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Calculations of molecular spectral properties, like photodissociation rates and absorption bands, rely on
knowledge of the excited state energies of the molecule of interest. Protocols based on the variational quantum
eigensolver (VQE) are promising candidates to calculate such energies on emerging noisy intermediate-scale
quantum (NISQ) computers. The successful implementation of these protocols on NISQ computers, relies on
ansätze that can accurately approximate the molecular states and that can be implemented by shallow quantum
circuits. We introduce the excited qubit-excitation-based adaptive (e-QEB-ADAPT)-VQE protocol to calculate
molecular-excited-state energies. The e-QEB-ADAPT-VQE constructs efficient problem-tailored ansätze by
iteratively appending evolutions of qubit excitation operators. The e-QEB-ADAPT-VQE also improves on
previous ADAPT-VQE protocol in that it is designed to be independent on the choice of initial reference
state. We perform classical numerical simulations for LiH and BeH2 to benchmark the performance of the
e-QEB-ADAPT-VQE. We demonstrate that the e-QEB-ADAPT-VQE can construct highly accurate ansätze that
require at least an order of magnitude fewer CNOT gates than standard fixed unitary coupled-cluster ansätze, such
as the UCCSD and the GUCCSD. We also show that the e-QEB-ADAPT-VQE is more successful in constructing
ansätze for excited molecular states than other ADAPT-VQE protocols.
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I. INTRODUCTION

Quantum molecular simulations with the variational quan-
tum eigensolver (VQE) [1–6] are a promising application for
emerging noisy intermediate-scale quantum (NISQ) [7–10]
computers. The VQE is a hybrid quantum-classical algorithm
that utilizes the Rayleigh-Ritz variational principle to deter-
mine the lowest eigenvalue of a Hamiltonian operator, H ,
by optimizing an ansatz. In particular the VQE can be used
to solve the electronic structure problem [11] and find the
ground-state configuration and energy of a molecule. By uti-
lizing both a quantum and a classical computer, the VQE is
less quantum hardware demanding at the expense of requiring
more quantum measurements and classical postprocessing, as
compared to purely quantum algorithms, like the quantum
phase estimation (QPE) algorithm [12–14]. A major challenge
for the practical realization of a molecular VQE simulation
on NISQ computers is to construct a variationally flexible
ansatz that (i) accurately approximates the ground eigenstate
of H , (ii) is easy to optimize, and (iii) can be implemented
by a shallow circuit that uses few two-qubit entangling gates,
e.g., CNOT gates, which are the current bottleneck of NISQ
computers [8].

The most widely used type of ansätze for molecular VQE
simulations are the unitary coupled-cluster (UCC) ansätze
[1,15–20]. They were motivated by the classical coupled-
cluster theory [11] and correspond to products of fermionic
excitation evolutions. Due to their fermionic structure,
UCC ansätze preserve many of the physical symmetries of

electronic wave functions, which makes them accurate and
easy to optimize at the same time. State of the art ADAPT-
VQE protocols [20–24] iteratively construct problem-tailored
ansätze, which consist of close to optimal numbers of
fermionic excitation evolutions. These ansätze are imple-
mented by shallow ansatz circuits and have few variational
parameters, while at the same time they are highly accurate.

In a previous work [25], we introduced the qubit-
excitation-based adaptive (QEB-ADAPT)-VQE. Unlike the
original fermionic-ADAPT-VQE [21], the QEB-ADAPT-
VQE constructs a problem-tailored ansatz by appending
“qubit excitation evolutions” (unitary evolutions of excitation
operators that satisfy “qubit commutation relations” [25–28]).
Qubit excitation evolutions are implemented by circuits sim-
pler than those of the standard fermionic excitation evolutions
[27]. Also, as demonstrated in Refs. [22,25,28], both types of
excitation evolutions approximate electronic wave functions
comparably well. Thus, in Ref. [25] we demonstrated that
the QEB-ADAPT-VQE can simulate molecular ground states,
using quantum circuits that are shallower than those of the
previous state of the art fermionic-ADAPT-VQE [21] and
qubit-ADAPT-VQE [22] protocols.

The VQE can also be used to solve the more general prob-
lem of finding excited-state energies [29–34]. In this work,
we present a modified version of the QEB-ADAPT-VQE de-
signed to simulate molecular excited states, which we call
the excited (e)-QEB-ADAPT-VQE. The QEB-ADAPT-VQE,
similarly to other VQE protocols, largely relies on an ini-
tial reference state, |ψ0〉, that has a large overlap with the
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true ground state, |E0〉. In particular, the QEB-ADAPT-VQE
evaluates the energy gradients of individual qubit excitation
evolutions in order to decide the best way to grow its ansatz at
each iteration. These energy gradients are evaluated for zero
values of the variational parameters on the presumption that
|ψ0〉 is close to |E0〉. However, choosing an initial reference
state that has a significant overlap with an unknown excited
state is challenging. We modify the ansatz-growing strategy
of the QEB-ADAPT-VQE, so that it does not require |ψ0〉 to
be close to the target (ground or excited) state. Additionally,
we present a comparison of qubit and fermionic excitation
evolutions in their ability to construct ansätze for excited
states.

