*devvrat.1 @iitj.ac.in
fsamyadeb.b @iiit.ac.in
*subhashish @iitj.ac.in

2469-9926/2022/106(3)/032435(15)

032435-1

decay of an atom strongly coupled to a reservoir can be
studied by considering an enlarged system that includes a set
of pseudomodes [53,54]. Another relevant technique is the
reaction-coordinate mapping [55-57]. Furthermore, a numeri-
cally exact hierarchical equations of motion (HEOM) method
has been developed [58].

Quantum baths are generally categorized in two broad
classes: (a) bosonic and (b) spin bath. Archetypal exam-
ples of bosonic baths include the Caldeira-Leggett model
[10] or the spin boson model [7]. Exact quantum master
equations for these types of models are common in the lit-
erature [5]. On the contrary, in the case of spin baths, we
often have to rely on perturbative techniques or time-nonlocal
master equations [26,59]. Although the study of these systems
are extremely important in physical systems of paramount
importance such as magnetic systems, quantum spin glasses,
and superconducting systems [26], the theoretical modeling
of such systems is still lacking in many different perspectives,
especially in bipartite or multipartite systems relevant in var-
ious quantum device modeling. In this work, we attempt to
lay the bedrock of such a construction from the perspective of
modeling various quantum devices. Here we develop an exact
reduced dynamics of a two-qubit system immersed in spin
baths, each of which is interacting centrally with the system
of interest. Our model Hamiltonian of the two-qubit system
is inspired from a model of a quantum thermal diode [60].
In recent times, motivated by the goal of building quantum
computers, a lot of effort has been devoted to developing
quantum versions of various thermodynamic and electronic
devices like refrigerators and heat engines [61-64], thermal
diodes [60,65], transistors [66—69], quantum batteries, and so
on [62,70]. Drawing the motivation from the long-term goal of
realizing experimentally feasible models of quantum thermal
devices, we develop the aforementioned exact reduced dy-
namics of a two-qubit spin system. We further analyze various
thermodynamic and information-theoretic properties of the
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FIG. 1. Schematic diagram of coupled central spin model where
each central spin interacts with individual spin baths.

system undergoing the specific open quantum evolution. We
also observe the fundamentally non-Markovian behavior of
the dynamical map.

The flow of the paper is as follows: In Sec. II we introduce
the model. Its reduced dynamics is developed in Sec. III. The
corresponding dynamical map is discussed next, along with its
operator sum representation. The dynamical map is then put
to use in Sec. V. This includes analyzing a witness to identify
inherent non-Markovianity in the dynamics, the correspond-
ing local and global dynamical maps, and finally the quantum
correlations, including entanglement and discord, generated
between the two spins by their open-system dynamics. This is
followed by the conclusion.

II. THE MODEL

We present a model of two coupled qubits where each qubit
is centrally coupled to different thermal spin baths (see Fig. 1).
Furthermore, each spin of the bath is coupled to every other
spin of the same bath.

Initially,  psp(0) = ps(0) ® pp(0),  where  pp(0) =
e~ Hs/KsT /7 for each central spin immersed in a spin bath. The
evolution of the whole system is governed by the following
Hamiltonian in our spin-bath model:

H = Hg, + Hy, + Hs,5, + Hp, + Hp, + Hs,p, + Hs,3,,
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where Uzk or o,k k=x,y,z;1 =1, 2) are Pauli matrlces cor-
responding to ith or jth spin of the /th bath and le k=
x,y,z; 1 =1,2) are same for /th central spin. w; and w, are
the two central spin frequencies and § corresponds to their
coupling strength. Also, w, and w; are bath frequencies of
two spin baths and €; (I = 1, 2) are interaction parameters of
Ith system bath. M and N are the respective number of atoms
in two baths.

Using total spin angular-momentum operator Jj =
3 ZM orN o)y (K =x,y,z,4+, —; 1 = 1 or 2 corresponding to
the summation upper limit M or N), we may rewrite the bath
Hamiltonians as

JipJi— 1 oo 1

2)
and system-bath interaction Hamiltonians as
Hsp = T (6001, + 6001,
\/M X! y
Hs,p, = o (02 Joy + 0, J2y) 3)
VNS T '

Following Ref. [71], we then use the Holstein-Primakoff
transformation [72] to redefine collective angular-momentum
operators as

/— aTa 12
J1+ - Ma ( M ) )

T

ata 1/2
5 = m(l _ ﬁ) a. @)

for the first bath and the following for the second bath:
1/2
b'b
J2+ — \/_b ( N ) )

F 172
b = «/N(l - %’) b. (5)

