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Quantum teleportation with relativistic communication from first principles
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In this paper we provide a genuine relativistic quantum teleportation protocol the classical communication
component of which makes use of relativistic causal propagation of a quantum field. Consequently, the
quantum teleportation is fully relativistic by construction. Our scheme is based on the Unruh-DeWitt qubit
detector model, where the quantum state being teleported is associated to an actual qubit rather than the
field mode considered by Alsing and Milburn [P. M. Alsing and G. J. Milburn, Phys. Rev. Lett. 91, 180404
(2003)]. We show that the existing works in (relativistic) quantum information, including good definitions of
one-shot and asymptotic channel capacities, as well as algebraic formulation of quantum field theory, already
provide us with all the necessary ingredients to construct a fundamentally relativistic teleportation protocol in a
relatively straightforward manner.
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I. INTRODUCTION

Quantum teleportation [1] is undoubtedly one of the sim-
plest yet most remarkable discoveries in the field of quantum
information, which has also been experimentally realized
[2,3]. The protocol shows, in particular, that one can in effect
transmit one unit of quantum information (qubit) by commu-
nicating two classical bits and consuming a unit of shared
entanglement (“ebit”), namely, a Bell state. The original pro-
posal by Bennett et al. [1] assumes a perfect protocol at every
step—the two parties only need to have the following: a state
to be teleported, a shared Bell pair, a classical communication
(CC) channel, and a conditional unitary operation by Bob
to “telecorrect” his state after obtaining Alice’s measurement
outcome. There is no need to consider any dynamics or time
evolution in the protocol (this is separate from any actual
experimental implementations, which do depend on how they
are set up). In particular, the protocol is manifestly nonrela-
tivistic.

In the last two decades, some attempts have been made to
incorporate some aspects of relativity, such as the effect of
noise induced by nontrivial motion in spacetime. This was
first considered by Alsing and Milburn [4], where one of
the parties undergoes uniformly accelerated motion. The key
component in such investigations is the concept of entangle-
ment associated to observers in different (noninertial) frames
(also see, e.g., [5–7]). However, this protocol has conceptual
issues: in particular, the use of a field mode as a “qubit” is
unphysical due to its highly delocalized nature and the cavity
setup presents some problems regarding how to account for
the teleportation fidelity, as pointed out in [8]. A better pro-
posal was shortly given by Landulfo and Matsas [9], where
an actual qubit detector model based on the construction by
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Unruh and Wald [10] was used, now more commonly known
as the Unruh-DeWitt (UDW) detector model [11,12]. This
proposal recognizes the fact that the state to be teleported
should be physically localized in spacetime and realizable in
principle, for which a qubit traveling in spacetime is suitable.

Our paper is motivated by the fact that the proposal in [9]
is somewhat incomplete, since it still assumes that the local
operations and classical communication (LOCC) part of the
protocol can be performed somehow and respects relativity
“by default.” Depending on the purpose, we can argue that,
if anything, it is the CC part that should be relativistic since
Alice and Bob can “protect” their shared Bell pair before
the protocol begins. This is the case, for instance, if we
would like to consider the teleportation protocol in curved
spacetime where Alice and Bob place themselves somewhere
in spacetime with all their local laboratories protected, and
then perform the teleportation protocol using the quantum
field as a means of classical communication. Viewing this in
another way, the construction in [7,9] is really about what
happens to teleportation when all qubits are immersed in
a quantum field where the Unruh effect can manifest: it is
more about the impact of noise coming from interacting with
a relativistic “environment” (the field) when one detector
undergoes relativistic motion through the field, rather than
about the relativistic version of the teleportation protocol.
Indeed the original teleportation protocol does not consider
environmental-induced decoherence as part of the protocol.1

In this paper we close this gap in relativistic quantum in-
formation (RQI) by proposing a genuine relativistic quantum
teleportation protocol. Our protocol is based on the minimal
requirement that at the fundamental level all the relevant com-
ponents for the protocol must respect relativistic principles.