The paper is organized as follows. In Sec. II we give
a theoretical introduction. Section III describes the steps of
the e-QEB-ADAPT-VQE protocol, and in Sec. IV we bench-
mark its performance for the first excited states of LiH and
BeH2. Lastly, Sec. V presents a comparison between qubit and
fermionic excitation evolutions.

II. THEORY

A. The electronic structure problem and the variational
quantum eigensolver

Finding the ground state |E0〉 and the corresponding en-
ergy E0 of a molecule is known as the “electronic structure
problem” [11]. This problem can be solved by solving
the time-independent Schrödinger equation H |E0〉 = E0|E0〉,
where H is the electronic Hamiltonian of the molecule. Within
the Born-Oppenheimer approximation, where the nuclei of the
molecule are assumed to be motionless, H can be written in
second quantized form as

H =
NMO∑
i,k

hi,ka†
i ak +

NMO∑
i, j,k,l

hi, j,k,l a
†
i a†

j akal . (1)

Here, NMO is the number of considered spin-orbitals, a†
i and

ai are the fermionic ladder operators, corresponding to the
ith molecular spin-orbital, and the factors hi j and hi jkl are
one- and two-electron integrals, written in a spin-orbital
basis [11]. The Hamiltonian expression in Eq. (1) can be
mapped to quantum-gate operators using a qubit-encoding
method, e.g., the Jordan-Wigner (JW) [35] or the Bravyi-
Kitaev [36,37] methods. Throughout this work, we assume
the more straightforward JW encoding, where the occupancy
of the ith molecular spin-orbital is represented by the state of
the ith qubit.

The fermionic ladder operators a†
i and ai satisfy anticom-

mutation relations

{ai, a†
j} = δi, j, {ai, a j} = {a†

i , a†
j} = 0. (2)

Within the JW encoding, a†
i and ai can be written in terms of

quantum gate operators as

a†
i = Q†

i

i−1∏
r=0

Zr = 1

2
(Xi − iYi )

i−1∏
r=0

Zr and (3)

ai = Qi

i−1∏
r=0

Zr = 1

2
(Xi + iYi )

i−1∏
r=0

Zr, (4)

where

Q†
i ≡ 1

2 (Xi − iYi ) and Qi ≡ 1
2 (Xi + iYi). (5)

We refer to Q†
i and Qi as qubit creation and annihilation

operators, respectively. The operators Q†
i and Qi satisfy the

“qubit commutation relations” [25–27]

{Qi, Q†
i } = I, [Qi, Q†

j ] = 0 if i �= j, and

[Qi, Qj] = [Q†
i , Q†

j ] = 0 for all i, j. (6)

We use Q†
i and Qi in Sec. II B to define qubit excitation

evolutions.
Substituting Eqs. (3) and (4) into Eq. (1), H can be written

as

H =
NH −1∑
r=0

ht

NMO−1∏
s=0

σ t
s , (7)

where σ t
s is a Pauli operator (Xs, Ys, Zs, or Is) acting on

qubit s, ht (not to be confused with hik and hi jkl ) is a real
scalar coefficient, and NH is the number of Pauli terms in the
representation of H . NH scales as O(N4

MO
). The expectation

value of H can be evaluated by individually measuring on a
quantum computer the expectation values of all Pauli string
terms in Eq. (7).

Once H is mapped to a Pauli string representation, the
VQE can be used to minimize the expectation value E (θ ) =
〈ψ (θ )|H |ψ (θ )〉, where |ψ (θ )〉 is a trial state. The VQE relies
upon the Rayleigh-Ritz variational principle [38]

〈ψ (θ )|H |ψ (θ )〉 � E0 (8)

to find an upper-bounded estimate for E0. The VQE is a
hybrid-quantum-classical algorithm that uses a quantum com-
puter to prepare the trial state |ψ (θ )〉 and evaluate E (θ ) and
a classical computer to process the measurement data and
update θ at each iteration. The trial state |ψ (θ )〉 = U (θ )|ψ0〉
is generated by the ansatz U (θ ) applied to an initial reference
state |ψ0〉.

B. Qubit and fermionic excitation evolutions

The most widely used type of ansätze for molecular VQE
simulations are the unitary coupled-cluster (UCC) ansätze,
motivated by the classical coupled-cluster method [11]. UCC
ansätze are constructed as products of fermionic excitation
evolutions. The QEB-ADAPT-VQE and the e-QEB-ADAPT-
VQE instead construct ansätze that consist of qubit excitation
evolutions. This subsection provides definitions of the two
types of unitary operations.