Here a and a' are the bosonic annihilation and creation oper-
ators, respectively, for the first spin bath having the property
[a,a’] =1, and b and b' represent the same for the second
spin bath. After this transformation, the bath Hamiltonians

appear as
. fa—1 1
Hp, = ho, a‘a l_aa — =1,
M 2

Hp, = hap1b'b( 1 bo—1) _1 (6)
Bz_ a)b N 27

and the interaction Hamiltonians of respective spin baths as
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B o (, bl 0 i1 b'b
HSng = héz 0’2+ 1 _N b+ o b 1 _N .
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It is also important to mention the limitations and the
essential approximations. Here we are taking a central
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spin-half system interacting homogeneously with each of the
bath spins with all the characteristic frequencies to be of
constant value. We have taken homogeneous interactions for
the sake of analytical clarity. This is not an oversimplified
assumption, as these kinds of interactions exist in physical
situations, of which some examples are quantum spin glasses,
superconducting systems, and NMR. The more general sys-
tem with in-homogeneous interaction parameters can only be
handled numerically. A use is then made of the Holstein-
Primakoff transformation. A Hamiltonian describing the
collective behavior of N interacting spins can be mapped to a
bosonic one employing this transformation, at the expense of
having an infinite series in powers of the bosonic creation and
annihilation operators. Truncating this series up to quadratic
terms allows for obtaining analytic solutions, which become
exact in the limit N — oo. In the literature, works on similar
spin environments exists which make use of different meth-
ods, cf. Ref. [26]. The reason we choose Holstein-Primakoff
transformation here is because of its technical advantage, both
from analytical and numerical perspectives. We can work
with more bath spins with fewer numerical limitations. Ho-
mogeneous interactions further enable us to modify the total
Hamiltonian into a form of the nonlinear Jaynes-Cummings

II1I. REDUCED DYNAMICS OF THE TWO-QUBIT
CENTRAL SPIN MODEL

We derive the reduced dynamics of the system of two
coupled central spins evolved under the Hamiltonian H along
with the two baths by tracing over the bath degrees of
freedom.

Consider the evolution of the state [¢(0)) = |11)|xy),
where two central spins are in the excited state |1) and
|x) is an arbitrary state for the first bath while |y) is a
state belonging to the second bath. Global unitary oper-
ator corresponding to the evolution under Hamiltonian H
can be written as, U(t) = exp(—iHt/h). After the evolu-
tion let the state at time ¢t be [y (z)) = ¢1()|11)|x'y) +
o (O]10)|x"y"y + ¢3(2)|01)|x”"y"). We exclude the case
when both spins of the system are flipped simultane-
ously; i.e., the |11) — |00) transition. The transitions we
have considered convey the message sufficiently and hence
we choose to exclude the aforementioned transition to
avoid unnecessary complications in the calculations. Now
we introduce three time-dependent operators A®), B@),
and C(t) corresponding to the joint Hilbert space of
the two baths such that A(t)|xy) = ¢ci(t)|x'y), B(t)lxy) =

// i /// v
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Here /1 = a'a and /i = b'b are number operators corresponding to bosonic operators of the first and second baths, respectively,
which have the properties /ii|m) = m|m) and i|n) = n|n). Therefore, we define, A (t)|mn) = A\(m, n, t)|mn), B,(t)|mn) =
Bi(m, n, t)|mn), and G (t)|mn) = Cy(m, n, t)|mn).

By tracing out bath modes, the reduced state of the system (|11)(11|) becomes

(1) (11]) = Trp,s, [ O) (¥ @)]]

1 M N
= - 2 D _MAim n OP I+ (1 + DIBGn, 0, 1)P10)(10]

m n

DIC1(m, n, HI?01)(01 hoa [, (1 -m=1y_ 1
+ (m + D|Ci(m, n,1)|7|01){01]} exp & i"- ) 72
hay, n—1 1
X exp [—m{n<l - ) - 5}:| (10)

From the solution of Eq. (9), one can derive the values of IV. CONSTRUCTION OF THE DYNAMICAL MAP
|A(m, n, )%, |Bi(m, n,t))?, and |C;(m, n, t)|> following the

steps mentioned in Appendix B. The partition function in . . .
.o M =N o 1 qubit central spin system, we now find the dynamical map of
the above equationis Z = ) > " exp[— g2 {m(1 — ==) —

KT the system. To this effect, we derive the Kraus operators for

M GXP[—%{H(I — =y — 1. the evolution of the reduced system.
In a similar way, we can derive the evolution of the other

elements of the system’s reduced state. The details are given
in Appendix A. The reduced state of the system of two central

Having constructed the density matrix of the reduced two-

Operator sum representation

spins after the global unitary evolution of the pair of joint An important facet of general quantum evolution rep-
system-bath state can be denoted resented by a completely positive trace preserving (CPTP)
N _— operation is the Kraus operator sum representation, given

05,5, = Trp, g, (e 1/ psp(0)e1/M as p(t) =Y, Ki(t)p(0)K; (t). The Kraus operators K; can

be constructed from the eigenvalues and eigenvectors of

Z;g; 528 528 528 the Choi-Jamiotkowski (CJ) state of the corresponding dy-

=\ on) ont)  pu)  pu@® |’ (1) narpical map. Tth CJ'state of the .dynqmic map ¢(-)
on()  palt) p4é(t) 0as(t) acting on a d-dimensional system is given by (I; ®