1This is distinct from the fact that any practical implementation of
the protocol needs to fight against environmental noise.
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(a) Alice’s and Bob’s quantum systems must (at least) be
somewhere in spacetime and have spatiotemporal degrees of
freedom that are consistent with relativity. The bare minimum
for this to work is for the quantum system to have classical
motional degree of freedom that moves along timelike trajec-
tories, which the UDW detector model can furnish.

(b) The classical communication should be implemented
by a relativistic field (classical or quantum) by construction.
This ensures that relativistic causality is respected from first
principles, rather than an assumption as is done in standard
textbooks on quantum information (under the name “no su-
perluminal signaling”).

(c) The quantum state to be teleported must be physi-
cally accessible. For example, the construction in [4] is not
physical because each mode is completely delocalized over
all spacetimes. Furthermore, one cannot perform projective
measurements on quantum fields [13], so any protocol that
tries to do Bell measurements on field modes directly is not
considered.

While our protocol is unlikely to be useful for practi-
cal purposes in quantum computation (since there are likely
more efficient and clever ways to do this from experimen-
tal perspectives), our goal is to show that from theoretical
and fundamental standpoints there exists a relativistically
covariant quantum teleportation protocol that fully respects
causality by construction. The practical implementation can
thus be regarded as a “coarse-grained” protocol where relativ-
ity is no longer necessary for the user to be aware of.2

The relativistic teleportation protocol we propose here
is also based on the UDW detector model, similar to the
approach used in [9], but we consider the case when the space-
time is an arbitrary globally hyperbolic Lorentzian manifold
(M, gab) where gab is the spacetime metric. Furthermore,
since the Bell measurement and the telecorrecting unitary are
modeled as being performed instantaneously (very quickly),
we will use a delta-coupling approach where the coupling
with the field is very rapid, effectively at a single instant in
time. The delta-coupling model has been used in the study
of relativistic quantum communication, specifically regarding
the ability of a quantum channel to transmit one classical
or quantum bit (see, e.g., [14–17]). It has also been used to
study other protocols such as entanglement harvesting or lack
thereof [18–20] and sabotaging correlations [21].

As shown in [17], the delta-coupling approach readily fits
into the algebraic approach to quantum field theory, which
provides us with much flexibility and generality. As such,
our relativistic protocol constitutes an algebraic reformulation
of the quantum teleportation that respects relativity. Such re-
formulation provides greater unity and economy, since many
calculations simplify in the algebraic framework (essentially
due to the Weyl relations), and furthermore the results ob-
tained will be valid in arbitrary curved spacetimes and any
of the Hilbert-space representations of the quantum field.

2For example, in [2,3] all we need to accept is that the “photons”
used in the setup are excitations of the electromagnetic field, the the-
ory of which is consistent with relativity. In other words, components
like optical fibers respect relativity as a black box, since the experi-
ment can be performed without any real relativistic calculations.

We stress that in essence what needs to be changed to
accommodate a fully relativistic quantum teleportation proto-
col is the classical communication part. If we simply assume
that the LOCC component is perfect and magical (i.e., it
succeeds somehow), then the quantum teleportation protocol
(or really, any of the standard quantum protocols in quantum
information theory) is completely independent of whether rel-
ativity theory holds. In fact, any background theory which has
finite signal propagation speed is sufficient: one simply has
to acknowledge that, before Alice’s signal reaches Bob, Bob
cannot know the measurement outcome and the output will
be maximally mixed. If we consider nonrelativistic theory of
spacetime à la Newton, the speed of light is effectively c →
∞, so the only difference is that Bob can do the measurement
immediately after Alice’s measurement and outcomes are sent
(instantaneously). In an even more extreme case, one can con-
sider purely quantum-information-theoretic causal structure
of spacetime without assuming any relativistic spacetime at
all (see, e.g., [22,23] and references therein): all one needs
is a concept of causal partial ordering and signaling partial
ordering.

This paper is organized as follows. In Sec. II we review the
kinematics of teleportation, one-shot, and asymptotic channel
capacities, and then provide a simple relativistic extension.
In Sec. III we comment on some possible extensions and
variants. In the Appendix we provide the bare minimum of the
algebraic framework for quantization of scalar field theory for
interested readers. We adopt the mostly-plus signature for the
metric and use natural units c = h̄ = 1.