1. Fermionic excitation evolutions

Single and double fermionic excitation operators are de-
fined, respectively, by the skew-Hermitian operators

Tik ≡ a†
i ak − a†

kai and (9)

Ti jkl ≡ a†
i a†

j akal − a†
ka†

l aia j . (10)
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Single and double fermionic excitation evolutions are thus
given, respectively, by the unitary operators

Aik (θ ) = eθTik = exp[θ (a†
i ak − a†

kai )] and (11)

Ai jkl (θ ) = eθTi jkl = exp[θ (a†
i a†

j akal − a†
ka†

l aia j )]. (12)

Using Eqs. (3) and (4), for i < j < k < l , Aik and Ai jkl can be
expressed in terms of quantum gate operators as

Ai j (θ ) = exp

[
i
θ

2
(XiYk − YiXk )

k−1∏
r=i+1

Zr

]
and (13)

Ai jkl (θ ) = exp

[
i
θ

8
(XiYjXkXl + YiXjXkXl + YiYjYkXl

+ YiYjXkYl − XiXjYkXl − XiXjXkYl

− YiXjYkYl − XiYjYkYl )
j−1∏

r=i+1

Zr

l−1∏
r′=k+1

Zr′

]
. (14)

CNOT-efficient circuits to implemented single and double
fermionic excitation evolutions were derived in Ref. [27].

2. Qubit excitation evolutions

Qubit excitation evolutions are generated by “qubit excita-
tion operators.” Single and double qubit excitation operators
are defined, respectively, by the skew-Hermitian operators

T̃ik = Q†
i Qk − Q†

kQi and (15)

T̃i jkl = Q†
i Q†

j QkQl − Q†
kQ†

l QiQj . (16)

Hence, single and double qubit excitation evolutions are de-
fined, respectively, by the unitary operators

Ãik (θ ) = eθ T̃ik = exp[θ (Q†
i Qk − Q†

kQi )] and (17)

Ãi jkl (θ ) = eθ T̃i jkl = exp[θ (Q†
i Q†

j QkQl − Q†
kQ†

l QiQj )]. (18)

Using Eq. (5), Ãik and Ãi jkl can be re-expressed in terms of
quantum gate operators:

Ãik (θ ) = exp

[
i
θ

2
(XiYk − YiXk )

]
and (19)

Ãi jkl (θ ) = exp

[
i
θ

8
(XiYjXkXl + YiXjXkXl

+ YiYjYkXl + YiYjXkYl − XiXjYkXl

− XiXjXkYl − YiXjYkYl − XiYjYkYl )

]
. (20)

CNOT-efficient circuits to implement single and double qubit
excitation evolutions were derived in Ref. [27].

C. Finding excited-state energies with the VQE

The two most common methods to calculate excited-state
energies with the VQE are the quantum subspace expansion
[39–41], and the overlap-based method [42,43]. In this work
we use the latter, the overlap-based method.

As the name suggests the overlap-based method works by
including the overlap between previously found eigenstates

of H and the state we are currently searching for in the cost
function of the VQE. For example, after we find the ground
state |E0〉 we modify H as

H → H1 = H + α0|E0〉〈E0|, (21)

where α0 is a real positive scalar coefficient. If α0 + E0 > E1,1

where E1 is the energy of the first excited state of H , the
lowest energy eigenvalue of the modified Hamiltonian H1 will
be shifted to E1. Hence, running the VQE for H1 should output
an estimate for E1:

E1 = min
θ1

〈ψ0|U †
1 (θ1)H1U1(θ1)|ψ0〉

= min
θ1

〈ψ0|U †
1 (θ1)(H + α0|E0〉〈E0|)U1(θ1)|ψ0〉. (22)

After E1 is found the same procedure can be repeated recur-
sively multiple times to find the next energy eigenvalues of H .
The kth energy eigenvalue of H , Ek , can be estimated as

E1 = min
θk

〈ψ0|U †
k (θk )HkUk (θk )|ψ0〉

= min
θk

〈ψ0|U †
k (θk )(H +

k−1∑
r=0

αr |Er〉〈Er |)Uk (θk )|ψ0〉. (23)

The first term in Eq. (23), is calculated as described above, by
measuring the expectation values of the Pauli string terms in
the expression for H [Eq. (7)]. The overlap terms in Eq. (23)
can be calculated with the SWAP test [44].

III. THE e-QEB-ADAPT-VQE

The e-QEB-ADAPT-VQE algorithm finds an estimate for
the kth excited state of an electronic Hamiltonian, H , by
constructing a problem-tailored ansatz. The ansatz is con-
structed by iteratively appending qubit excitation evolutions,
based on the greedy strategy to obtain the lowest estimate
for the energy, E (θ ), at each iteration. In this subsection, we
describe the preparation components, and the iterative ansatz-
constructing loop, of the e-QEB-ADAPT-VQE algorithm. For
a description of the original QEB-ADAPT-VQE, we refer the
reader to Ref. [25].

First, we transform H to a quantum-gate-operator represen-
tation as described in Sec. II A. This involves the calculation
of the one- and two-electron integrals, hik and hi jkl [Eq. (1)],
which can be done efficiently (in time polynomial in NMO)
on a classical computer. If we want to find the energy of the
excited state |Ek〉, Ek , we add the additional overlap terms to
H , as described in Sec. II C, to get Hk .

Second, we define an ansatz element pool P (Ã, NMO) of
all unique single and double qubit excitations, Ãik (θ ) and
Ãi jkl (θ ), respectively, for i, j, k, l ∈ {0, NMO − 1}. The size of
this pool is |P (Ã, NMO)| = (NMO

2

) + 3
(NMO

4

)
.