@) |¥) (Y|, with |¢) being the maximally entangled state in

where pgp(0) is the joint system-bath initial state. The ele- d? dimensions. For our particular case, the CJ matrix is
ments of the density matrix are given in Appendix C. given by
|
A 2 0 0 0 0 AJFO 0 0 0 AG 0 0 0 0 AD:
0 (n+ 1)|B;? 0 0 0 0 0 0 0O 0 O 0 0o 0 0 0
0 0 (m+ 1)|C1|2 0 0 0 0 0 0O 0 O 0 0o 0 0 0
0 0 0 0O 0 0 0 0 0O 0 O 0 0o 0 0 0
0 0 0 onki|> 0 0 0 0O 0 O 0 0o 0 0 0
Aty 0 0 0 0 Lo 0 0 0 JG 0 0 0 0 JD;
0 0 0 0O 0 0 0 0 0O 0 O 0 0o 0 0 0
) = 8 8 8 8 8 8 8 (m+(1))|L1|2 0 . 0 0 0 0 0 0 0 (12)
mlL>0 0 0 0 0 0 0
0 0 0 0O 0 0 0 0 0O 0 O 0 0o 0 0 0
A7G, 0 0 0 0 JG O 0 0 0 |Gi)? 0 0o 0 0 GD}
0 0 0 0 0 0 0 0 0O 0 0 (m+ 1)|H1|2 0o 0 0 0
0 0 0 0O 0 0 0 0 0O 0 O 0 0o 0 0 0
0 0 0 0 0 0 0 0 0O 0 O 0 0 mlF|> 0 0
0 0 0 0 0 ) 0 0 0 0 0 0 0 nE]* o0
AID, 0 0 0 0 JiDO 0 0 0 GiD 0 0 0 0 D2

(

The symbols and abbreviations used in Eq. (12) are there the Kraus operators for the evolution of the state can
explained in Appendixes A and D. One can find the eigen- be derived. These Kraus operators should satisfy the relation
spectrum of the matrix in Eq. (12) numerically, and from > K;K,- = I, which is indeed the case here.
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FIG. 2. Variation of trace distance, between time evolved state
and initial state, with time for the reduced state of the system. In
panel (a), the initial state is taken to be |11), and in panel (b), the
initial state is taken to be |10). The parameters have following values:
w; =20, =19, § =25, w,=1.1, o, =12, M =N = 100,
T = 1, €] = 26, € = 2.5.

V. ANALYSIS OF THE DYNAMICAL MAP

In this section, we use the dynamical map of the reduced
state of the system to shed light on the dynamics of the two-
qubit central spin model. In particular, we are interested in
the study of its non-Markovian behavior from the backdrop of
information backflow [51]. The study of information backflow
is done by observing the time evolution of certain distance
functions like trace distance or fidelity between two quantum
states, which is a monotonically decreasing function under
Markovian evolution. Any deviation from their monotonic be-
havior is thus considered as a signature of non-Markovianity.
Here we study the evolution of trace distance to investigate
the non-Markovian nature of the dynamics. In this context, it
is interesting to observe the difference between the action of
the dynamical map in their local and global avatars. Along
with this, we also investigate the evolution of nonclassical
correlations such as quantum entanglement and quantum dis-
cord, to determine the sustenance of such resourceful quantum
properties under the dynamics in question.

A. Trace distance as a witness of non-Markovianity

The trace distance, which gives a measure of distinguisha-
bility between two quantum states, is given as D(py, p2) =
3llor = palli, where [|()]ly = Try/(-)'(-). To this end, we
calculate the trace distance between the state evolved with
time through the dynamical map given above and the initial
state, which is given by

D(ps,5,(1), ps,5,(0) = 51105,5, (1) = ps,5, (O1. (13)

In Fig. 2, we can see the variation of D(ps,s,(t), ps,s,(0))
with time for different initial states. The nonmonotonic behav-
ior of the trace distance between the time evolved state and the
initial state is a witness of non-Markovianity in the system.

FIG. 3. Variation of trace distance for difference between local
and global maps with time for the reduced state of the system. In
panel (a), the initial state is taken to be |11), and in panel (b), the
initial state is taken to be |10). The parameters have following val-
ues: w; =2.0,w,=19,§ =5, 0,=1.1,0, = 1.2, M =N = 100,
T=1€ =26, =25.

B. Difference between local and global dynamical maps

In this work, we have derived the global dynamical map
of two central spins (A 7). Let A, A, be the local dynamical
maps derived by solving the local Lindblad equations for each
central spin [39], with the added proviso that the bath spins are
interacting with each other. A, is the global map constructed
here. We take the same parameter values for both the global
and local maps so that we can observe the difference between
them from a common footing. For a particular initial state
05(0) we can calculate the trace distance as

D(Pgiobal (1), Proca(t)) = 311 A12(05(0)) — At ® Az(p5(0))]]1.
(14)

In Fig. 3, we can see the difference between local and global

dynamical maps by setting the same values for all the pa-
rameters. It is evident from the plot that, although there is
no interaction between the two baths in the dynamics we are
evaluating and the two baths are acting separately with indi-
vidual qubits, there is a distinct difference in the dynamical
behavior of this map with the local maps acting separately
with each of the qubits. Through the interaction between the
qubits, bath information is passed from one environment to
another and hence, despite being mutually noninteracting, the
action of the bath exhibits a global trait [73]. Therefore, it
is our understanding that, in those situations where baths are
acting locally on a bipartite system, as presented in Eq. (1),
applying local Kraus operators for each separate system-bath
interaction, does not give us the complete picture.