II. TELEPORTATION PROTOCOL

In this section we describe a fully relativistic quantum tele-
portation protocol. We first review the “kinematical” aspect of
the teleportation protocol, which only depends on the LOCC
acting on Hilbert spaces; we then propose a replacement of
the CC component with a fully relativistic channel.

A. The kinematics of teleportation

In the standard teleportation protocol, Alice and Bob are
assumed to share three copies of two-dimensional Hilbert
spaces H = HA1 ⊗ HA ⊗ HB. The first copy is for Alice’s
qubit the state of which is to be teleported; the second and
third copy are for Alice and Bob to share a Bell state (as
a resource). The teleportation protocol uses this shared en-
tanglement resource and two bits of classical information to
effectively give a perfect quantum channel that can transmit
one bit of quantum information. Note that the protocol says
nothing about how to implement the classical communication
part.

The basic idea of the teleportation protocol is as follows.
First, consider the joint initial state to be

|ψ〉 = |ζ00〉 |�+〉 , |ζ00〉 = α |0〉 + β |1〉 , (1)

where α, β ∈ C , |α|2 + |β|2 = 1. The notation |ζ00〉 will be-
come clear in what follows. As usual, the trick is to rewrite
the first three sectors in a way that the entanglement in sector

032432-2



QUANTUM TELEPORTATION WITH RELATIVISTIC … PHYSICAL REVIEW A 106, 032432 (2022)

AB is swapped into sector A1A:

|ζ00〉 |�+〉 = 1
2 |�+〉 |ζ00〉 + 1

2 |�−〉 |ζ01〉
+ 1

2 |�+〉 |ζ10〉 + 1
2 |�−〉 |ζ11〉 , (2)

|ζ00〉 := α |0〉 + β |1〉 , |ζ01〉 := α |0〉 − β |1〉 ,

|ζ10〉 := β |0〉 + α |1〉 , |ζ11〉 := β |0〉 − α |1〉 . (3)

Here the four Bell states are

|�±〉 = |00〉 ± |11〉√
2

, |�±〉 = |01〉 ± |10〉√
2

. (4)

Alice now wants to perform Bell measurement associated to
sector A1A. The four possible outcomes can be associated to
four messages {00, 01, 10, 11}, respectively (hence we labeled
ζi j this way). The standard teleportation protocol then requires
that Bob applies a conditional unitary on his share of the Bell
state according to the message:

00 : |ζ00〉 �→ 1 |ζ00〉 ,

01 : |ζ01〉 �→ σ̂ z |ζ01〉 ,

10 : |ζ10〉 �→ σ̂ x |ζ10〉 ,

11 : |ζ11〉 �→ σ̂ y |ζ11〉 .

(5)

In all cases, the unitary will produce the state |ζ00〉 that Al-
ice originally possesses. Note that Alice does not know the
quantum state (i.e., the value of α, β), since otherwise we
would not need the teleportation protocol and simply inform
Bob to prepare the state separately—teleportation is one of the
so-called oblivious protocols [24].

Quantum teleportation is considered to be one of the three
simplest quantum information protocols that involve commu-
nication between two parties—the other two being superdense
coding and entanglement distribution [24]. However, in all the
three protocols every component except the communication
part does not actually rely on relativistic principles. Within
their own laboratories, Alice and Bob only need to have a set
of qubits and shared (entanglement) resources to perform the
task, as well as local operators within their own laboratory
(but they are allowed to perform Bell measurements within
their own laboratories). In fact more is true: the protocols are
effectively only kinematical in the sense that they are only
about mapping between Hilbert spaces. This is the basis for
the distinction between the notion of relativistic causality and
information-theoretic causality [22,23]. The latter only relies
on some order relation between events associated to some
random variables between them.

The important interplay between the two notions of causal-
ity is the fact that information-theoretic causality has to be
compatible with relativistic causality if the background space-
time structure exists, but the former is strictly more general
since it cannot be fully described classically. This is because
information-theoretic causality has to provide a quantum-
mechanical notion of causal structure that captures essential
features of nonclassicality in Einstein-Podolsky-Rosen and
Bell-type experiments. The distinction between the two no-
tions of causality has led to a wealth of research, most notably
for developing quantum frameworks to model causal rela-
tions and causation (see, e.g., [25–31]) and more recently for

understanding indefinite causal orders3 and causal inequalities
(see, e.g., [32–39]).