Third, we choose an initial reference state |ψ0〉. As we
mentioned in the Introduction, the performance of the e-QEB-
ADAPT-VQE is intended to be independent of the choice of

1To make sure that α0 + E0 > E1, prior to knowing E1, we can
choose an arbitrary value for α0, which is large compared to the
energy scale of the problem.
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|ψ0〉. Hence, we arbitrarily choose the initial reference state to
be the Hartree-Fock state, but in principle any computational
basis state with a Hamming weight equal to the number of
electrons Ne will do.

Now we are ready to begin constructing the ansatz. We set
the iteration number to m = 1, set the ansatz to the identity
U → U (0) = I , and initiate the iterative ansatz-constructing
loop. We describe the five steps of the mth iteration below.
Afterwards we comment on these steps.

(i) Prepare trial state |ψ [m−1]〉 = U (θ [m−1])|ψ0〉, with val-
ues for θ [m−1] as determined in the previous iteration.

(ii) For each (single or double) qubit excitation evolution
Ãp(θp) ∈ P (Ã, NMO),

(a) run the VQE to find

min
θp

E (θp) = min
θp

〈ψ [m−1]|Ãp
†
(θp)HkÃp(θp)|ψ [m−1]〉, and

(b) calculate the energy reduction magnitude E [m−1] −
min

θp

E (θp).

(iii) Identify the set of n qubit excitation evolutions,
Ã[m](n), corresponding to the n largest energy reductions in
the previous step. For Ãp(θp) ∈ Ã[m](n),

(a) run the VQE to find min
θ [m−1],θp

E (θ [m−1], θp)

= min
θ [m−1],θp

〈ψ0|U †(θ[m−1])Ãp
†
(θp)HkÃp(θp)U (θ[m−1])|ψ0〉,

(b) calculate the energy reduction �E [m]
p = E [m−1] −

min
θ [m−1],θp

E (θ [m−1], θp), and

(c) save the (re)optimized values of θ [m−1] ∪ {θp} as
θ [m]

p .
(iv) Identify the qubit excitation evolution Ã[m](θ [m] ) ≡

Ãp′ (θp′ ) corresponding to the largest energy reduction
�E [m] ≡ �E [m]

p′ in the previous step.
If �E [m] < ε, where ε > 0 is an energy threshold,
(a) exit,
or else:

(a) append Ã[m](θ [m] ) to the ansatz,

U (θ [m−1]) → U (θ [m] ) = Ã[m](θ[m] )U (θ[m−1]), (24)

(b) set E [m] = E [m−1] − �E [m]
p , and

(c) set the values of the new set of variational parame-
ters, θ [m] = θ [m−1] ∪ {θp′ }, to θ

[m]
p′ .

(v) Enter the m + 1 iteration by returning to step 1.
We now elaborate on the steps outlined above.
The mth iteration of the e-QEB-ADAPT-VQE starts by

preparing the trial state |ψ [m−1]〉 obtained in the (m − 1)th
iteration.

At each iteration we aim to identify the qubit excitation
evolution that, when appended to the ansatz, would maxi-
mize the energy reduction E (θ [m−1]) − E (θ [m] ). To identify
such a qubit excitation evolution, first we calculate [step
(ii)] the individual energy reduction contributions of each
qubit excitation evolution Ãp(θp) ∈ P (Ã, NMO). Each of these
energy reductions is calculated by a single-parameter VQE
optimization performed to minimize the energy expectation
value 〈ψ [m−1]|Ã†

p(θp)HÃp(θp)|ψ [m−1]〉. In this way, we get
an indication of by how much the energy expectation value

will be reduced when each Ãp(θp) is appended to the ansatz
U (θ [m−1]) and the energy is minimized along the full set
of parameters θ [m−1] ∪ {θp}, at a reduced cost of perform-
ing O(N4

MO) single-parameter VQE optimizations (instead of
O(N4

MO) m-parameter VQE optimizations).
In the original QEB-ADAPT-VQE such an indica-

tion is obtained by measuring the energy gradients
{ ∂

∂θp
〈ψ [m−1]|Ã†

p(θp)HÃp(θp)|ψ [m−1]〉}. However, these energy
gradients must be evaluated for some values of the respective
parameters {θp}. If we are approximating the ground state
|E0〉 and we have a high level of confidence that |ψ0〉 has a
large overlap with |E0〉, then the gradients can be evaluated
conveniently for {θp = 0}. But if we are approximating the
excited state |Ek〉, where we do not know how close |ψ0〉 and
|Ek〉 are, measuring the energy gradients for {θp = 0}, or any
other arbitrary values of {θp}, can be a poor indicator, leading
to an inefficient and slow construction of the ansatz, and a
possibility of getting stuck in local energy minimum (see
Sec. IV A). Instead the e-QEB-ADAPT-VQE measures the
individual energy reduction contribution for each qubit exci-
tation evolution, which can be obtained by a single-parameter
VQE optimization, using a direct-search minimizer [45], e.g.,
the Nelder-Mead method [46], irrespectively of the overlap of
|ψ0〉 and |Ek〉.