C. Quantum correlations

Quantum correlations are a very useful resource in quan-
tum information processing. To this end, we investigate the
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FIG. 4. Variation of concurrence Q¢ and quantum discord Qp
with time for the reduced state of the system. The parameters have
following values: w; =2.0, v, =19, 6§ =3, w, = 1.1, 0, = 1.2,
M=N=100,T =1,¢; = 1.3, ¢, = 1.25.

quantum correlations in the reduced state of the system given
in Eq. (11). Concurrence [74] is a measure of quantum
entanglement in the system given by,

Qc =max {0, A — Ap — Az — Agl, (15)

where X; are the eigenvalues of the matrix
(\/05,5,P5,5:/P515, )2 in decreasing order, and pss, =
(oy® Gy)p*(a)' ® ay).

Another popular candidate for the measurement of quan-
tum correlations is quantum discord [75]. It includes the
quantum correlations due to quantum effects in the system
which may not necessarily be due to quantum entanglement.
For the reduced state given in Eq. (11), quantum discord can
be given as

QD - S(IOSZ) - S(pSISz) + S(pS| ‘Sz)v (16)

where S(ps,) and S(ps,s,) are the von Neumann entropy of
the reduced subsystem Trs, [ps,s,] and the joint von Neumann
entropy of the reduced system pg,s,, respectively. S(ps,|s,) is
the quantum conditional entropy given by

2
S(psiis;) = min > piS(os,n,), (17)
M k=1

where pg,, is the state of the reduced system when
measurement operator I1; is operated on subsystem S,
such that pg,m, = plkTrgz(Hk,ongzHZ). Pk is the probabil-
ity associated with the measurement operators I1; given by
pr = Tr(I1k ps, SZHZ). The generalized measurement opera-
tors Il in two qubits are given by IT; =I5, ® |u)(uls, and
I, = I, ® |v){v]s,, where |u) = cos()|1) + € sin(0) |0)
and |v) = sin(9) |1) — ' cos(#) |0). The parameters 6 and ¢
vary in the range 0 < 0 <7 /2 and 0 < ¢ < 27w. We con-
sider the two-qubit maximally entangled state, [y(0))g =
%ﬁ( |00) + |11)) as the initial state of the central spin system

and study the variation of quantum correlations with time,
depicted in Fig. 4. The profile of both the quantum discord and
the concurrence is similar. There exist time intervals where
entanglement is zero, but discord is nonzero. Revivals in the
quantum correlations depicting the information backflow na-
ture of non-Markovianity of the system are observed. It is
also important to mention that, here we are considering finite
bath spins in our numerical analysis. If we extend this to the
thermodynamic limit of M, N — oo, the dynamical behavior
will fall into the Markovian regime. In fact, in a previous
work [39], one of the present authors has shown that, with
increasing bath spins, the dynamical behavior asymptotically
reaches the Markovian situation. Therefore, a natural conclu-
sion is that non-Markovianity is a result of the finiteness of
the spin environment. On the other hand, to eliminate the
possible conclusion that non-Markovianity is an artifact of
the truncated Holstein-Primakoff transformation, we refer to a
previous work on similar spin environment treated by different
methods, but also exhibiting typical non-Markovian behavior
[26]. This shows that non-Markovianity is not an artifact of
the method.

VI. CONCLUSION

In this article, we have derived the exact reduced dynamics
of two coupled central spins where each spin is centrally
coupled to different thermal baths. We develop the corre-
sponding dynamical map by constructing the relevant Kraus
operators. This helps to shed light onto the reduced dynamics
of the coupled central spin model. In particular, we show
evidence of the non-Markovian evolution of the system in
the form of trace distance. We also calculate the difference
between the local and global dynamical maps of evolution
and show that there is a distinct difference in the exact dy-
namics of the two-qubit system interacting separately with
two noninteracting environments and that of the phenomeno-
logical application of local Kraus operations of the same
physical picture. It is our assertion that the latter does not
give us the complete picture of the exact dynamical behav-
ior of such interactions, where we overlook the information
flow between the baths via the interaction between the qubit
systems. Moreover, we have also seen the effect on the quan-
tum correlations, in particular entanglement and quantum
discord, between the central spins as the dynamics of the
system evolves in time. Revival of the quantum correlations
benchmarks the non-Markovian behavior in the central spin
system.
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APPENDIX A: DERIVATION OF THE ELEMENTS OF THE REDUCED STATE OF THE SYSTEM