In view of the above considerations, there is a sense in
which quantum information protocols usually described in
standard textbooks [24,40] have no real dynamical content4

because they only pertain to information-theoretic notions of
causality, not relativistic causality. Furthermore, one does not
have to even talk about time evolution—the qubits involved in
the protocols do not even need to obey quantum-mechanical
evolution given by the Schrödinger equation (but they obey
the rest of the postulates such as Born’s rule, measurement
updates, linearity, and superposition). Both special relativity
and general relativity are theories prescribing how physical
systems behave in spacetime. Consequently, a quantum in-
formation protocol that manifestly respects relativity must
include spacetime as part of its description5—in other words,
we need to be able to describe where the physical sys-
tems are located, their causal relations, and how they impact
the protocol’s ability to perform the task. Clearly, the only
way relativity enters the picture is through the communica-
tion channel, and it is this step that needs to be modified.
Our task is to describe how to do this in the subsequent
sections.

B. Classical communication via quantum channel

At the core of the teleportation protocol, Alice needs to
communicate her (Bell) measurement outcome to Bob. This
step is usually done in standard quantum information essen-
tially “by declaration”: Alice can always (somehow) send two
bits of classical information to Bob for adjusting the type of
unitary to apply to Bob’s share of the Bell state. Certainly,
the current experimental implementation shows that this can
indeed be done, and clearly it must respect relativistic prin-
ciple at the fundamental level. However, this makes the role
of relativity almost invisible or irrelevant to the framework
(i.e., emails and phone calls are “relativistic black boxes”),
so from the fundamental standpoint this is not ideal. Here we
outline two types of communication protocols: one-shot and
asymptotic settings (see [24] Chap. 7 and references therein
for more details).

The starting point is to suppose that Alice has a set of
messages M that she wishes to communicate to Bob. Each
message m can be associated to a bit string of at least size
log2 |M|: for example, in the teleportation case we have four
distinct messages and the bare minimum is to have them

3This is indefinite causal ordering in the sense of information-
theoretic causality. It is currently debatable whether this can be made
into a concrete realization of indefinite relativistic causal ordering:
see [22] for the most recent work trying to disentangle these two
concepts, notably Secs. 7 and 8.

4We are not talking about any experimental implementation, which
of course has dynamics in it. However, even there relativity is ba-
sically absent from the basic description (since it is not directly
relevant for understanding the outcomes).

5We are excluding quantum gravity proposals which may have
classical relativistic limits, the explanation of which is beyond the
scope of this paper.
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written as M = {00, 01, 10, 11}, where each message m is
a bit string of length 2. Alice has an encoder, i.e., a list of
input variables {xi : i ∈ M} called a codebook of size |M|. In
this case, the index corresponds to one of the four messages
Alice wishes to send. Bob has a corresponding decoder that
implements a positive operator-valued measure (POVM) {Ej}
which contains at least |M| POVM elements; the decoder
outputs another index j such that decoding error is said to
have occurred j 	= i. Bob’s success probability depends on the
“quality” of the channel, which we make more precise below.
We assume that both Alice and Bob know the sort of channel
they will be using, so they can agree on the codebook and
choose the appropriate encoding or decoding schemes for the
task.

Let us first consider the communication channel in the one-
shot setting. For teleportation purposes the message will be
deterministic, thus it is convenient to describe Alice’s initial
state to be given by a classically correlated state6

ρA1A2
m = |m〉〈m| ⊗ |m〉〈m|, m ∈ M, (6)

where ρA1A2
m is a density operator acting on HA1 ⊗ HA2 and

each HAj
∼= C2 ⊗ C2. The extra copy in A1 is meant to keep

track of the message, and for our purposes we do not distin-
guish xi from i because the messages are already naturally in
the binary representation. For example, if Alice wishes to send
01 then she prepares a classically correlated state |01〉〈01| ⊗
|01〉〈01|. Alice encodes her message into qubit A2 using a
classical-quantum channel E : D (HA2 ) → D (HA2 ) given by
[24]