Calculating a single energy-gradient requires measuring
2NH (NH is the number of Pauli strings in the representa-
tion of H , see Eq. [7]) expectation values.2 On the other
hand, running a single-parameter VQE requires measuring
γ NH expectation values, where γ is the number of func-
tion evaluations required for a single parameter minimization.
Hence, the additional cost of the technique pursued here,
in comparison to using energy gradients as in the original
QEB-ADAPT-VQE, is a factor of γ /2 more quantum com-
puter measurements in step (ii).3 In addition, once the ansatz
reaches some critical size, so that |ψ [m−1]〉 can be assumed
to have a significant overlap with |Ek〉, we can switch to the
cheaper QEB-ADAPT-VQE.

The individual energy reductions calculated in step (ii) in-
dicate how much each qubit excitation evolution can decrease
E (m−1) when appended to U (θ (m−1)). However, the largest
individual energy reduction does not necessarily correspond
to the largest energy reduction when the ansatz is optimized
over all variational parameters. In step (iii), we identify the
set of n qubit excitation evolutions with the individual energy
reductions: Ã[m](n). We assume that Ã[m](n) likely contains
the qubit excitation evolution that reduces E [m−1] the most.
For each of the n qubit excitation evolutions in Ã[m](n), we
run the VQE, for all variational parameters, with the ansatz
from the previous iteration to calculate how much it con-
tributes to the energy reduction. If multiple quantum devices
are available, step (iii) can be parallelized.

2This follows from the fact that, in order to calculate the
energy gradient of a qubit excitation evolution, we need to
measure the commutator of the evolution and the Hamiltonian:

∂

∂θp
〈ψ [m−1]|Ã†

p(θp)HÃp(θp)|ψ [m−1]〉 = 〈ψ [m−1]|[HÃp(θp)]|ψ [m−1]〉
[21,25].

3For the Nelder-Mead method, γ is on the order of 10.
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(a) (b)

FIG. 1. Energy convergence plots for the first excited states of LiH and BeH2 in the STO-3G basis at equilibrium bond distances of
rLi-H = 1.546 Å and rBe-H = 1.316 Å, respectively. The plots are obtained with the QEB-ADAPT-VQE and the e-QEB-ADAPT-VQE for
n = 10

In step (iv), we pick the qubit excitation evolution,
Ã[m](θ [m] ), corresponding to the largest energy reduction,
�E [m]. If �E [m] is below some threshold ε > 0, we exit the
iterative loop. If instead |�E [m]| > ε, we add Ã[m](θ [m] ) to the
ansatz and begin the next iteration.

IV. BENCHMARKING THE e-QEB-ADAPT-VQE

In this section, we benchmark the performance of the e-
QEB-ADAPT-VQE by finding the excited-state energies of
LiH and BeH2, which have been simulated on real quan-
tum computers [1,47]. The results presented here are based
on classical numerical VQE simulations, performed with a
custom in-house code.4 The Hamiltonians for LiH and BeH2

are represented in the STO-3G orbital basis set [48], with
no frozen orbitals assumed. Hence, the wave function of
LiH is represented by a 12-qubit state, and that of BeH2 is
represented by a 14-qubit state. In step (ii) of the e-QEB-
ADAPT-VQE, the VQE optimization is performed with the
direct-search Nelder-Mead method [46], and in step (iii) it is
performed with the gradient-descent BFGS method [49]. In
Sec. IV B we also perform classical numerical VQE simula-
tions with the UCCSD and generalized UCCSD (GUCCSD)
ansätze (which are used for comparison). For these simula-
tions we use the BFGS method.

A. The QEB-ADAPT-VQE vs the e-QEB-ADAPT-VQE

In this subsection we compare the convergence rates,
to the first-excited-state energies of LiH and BeH2, of the
QEB-ADAPT-VQE and the e-QEB-ADAPT-VQE. With this
comparison we demonstrate that the energy-gradient-based
ansatz-growing strategy of the QEB-ADAPT-VQE is unsuit-
able for excited states.

4The code and the numerical data are available upon request from
the authors.

Figure 1 presents energy convergence plots for the first
excited states of LiH and BeH2 in the STO-3G basis at equilib-
rium bond distances of rLi-H = 1.546 Å and rBe-H = 1.316 Å,
respectively. The plots are obtained with each of the two
protocols.

In the case of LiH the QEB-ADAPT-VQE converges
slower, requiring more than twice as many ansatz-
constructing iterations than the e-QEB-ADAPT-VQE. Since
each ansatz-constructing iteration corresponds to a qubit ex-
citation evolution in the ansatz, the ansatz constructed by
the QEB-ADAPT-VQE is roughly twice as large as the one
constructed by the e-QEB-ADAPT-VQE. As suggested in
Sec. III above, the underlying reason for this is the inability
of the energy-gradient-based ansatz-growing strategy of the
QEB-ADAPT-VQE to grow an efficient ansatz when the ini-
tial reference state |ψ0〉 does not have a significant overlap
with the target excited state |Ek〉. In the case of BeH2, the
QEB-ADAPT-VQE completely fails to converge to chemical
accuracy, likely getting stuck in a local energy minimum.