A Following the procedure in szc. II{, we now define A|x(0)) = |00)|xy) and |x(¢)) = D(t)|00)|xy) + E(t)|01)]|xy) +
F(1)|10)|xy). Substituting D(t) = D (), E(t) = bE|(t), and F (t) = aF(t), we find

dD; (1) | -0 —wr +8 -1 1 A—1 1] .
= al1— - = al 1 — )]
il = a1 20 < a1 - ) <5} b

A—1\"*, m—1\"* .
—iézfl(l— N ) El(l)—i€17h<1— ) Fi (1),

M

dE - ) f— 1 1 hn—2 1) |4
dlt(’):_i[ “”+2“’2 —I—wa{rh(l—mM )—E}er,,{(ﬁ—n(l—”]v )—EHEl(t)
Ao 1\2
—i62<l—nN> D (),
dBy(t) o —wy—8 R m—2\ 1 R A—-1\ 1]|a
i _—z|: > +a)a{(m—l)<l— i )—E}—l—a)b{n(l— N )—5}:|F1(t)

wm—1\"% .
—iq(l—T) B0, (A1)

The evolution of the reduced state (]|00)(00|) by tracing over bath modes can be found as

#(100){00]) = Trp,p, [1x (1)) (x (1)[]

1 M N
= N {|D1(m, n, 1)[*|00)(00| + nlE (m, n, )[*|01)(01] + m|F\ (m, n, t)|2|10)(10|}

(") e ool (- 5) ]
X exp|— mll———— || —=<tlexp|——=—=1in(1— -=r (A2)
KgT M 2 KT N 2

One may find the components D, (m, n, t), Ey(m, n, t), and F;(m, n, t), which are the eigenvalues of the operators D, 1), E, (1),
and F} (1) with eigenvectors |mn), by following the steps described in Appendix B:

In a similar manner, we specify |£(0)) = |01)|xy) and |£(¢)) = G(1)|01)|xy) + H(1)|00)|xy) + £(¢)|11)|xy). Now substituting
with G(t) = G, (t), H(t) = b'H,(¢), and [(¢t) = al,(t), we can have

dGi(t) | -1 +wy -8 m—1 1 n—1 1) | 4
=—j| — il 1 — - = al 1 — — =1 |G (¢
o z|: 3 ~|—w{m< I ) 2}+wb{n( N ) 2}:| 1(1)
AN 172 ~ 172
. il N A . m—1 A
_l62<1_ﬁ> (n+1)H1(l)—161m<]— I ) L),

dH, (1) , —wl—w2+5+ (1 m—1 1
=—l| ——F— tw,ym{ 1 — - =
dt 2 M 2

R L\ 1/2
+a)b{(ﬁ+1)(1—£) —E}i|1-71(t)—i62<1—£) G(),
N) 2 N

dh() _ _i[—‘”‘ ot +wu{(ﬁ1— 1)(1 - ’?’_2) - %}

dt 2
a1 ! L e (1= "1 I/ZG A3
+ wp n( -y )-z 1(1)—l€1< iy ) 1(2). (A3)
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We may now express the evolution of the reduced state (|01)(01]) in the following way:

#(101)(01]) = Trp,s, [IE(®))(E@)I]

1 M N
=220 [1G1m,m, P101) (011 + 1+ DI G, n. DI2100) (0]

+ |l (m, n,t)|2|11)(11|]exp [—Z’T {m(l _ m7—1> _ %}:|exp [—%{n(l — ";f 1) — %” (A4)

Following the procedure written in Appendix B, one may calculate the eigenvalues of Gl(t), H,@), and [, 0), i.e., G, (m,n,t),

Hy(m, n,t), and I,(m, n, t) for eigenvectors |mn).
To determine the evolution of the fourth diagonal element (]10)(10]) of the density matrix of the system of two central spins,
we assume, |0(0)) = |10)|xy) and |o(z)) = J(¢)|10)|xy) + K(¢)|11)]|xy) + L(¢)|00)|xy). Then we replace the time-dependent

operators as J@&) = J,@), R@t) = bK,(¢), and L(z) = 'L, (¢) and we obtain

dJi(@0) o —w =38 ) m—1 1 . a—1 1] 1|.
- rofa(1-22) - Hheanfa(1- ) - 4o

dt 2
o111 1/216(;) (1™ 1/2(A+1)LA(I)
1€on N 1 1€ Vi m 1),
dE;(t) | o+ +8 ) m—1 1
—— = —i| —————— F w1 — - =
dt 2 M 2

Allﬁ—z ﬂk ,lﬁ—l”zj
+wb{(n— )( - N >—§} 1(1)—l€2< -5 ) 1),

A

drL(1) | o= +é (1 7 1 (1 PO 1 P Py 1/2j t
ar = —i 2 +wa{(m+ )( —A—d)—z}-i-wh{n( — N )—5} 1()—161( _M> 1(2).
(AS)

The reduced state now changes as
¢ (110)(101) = Trp, 5, [le())(e ()]

1 M N
== D 2 AMin, n, OP10) (101 + Ky Gm, n, P11

) how, m—1 1
+ (m + 1)|L;(m, n, 1)|“]00){00]} exp _KB_T ml1— ) 2

I -1 1
X exp Rl Y — =1, (A6)
KsT N 2
where, by definition, J (¢)|mn) = J,(m, n, t)|mn), K;(t)|mn) = K,(m, n, t)|mn), and L(t)|mn) = L,(m, n, t)|mn). The corre-

sponding eigenvalues can be found from Eq. (A5) by following the approach mentioned in the Appendix B:
Now the off-diagonal components of the reduced density matrix will take the following forms:

¢(I11)(00]) = Trg,p, [1¥ (1)) (x ®)I]
_lsy A 0D} (m, n, 1)[11)(00 hoa [ _m=—1) _1
_Z;Xn:[ 1(m, n, £)D}(m, n, 1)]11)(00|] exp %1 m( - >_§

hwy, | n—1 1 -
XexP[‘ﬁ{”( N )‘5”’ (A7)
@(I11)(01]) = Trp,, [IY () (E@I]
1 M N 3 Gt 11)(01 hw, | m—1 1
_Z;Xn:[ 1(m, n, 0)GE(m, n, D11 |]exp|:—KBT{m< _7>_§”

hawy, n—1 1
xexp[—KB—T{n(l— N )—5”, (A8)
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(I11)(10]) = Trp,s, [I¥ (1)) (e(®)]]

1 L X fiw, m—1 1
= ZZ[Al(m,n,t)Jl*(m, n, t)[11)(10]] exp [—KBT {m(l — 7) — 5”

m n

ﬁa);, n—1
Xexp|———=inl1—- -
[ KBT{ ( N )

¢(110){00]) = Trp,, [le(®)) (x (1]

1L X fiwg m—1 1
=- ;Z [J1(m, n, £)D} (m, n, 1)[10)(00]] exp [—KBT {m<1 — T) — 5”

howy n—1
Xexp|———=inl1— -
[ KBT{ < N )

¢(110)(01]) = Trp,, [le(®))(§ )]

fiwg m—1 1
= ;Z [J1(m, n, t)G*(m, n, 1)[10)(01|] exp [—KBT {m(l — T) — 5”

hwp n—1
Xexp|———=inl1— -
[ KBT{ ( N )

¢(|01)(00[) = Trp, s, [1E(©)){x@)I]

1 LY fiwg m—1 1
=~ ZZ [Gy(m, n, t)D*(m, n, 1)|01)(00|] exp [—KBT {m(l — 7) — 5”

m n

hawyp, n—1
xexp|———=in|1—
|: KBT{< N )

! A9
o) o
! Al0
i) o
! All
3} i
! Al2
51 (A1)

From the Hermiticity of the reduced density matrix, the other off-diagonal elements can be expressed as

¢(100)(11]) = [¢(|11)(00D]",
P(110)(11]) = [p(|11)(10D]",
¢(101)(10]) = [4(]10)(01)]",

APPENDIX B: SOLUTION OF SIMULTANEOUS LINEAR
DIFFERENTIAL EQUATIONS FROM BOUNDARY
CONDITIONS: MATRIX METHOD

Suppose three simultaneous linear differential equa-
tions are written as

d’;(” — —iaX(t) — idY (t) — ieZ(1),
dy(t) . .
=0 = X )~ Y (),
az@) .
— = —igX(t) — icZ(t). (B1)

And we have to find the solution using the given boundary
conditions: X(0) =1, Y(0) =0, and Z(0) = 0.

The problem can be solved by plugging in the well-known
matrix method in this context. According to this, one can write
Eq. (B1) using column and square matrices of dimension three
in the following way:

d X(@) a d e\ [(XQ)
lroy|==ilr » ollro (B2)
dt\ 7.1 ¢ 0 c)\zo

P(01)(11]) = [¢(|11)(01D]",
$(100)(10]) = [4(|10)(00D)]",
$(100)(01]) = [¢(|01)(00D]".

(

For simplicity, we denote

<

Il
oS NN
=ES W
o o ®

Any of the three eigenvalues, say A; (j = 1, 2, 3) of matrix M
can be found by solving the characteristic equation

(a—2)(b—Aj)e— ;) — fd(c — 1)) — eg(b — 1)
=0,V (B3)

And corresponding to each A;, eigenvectors can be
expressed as

()Lj—b)()nj—c) a;
f(hj—o) =18
g(h; —b) Vi

where o; = ()\,, — b)()xj — C), ,Bj = f()\,J — C), and Vi =
g(X; — b), except for the case when A; = b, c. Then, accord-
ing to the matrix method, the general solution of Eq. (B1) in

032435-9
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terms of column matrix will take the form,

X(t) 3 ) o
Y([) — Z v eft)ujt ﬂj ,
Z(1) =1 Vi

where the coefficients v; can be computed from three bound-
ary conditions given as

(B4)

3 3 3
ZUJ'Olj:], ZUJ',BJ'ZO, ZUJ')/J':O. (BS)
=1 =1 =1

Now one can write from Eq. (B5):

_ Bava — Boys
a1(B3y2 — Boy3) + 2 (Biys — Bsyv) + a3 (Bovi — Biy2)’

_ By — By
a1(B3yr — Bov3) + 2 (Biyvs — Bay) +az(Bovi — Biy2)’

_ Bay1 — B1y2
a1(B3v2 — Boy3) + aa(Brys — Bay) +azs(Bayi — Biv2)
(B6)

We see that we are able to come up with the solution (B4) only
when 1 is calculated from the Eq. (B3). For solving the three
roots of such cubic equation, we follow the procedure given
below.