E (|m〉〈m′|) = δm,m′ρA2
m , (7)

where the message m is associated to some state ρA2
m . The state

after encoding is then given by

ρ̃A1A2
m := |m〉〈m| ⊗ E (|m〉〈m|) = |m〉〈m| ⊗ ρA2

m . (8)

Alice sends the state ρA2
m through a communication channel

� : D (HA2 ) → D (HB1 ). The total state becomes

σ A2B1
m := |m〉〈m| ⊗ �

(
ρA2

m

)
. (9)

Bob then performs a decoding measurement using some
POVM {Em}, which can be described as a quantum-classical
channel D : D (HB1 ) → D (HB1 ) such that the total state now
reads

σ̃
A2B1
m,m′ := (1 ⊗ D)

(
σ A2B1

m

)
= |m〉〈m| ⊗

∑
m′∈M

tr
(
Em′�

(
ρA2

m

))|m′〉〈m′|, (10)

Bob declares that Alice’s message was m if Bob’s measure-
ment corresponds to the POVM element Em. In practice this
means that the conditional probability

Pr(m′ = m|m) = tr
(
Em�

(
ρA2

m

))
(11)

6In general Alice does not have to send a deterministic message, so
she can consider instead ρA1A2 = ∑

m pm|m〉〈m|A1 ⊗ |m〉〈m|A2 , which
reduces to the deterministic case by picking pm′ = δm′,m [24].

should be large enough to be useful (i.e., error probability is
low). Once Bob decodes the message, Bob simply performs
the correct unitary on qubit B (Bob’s share of the Bell state).
Notice that in this protocol the success probability of tele-
porting the state is inevitably dependent on the success of the
communication protocol, even if the unitary can be applied
perfectly.

The rate at which classical information can be trans-
mitted via (asymptotically) large number of independent
uses of the channel � is given by the famous Holevo-
Schumacher-Westmoreland (HSW) channel coding theorem
[41,42]. Generalizations without the assumption of each use
being independent (“memoryless”) were given in [43,44].
However, these results are strictly speaking only true for
the limit of infinitely many uses of the channel with error
probability taken to zero. In this sense, “one-shot channel
capacity” is desirable because it only concerns the number of
bits transmitted in a single use of the channel for a given error
probability. Furthermore, such capacity will include the HSW
theorem because large independent uses of the channel � are
the same as a single product channel �⊗n.

In [45] the so-called ε-one-shot channel capacity of an
arbitrary quantum channel was defined, with tight bounds
defined in terms of relative-entropy-type quantity. More pre-
cisely, consider the hypothesis testing of distinguishing two
possible states of a system ρ1 and ρ2 using two POVM ele-
ments P and Q = 1 − P. The probability of guessing correctly
the input state ρ1 is tr(Qρ1), while the wrong guess is tr(Qρ2).
The hypothesis testing relative entropy7 is defined to be

Dε
H (ρ1||ρ2) = − log2 inf

0�Q�1
tr(Qρ1 )�1−ε

tr(Qρ2), (12)

which can be efficiently computed via semidefinite pro-
gramming. From the definition the error probability of this
discrimination task is given by ε ∈ [0, 1). The hypothesis
testing relative entropy Dε

H (· || ·) obeys analogous properties
of relative entropy such as monotonicity and positivity, and is
related to the relative entropy via the quantum Stein lemma
[46]:

D(ρ||σ ) = lim
n→∞

1

n
Dε

H (ρ⊗n||σ⊗n). (13)

Following [45], let us define πAB ∈ D (HA ⊗ HB) by

πAB :=
∑

m

pM (m)|m〉〈m|A ⊗ ρB
m, (14)

where pM is the probability distribution associated to random
variable M for which Eq. (9) is a special case (identifying
A2 = A and B1 = B). Define πA and πB to be the correspond-
ing marginal states of πAB. The one-shot capacity C is the
largest number for which a code of length 2C exists with error
probability ε satisfying the inequality

Cmin � C � Cmax, (15)

7This is related to other forms of “smoothened” relative Rényi
entropy (see also [47–50]).
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where

Cmin = sup
pM

Dε/2
H (πAB||πA ⊗ πB) − log2

1

ε
− 4, (16a)

Cmax = sup
pM

Dε
H (πAB||πA ⊗ πB). (16b)

In general Cmin > 0 and hence C > 0, i.e., the code (2C, ε)
exists, and some approximation of C is also available in terms
of smoothened minimum and maximum entropies [45]. In
general, however, the bounds are unwieldy.