Nevertheless, the e-QEB-ADAPT-VQE, being indepen-
dent on the overlap of |ψ0〉 and |Ek〉, converges successfully
for both molecules.

B. Energy dissociation curves

In this section, we benchmark the performance of the
e-QEB-ADAPT-VQE, for ε = 10−6 hartree and ε = 10−8

hartree, by obtaining energy dissociation plots for the first
excited states of LiH and BeH2. For a comparison, we also
include energy dissociation plots obtained with the VQE using
the single-Trotterized standard UCCSD [15,16] ansatz, which
consists of single and double fermionic excitation evolutions
above the Hartree-Fock state, and the larger GUCCSD ansatz
[17], which consists of all unique single and double fermionic
excitation evolutions.

The energy dissociation curves for the two molecules are
given in Figs. 2(a) and 2(b). Figures 2(c) and 2(d) show the
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FIG. 2. Energy dissociation curves for LiH and BeH2 in the STO-3G orbital basis. (a, b) Absolute values for the estimated first-excited-state
energies. (c, d) Error in the estimated energy values with respect to the exact FCI energy. (e, f) Number of variational parameters, also equal to
the number of qubit and fermionic evolutions, of the ansatz used by each method.

errors of each method with respect to the full configuration
interaction (FCI) energy [11,50]. In the case of LiH, all meth-
ods achieve chemical accuracy. Figures 2(e) and 2(f) show the
numbers of variational parameters, which are also equivalent

to the number of qubit and fermionic excitation evolutions,
used in the ansatz of each method. The ansätze constructed
by the e-QEB-ADAPT-VQE, for LiH, are extremely compact,
consisting of at most 27 qubit evolutions, whereas the UCCSD
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TABLE I. CNOT counts for the UCCSD ansatz, the GUCCSD
ansatz, and the ansätze constructed by the e-QEB-ADAPT-VQE
(ε = 10−8) for the first excited states of LiH and BeH2 in the STO-3G
basis.

UCCSD GUCCSD e-QEB-ADAPT-VQE

LiH 3496 29 447 311
BeH2 8980 64 064 896

ansatz and the GUCCSD ansatz consist of 200 and 1521
fermionic evolutions, respectively.

In the case of BeH2 the results are more complicated.
First, the UCCSD-VQE fails to achieve chemical accuracy
for the majority of bond distances [Fig. 2(d)]. This result is
not surprising as the simple UCCSD ansatz is not suitable to
approximate strongly correlated states such as excited states.
Second, in Fig. 2(d) we see that the e-QEB-ADAPT-VQE fails
to achieve chemical accuracy for bond distances of rBe-H =
1.5 Å and rBe-H = 1.75 Å. We comment on the reason for
this in Sec. IV C. The only method that achieves chemical
accuracy at all bond distances is the GUCCSD-VQE, be-
cause of the highly variationally flexible GUCCSD ansatz.
Nevertheless, for the majority of bond distances the e-QEB-
ADAPT-VQE constructs ansätze that are more accurate and
consist of nearly 50 times fewer ansatz elements than the
GUCCSD ansatz [Figs. 2(d) and 2(f)].

These results together with the fact that qubit evolutions
are implemented by circuits simpler than those of fermionic
evolutions implies that the ansätze constructed by the e-QEB-
ADAPT-VQE are implemented by much shallower circuits

that have much fewer CNOT gates than the UCCSD and
GUCCSD ansätze. Table I summarizes the CNOT counts for
the UCCSD and GUCCSD ansätze and for the ansätze con-
structed by the e-QEB-ADAPT-VQE (ε = 10−8) for each
molecule. For the e-QEB-ADAPT-VQE (ε = 10−8), the max-
imum CNOT counts over all bond distances for each molecule
are shown. As we can see in Table I, the ansätze constructed
by the e-QEB-ADAPT-VQE use at least 10 times fewer CNOT

gates than the UCCSD ansatz, and more than 60 times fewer
CNOT gates than the GUCCSD ansatz.

C. Finding the wrong excited-state energy

As we saw in Fig. 2(d), the e-QEB-ADAPT-VQE fails
to achieve chemical accuracy for BeH2 at bond distances
rBe-H = 1.5Å and rBe-H = 1.75Å. In order to investigate the
reason for this see Fig. 3, which depicts the FCI energies for
the ten lowest energy states of BeH2 (in the STO-3G basis) as
a function of bond distance.

The nine excited states shown in Fig. 3 are ordered in
three degenerate energy levels. Table II below summarizes
the energy levels and their corresponding excited states
at bond distances rBe-H = 1.5 Å and rBe-H = 1.75 Å. For
rBe-H = 1.5 Å we can see that EI(1.5 Å) and EII(1.5 Å)
are very close. Upon inspection of the energy estimate of
the e-QEB-ADAPT-VQE (ε = 10−8), for rBe-H = 1.5 Å, it
turns out that the algorithm actually finds EII(1.5 Å) with an
accuracy of 3 × 10−8 hartree. Therefore, the problem is not a
lack of accuracy, but converging to the wrong excited state.