Let us say a cubic equation is in the form

aix> +bx* +cix+d; =0. B7)
Then we define the following quantities:
A = 18aybic1d) — 4bid, + b e} — 4a ¢} — 27ald],
Ao = b% —3acy,
Ay =2b} —9a bic; + 27a3d,,
3| Ay /AT —4AY | A+ [/ -2Ta3A
0= > = 5 ,
where A is called the discriminant of the cubic Eq. (B7). Next,
denoting a complex number, — 5 + £l = @, we may write the

roots of Eq. (B7) as,

xkz—i(bl—i—(p 0+ ) ke{l,2,3}. (BS)
3a 7410)

Note that the root x; is always real and the roots x, and x3
are complex and conjugate to each other only when A < 0.
Otherwise, all the roots are real and they become equal when
A =0.

In our case, expanding the left-hand side of Eq. (B3) in a
power series of A; for all j, we identify, a; = 1, by = —(a +
b+c),cy =ab+bc+ ac — fd —eg,and d, = fdc + egb —
abc. As described above, A; (j =1, 2, 3) can be determined
and the solution (B4) can be attained accordingly.

All Egs. (9), (A1), (A3), (AS5) are in the form of Eq. (B1).
Hence, all the coefficients can be obtained in terms of w;, w,,
8, wy, Wy, €1, €2, m,n, M, and N.

Explicitly, the coefficients, A;(m,n,t), Bi(m,n,t) and
Ci(m, n, t) can be obtained by solving Eq. (9) which in com-

parison to Eq. (B1) shows that
X(@)=A|(m,n,t),
Y(@)=B(m,n,t),
Z(t)=C(m,n,t),

w) +wy+ 8 m—1 1
=—— 4w, iml1l — — | — =
2 M 2

w51

0)1—(1)2—5 m—1 1
’= e {(l "))
+wb{(n+1)( ) l}
2
—w; +wr — 8 m—1 1
c:f—kwa{(m—i—l)(l—T)—z}
rapfr-15) -
N 2)
12
af:ez(l—lv n+1),

Likewise, comparing Eq. (A1) with Eq. (B1), we get
X(t)=D;(m,n,t),
Y(t)=E(m,n,t),
Z(t)=F(m,n,t),

—w) — 1) —1 1
azwfaﬁwa{m(l_m_)__}

corfa(1-"50) 5]
N 2
bzwwa{m(l _m_—l) _1}
2 M 2
+wb{(n—1)< ”_2) —1},
N 2

c:wl_T“Mera{(m—l)(i—mT_z) —l}

b))

1\ 2
d = ezn(l — n_> ,
N
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1/2
g:él <1 ) .

Correspondingly, Eq. (A3) gives

m—1

M

X() = Gi(m,n,t),
Y()=H\(m,n,t),
Z(t)=1i(m,n,t),

_—a)1+w2—8+ ! m—1 1
= 2 @al™ M 2
n 1 n—1 1
wpinl1— - =1,
b N 2
—w; —wy+ 8 m—1 1
b= (1= 70 ) -5

radnen(-2)- 31

1)
- % +wa{(m_ 1)(1 _

n—1 1
cal(1-5) -5}
na1/2
d:éz(l—ﬁ> (n+1),
e = 61m<1 — m_1>1/27
M
na1/2
f—éz(l—ﬁ> ,
emafi-m21)"
M

Finally, the resemblance between Egs. (AS5) and (B1)

manifests as

X(t) =Ji(m,n,t),
Y()=Ki(m,n,t),

Z(t) = Li(m, n, 1),
m—1

M

)3l
)3l

a)l—a)z—S

a= 5 +a)a{m<l—
n—1
+wb{n(1 —

1
N 2]
w+wy+ 68

> +a)a{m<l —

m—1

) )
)
+wb{"(1 )3
d=€2n<1—n;,1)1/2,

172
el(l - M) (m+ 1),
n—1

12
f 62(1— N) ,

ma 172
e=a(1-3)"
In this way, all the coefficients can be obtained in order to

reveal the complete dynamical map of the two-spin system.

APPENDIX C: MATRIX ELEMENTS OF THE REDUCED
STATE OF THE SYSTEM

The elements of the density matrix given in Eq. (11) are

given by
| MN
pri=> Xm:Z [1A1(m, n, )7 p11(0)

+ n|Ky(m, n, 1)* p2(0)
+ m|L(m, n, )| p33(0)]

X exp |:—

)3

1 M
pn =) Y 0+ D[BiGn,n. 1) 11 (0)

m n

+ 1 (m, n, 1)* p2(0)
+ m|Fi(m, n, )] paa(0)]

hw,
xXexp|———=im| 1

KgT

hawy, n—1 1

—n|1—- — =11

KgT N 2

1 M N
=Y > [m+ DICiGn. 0, )P p11(0)

,033=Z

X exp [—

m n

+ 1G1(m, n, 1)]* p33(0)
+ nlEy (m, n, )] pas(0)]

hw,
m| 1
KT
hawy, ! n—1 1
X exp| ——— — — =11,
KT N 2

1 M N
pis =5 2 2 [m+ DIBiom.n. 1) pra(0)

m n

X exp |:—

+ |Dy(m, n, 1)* 44(0)