Two possible reasons for this are as follows: (i) the classical
minimizers employed by the e-QEB-ADAPT-VQE get stuck

FIG. 3. FCI energies for the ten lowest energy states of BeH2 in the STO-3G basis. The numbers of the excited states correspond to their
order at the ground-state equilibrium bond distance of rBe-H = 1.316 Å. Note that the discontinuities in the potential energy curve of excited
state 9 are due to crossings with higher excited states that are not plotted.
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TABLE II. Energy levels for the nine lowest excited states of
BeH2 in the STO-3G basis. The ground state (not shown) is counted
as the 0th.

rBe-H = 1.5Å
Exc. states Energy (hartree)

{1,2} EI (1.5 Å) ≈ −15.3343
{3,4,5,6,7,8} EII (1.5 Å) ≈ −15.3331
{9} EIII (1.5 Å) ≈ −15.3026

rBe-H = 1.75Å
Exc. states Energy (hartree)

{1,2} EI (1.75 Å) ≈ −15.3131
{3,4,5} EII (1.75 Å) ≈ −15.3059
{6,7,8,9} EIII (1.75 Å) ≈ −15.3056

in a local minimum corresponding to EII(1.5 Å), and/or (ii)
the e-QEB-ADAPT-VQE fails to construct an ansatz that can
approximate the degenerate excited states corresponding to
the energy level EI(1.5 Å). Since the e-QEB-ADAPT-VQE
uses a combination of the BFGS and the Nelder-Mead opti-
mization methods, where the Nelder-Mead is a direct-search
method, which is unlikely to get stuck in local minimum, the
first possible reason can be ruled out. Hence, we are left with
the second one.

Upon explicit inspection of the degenerate states corre-
sponding to the energy level EI (1.5 Å), it is found that
they have strong static correlations [50], where two dom-
inant Slater determinants contribute equally to the wave
function. On the other hand for each of the degener-
ate states corresponding to the energy level EII(1.5 Å)
there is one dominant Slater determinant. Hence, the first
few ansatz-constructing iterations of the e-QEB-ADAPT-
VQE grow the ansatz with qubit excitation evolutions,
which map between the initial reference state |ψ0〉 and
the dominant Slater determinant of one of the states cor-
responding to EII(1.5 Å), because these qubit excitation
evolutions decrease the estimate for the energy by the
most. From that point on, the e-QEB-ADAPT-VQE con-
tinues to construct an ansatz that approximates a state
corresponding to EII(1.5 Å), instead a state corresponding to
EI(1.5 Å).

In the case of rBe-H = 1.75 Å, the situation is similar.
However, in this case the three energy levels EI(1.75 Å),
EII(1.75 Å), and EIII(1.75 Å) are close, and the QEB-
ADAPT-VQE converges to an excited state corresponding to
EIII(1.75 Å). Again the states corresponding to EI(1.75 Å)
and EII(1.75 Å) have two (not equally) dominant Slater de-
terminants, whereas the states corresponding to EIII(1.75 Å)
have weaker static correlations and just one dominant Slater
determinant.

A possible reason that this problem is not evident at other
bond distances is that the energy spacings between the groups
of degenerate excited states are larger.

Overall the following conclusion can be made: A generic
feature of the e-QEB-ADAPT-VQE is to be more “willing”
to construct ansätze for less statically correlated states (where
one Slater determinant is dominant). This is due to its greedy
strategy to grow its ansatz with the qubit excitation evolu-
tion that decreases the energy estimate by the most at each

(a)

(b)

FIG. 4. Energy convergence plots for the first excited states of
LiH and BeH2 in the STO-3G basis at equilibrium bond distances
of rLi-H = 1.546 Å and rBe-H = 1.316 Å, respectively. The plots are
obtained with the e-QEB-ADAPT-VQE for nqe = 10.

ansatz-growing iteration. Hence, in the case when (i) the
lowest energy eigenstates of an electronic Hamiltonian are
ordered in two or more closely spaced (possibly degenerate)
energy levels and (ii) the lowest energy level corresponds to
eigenstates that have static correlations stronger than those of
the eigenstates above them; the e-QEB-ADAPT-VQE might
converge to one of the less statically correlated eigenstates,
instead of to one with the lowest energy.

One possible solution to this problem is to add, in advance,
qubit excitation evolutions that map the initial reference
state to the dominant Slater determinant(s) of the target
state. However, this would require a priori knowledge of
the structure of the target state. Another possible solution
is to exploit symmetries of the problem as suggested in
Ref. [51].

Lastly, we note that this problem was also studied in
Ref. [52].
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(a) (b)

FIG. 5. (a) Energies for the five lowest energy states of LiH, in the STO-3G basis, obtained with the e-QEB-ADAPT-VQE for ε = 10−8

hartree. Note that excited states 1, 2, and 3 are degenerate. (b) Errors in the estimated energy values with respect to the FCI energies.

V. QUBIT VS FERMIONIC EXCITATION EVOLUTIONS

The use of qubit excitation evolutions by the QEB-
ADAPT-VQE was motivated by the fact that they are
implemented by quantum circuits that are simpler than those
of fermionic excitation evolutions [25,27], and the presump-
tion that a qubit-excitation-based ansatz can approximate an
electronic wave function as well as a fermionic-excitation-
based ansatz. In Ref. [25] we compared the two types
of ansätze in approximating the ground states for small
molecules and found that the ansätze perform similarly, in
terms of accuracy. In this section, we generalize this compar-
ison for (more strongly correlated) excited states.

Figure 4 shows energy convergence plots for the first
excited states of LiH and BeH2, at bond distances of
rLi-H = 1.546 Å and rBe-H = 1.316 Å, respectively. The
blue (dark) plots are obtained with the e-QEB-ADAPT-
VQE for n = 10 (the same plots as in Fig. 1), and the
red (light) plots are obtained with the e-QEB-ADAPT-
VQE ansatz-constructing routine, for n = 10, using a pool
of single and double fermionic (instead of qubit) ex-
citation evolutions. We can observe close similarity be-
tween the two types of ansätze. In the case of LiH
[Fig. 4(a)] the qubit-excitation-based ansatz is slightly more
accurate per number of ansatz elements, while in the
case of BeH2 [Fig. 4(b)] the fermionic-excitation-based
ansatz is a bit more accurate instead. These differences
are relatively small, so we derive the same conclusion
as in Refs. [25,28], that qubit and fermionic excitation
evolutions can approximate electronic wave functions com-
parably well.

VI. CONCLUSION

In this paper we proposed a modified version of the QEB-
ADAPT-VQE algorithm, the e-QEB-ADAPT-VQE, designed
to simulate low-lying excited molecular states.

The QEB-ADAPT-VQE relies on an initial reference state,
which has a large overlap with the target ground state in order
to construct an efficient ansatz. However, choosing an initial
reference state that has a significant overlap with a target
excited state is not as straightforward as for a target ground
state. Therefore, the e-QEB-ADAPT-VQE is designed to be
less dependent on the choice of an initial reference state. This
is achieved by an ansatz-growing strategy that does not rely
on energy-gradient evaluations, like the QEB-ADAPT-VQE,
but instead on individual energy-reduction evaluations. The
modified ansatz-growing strategy comes at a cost of up to a
constant factor of more quantum computer measurements, as
compared to the original QEB-ADAPT-VQE.

We benchmarked the performance of the e-QEB-ADAPT-
VQE with classical numerical simulations, by constructing
ansätze for the first excited states of LiH and BeH2. We found
that the e-QEB-ADAPT-VQE can construct highly accurate
ansätze that are implemented by multiple times shallower
circuits, which require multiple times fewer CNOT gates, than
fixed UCC ansätze, like the UCCSD and the GUCCSD.
Therefore, the e-QEB-ADAPT-VQE is especially suitable for
NISQ computers, for which the number of two-qubit entan-
gling gates, such as CNOT gates, that can be applied reliably is
the current bottleneck [8].

We also found that the e-QEB-ADAPT-VQE might fail to
find excited-state energies in order of increasing energy, if
the excited states are ordered in closely spaced degenerate
energy levels and the lower-lying excited states are more
statically correlated than the states above them. This problem
derives from the fact that the e-QEB-ADAPT-VQE pursues
the greedy strategy to achieve a lowest estimate for the energy
at each ansatz-growing iteration. Hence, the algorithm runs
the risk of going along the wrong path and converging to a
state which is not necessarily the one with the lowest energy.
In fact, this problem will be present in any iterative-VQE
protocol that relies on such a greedy strategy, including the
QEB-ADAPT-VQE, the ADAPT-VQE [21], and the qubit-
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ADAPT-VQE [22]. Nevertheless, this problem is unlikely to
be significant, because in practice one would be interested in
finding the whole spectrum of low-lying excited-state ener-
gies, so the order in which they are found is not necessarily
important.

Lastly, we used the e-QEB-ADAPT-VQE ansatz-
constructing routine to compare qubit-excitation-based and
fermionic-excitation-based ansätze in approximating excited
states. The two types of ansätze were found to perform
similarly, achieving a particular accuracy with approximately
the same number of qubit and fermionic excitation evolutions.
These observations generalize previous results [25,28] about
the equivalence of qubit and fermionic excitation evolutions
in approximating electronic wave functions.
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APPENDIX: HIGHER EXCITED STATES FOR LIH

In this section, we further benchmark the performance of
the e-QEB-ADAPT-VQE by obtaining higher excited-state
energies for LiH. Energy dissociation curves for the five low-
est energy states of LiH in the STO-3G basis, obtained with
the e-QEB-ADAPT-VQE for n = 10 and ε = 10−8 hartree,
are plotted in Fig. 5(a). Figure 5(b) shows the corresponding
errors.

The first important thing to verify in these plots is that
the e-QEB-ADAPT-VQE successfully constructs accurate an-
sätze for all three degenerate states corresponding to the
lowest excited energy level of LiH. Also, Fig. 5(b) demon-
strates how the recursive error of the overlap-based method
scales as more excited states are approximated. Assuming
that the relative error of the e-QEB-ADAPT-VQE for each
excited state is approximately the same, then the absolute
error in the estimate of the energy of excited state k, Ek , should
increase approximately linearly with k. Although we do not
have enough excited states to check if this linear dependence
is obeyed, the increase in the error is evident.
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