+ (n+ DIH (m, n, 1)? p33(0)]
m—1

o -]
B354
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LA
po=> ; > 1A m 0, )T (mn, 1) p12(0)]

n

hw, m—1 1
X exp [_KBT {m(l T ) — 5”
() 5]
1 M N
P13 = Z Em: Z [Al(m, n, t)G’f(m, n, l)P13(0)]

i) 3]
con[-E (-2 t) -]

X exp

X exp

| MW
Pla = Z Z Z [A;(m, n, t)D}(m, n, t)p14(0)]
hw, | — m—1 _ 1
KsT m( M) 2
= (-5
xexp[—KBT nl1— N —3 ],
LMy
023 = = Z Z [Ji(m, n, )G (m, n,t)p3(0)]

ol B )
[,

X exp [—

1 M N
pu=> ; D 110m, n, D} (m, n, 1)p2u(0)]
(") 3]
KgT M 2
(=) 3]
Xexp|———=inl1— — =11,
KgT N 2

APPENDIX D: ELEMENTS OF THE
CHOI-JAMIOIKOWSKI MATRIX

We have used following abbreviations in the CJ matrix
given in Eq. (12):

M N
AP =2 A 2
AP =230 lAiom 1)

(C5)
(") 3]
X exp|— mll—— ) —=
KT M 2
hawy, ! n—1 1 D1
xexp[—KBT{n( - )—5”, (1)
1 M N
(n+ DIB > = ~ ZZ(n + DBy (m, n, )]
e e fo(1-22) -1
(C6) xexp[—KBT m(1-— _2:|
() 3]
Xexp|———=inl1— ——1,
KgT N 2
(D2)
1 M N
(m+ DIC|* = ~ ij;(nw DICy(m, n, 1)]?
_hwa 1_m—l _1
€N P T | 7) 2
hwy, n—1 1
“"P[‘z@—r{”o‘ N )‘5”’
(D3)
1 M N
nlKy|* = ~ ;annumm, n,1)?
how, ] m—1 1
<ow | (-5 ) 3]
hwy, n—1 1
con| g r(1-"5) ~5f] oo
1 M N
|J1|2=E;Xn:|fl(m,n,f)|2
(") 3]
X exp|— mll———| —=
KT M 2
(C9)

(-4l e
xexp[—KBT n{1l-— N 3 :|,
1 M N

(m+ DL = ~ ;;mw DLy (m, n, 1)
ha)a{ ( m—l) 1}]

m(l——— ) —=
KgT M 2

e () 3]
Xexp|———=inl1— E—F

KT N 2

(D6)

X exp |:—
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M

N M N
1 1
mih = =3 ) mihon.n.0) AP =200 Aimn 0 (m,n 1)

ol (%) o (%)

KsT
X exp [—%{n(l - ”]:, 1) _ %” (D7) X exp [—?{n(l _h- 1) - %” (D13)

T
B
M N
2_1 2
Gl =2 D) IGim, n, 1)

M N
1
AGr = ~ Z ZAl(m, n, )Gi(m, n, 1)

m n

con[Jfuf1 =) 1] <ot (=5 3]

KT

M
liwy, n—1 1 hiawy, n—1 1
ool (-5l e cor[ (=) -al) o
| M N 1 M N
(n+ DIEP = 2373 (e DIH om0 AD} =~ ;;Amm, n, YD} (m, n, 1)
hw, ] m—1 1 _hwa 1_m—l _1
<o (0= "5) -3 <o (0= ") 3]
hwy, n—1 1 hawy, n—1 1
<ol (-5) 3] cor[ (=) el e

(DY)

M N
1 *
IGi =~ N hm.n )Gy (m, n,t)
1Y ol
m|Fi|* = Z ZZmIFl(m,n, H?

hw, m—1 1
X exp|— mll—— | —=
KpT M 2
Xexp[‘%{"’(l m_1>_1” xexp| -2 fy(1 - 221 L o)
B P\ kT N 2|
hawy, n—1 1
X exp X7 nl1-— N “31/ (D10) A
B JiD} = Z ZZJI(m, n,t)Dj(m, n,t)
1 M N m n
nlE > = 7 ZZ”lEl(m,n, 1))

hw, m—1 1
<on [t (- "5 ) 5]
B

hw, m—1 1
x exp | — mll———)— = hicwy, n—1 1
KT M 2 Xexp|——=inl1— (|
ho
n

KT N

D17)

M N
1
GiD} = - D> Gim,n, 0)D}(m, n, 1)

o e 5) ]
o e 5) ] o B {e-t) 1 o

KT N

X exp [_@ {n(l _nz 1) — l”’ (D12) The rest of the elements; that is, lower diagonal elements in
KpT N 2 Eq. (12) are Hermitian conjugates of the upper diagonal terms.
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