In the asymptotic scenarios, Alice and Bob are allowed
to make n independent uses of the communication channel
where n is large. This actually amounts to the one-shot sce-
nario but for the product channel �⊗n [24]. Alice can still
use a product state as the input across all independent uses
of the channel, so that her new encoding channel is a map
E ′ : D (HA) → D (H⊗n

A ) such that

E ′(|m〉〈m′|) = δm,m′ρ
A⊗n

2
m . (17)

Alice applies �⊗n : D (H⊗n
A ) → D (H⊗n

B ) to E ′(|m〉〈m′|), rep-
resenting n-independent uses of the communication channel
�. Bob then uses an extended decoding channel D′ :
D (H⊗n

B ) → D (HB), giving the resulting state

ρ̃B
m :=

∑
m′∈M

tr[Ẽm′ (�⊗n ◦ E ′)(|m〉〈m|)]|m′〉〈m′|, (18)

where {Ẽm} is the extended POVM across multiple uses of the
channel. The error probability is now

P̃r(m′ = m|m) = tr[Ẽm(�⊗n ◦ E ′)(|m〉〈m|)]. (19)

Hence, the one-shot setting includes the asymptotic setting as
a special case. The rate R of the communication channel is
defined to be the number of bits transmitted averaged over the
number of independent uses of the channel:

R = 1

n
log2 |M|. (20)

If the classical communication has maximum error probability
(of Bob’s decoding measurement) ε � 0, we say that we have
a code (n, R, ε). We say that the rate R is achievable if for
any δ, ε > 0 there exists a code (n, R − δ, ε) for sufficiently
large n.

The HSW theorem [41,42] states that the channel capacity
of n independent uses of the channel is given by [24,40]

C(�) = lim
n→∞

1

n
χ (�⊗n), (21)

where χ is the Holevo information, defined by the maximiza-
tion over all ensembles of input states {pm, ρm} [40]:

χ (�) = max
{pm,ρm}

S

[
�

(∑
m

pmρm

)]
−

∑
m

pmS[�(ρm)].

(22)

If Alice encodes her message into product states across each
n independent use of �, then the channel capacity actually
reduces to just the Holevo information, also known as product
state capacity C(1) [40]:

C(1)(�) = χ (�). (23)

However, if Alice allows for entangled input across �⊗n, the
asymptotic limit (21) is needed and this is typically intractable
except for some special classes of channels. Note that the
HSW does imply that the product state channel capacity is al-
ways nonzero except for the replacement channel �(ρ) = ρ0

for some fixed ρ0.
Fortunately, the relativistic quantum channel we will con-

sider falls under the class of entanglement-breaking channels,
where the Holevo information of the product channel is ad-
ditive, i.e., χ (�⊗n) = nχ (�), so that the channel capacity is
also equal to its Holevo quantity:

C(�) = χ (�). (24)

The main takeaway of this subsection is that the channel
we will consider in the next subsection will have in general
nonzero capacity to transmit classical information, be it in the
one-shot or asymptotic case, and for the asymptotic case the
result has been more or less established in the nonperturba-
tive regime for both the delta-coupled and gapless detectors
[17,51].

C. Relativistic classical communication

Our main goal is to show that the classical communication
component of the teleportation protocol can be described ex-
clusively via a simple UDW-type interaction between a qubit
and a quantum field, even in the case when the interaction is
isotropic in spacetime. In other words, Alice uses a quantum
channel � induced by the field to communicate two bits of
information by “symmetric wireless broadcasting.” Such a
model of classical communication has two advantages: (1)
it is valid in arbitrary globally hyperbolic curved spacetimes
and (2) relativistic causality is manifest from first principle by
construction.

One conceptually straightforward way of accommodating
relativistic classical communication is to imagine Alice hav-
ing three qubits and Bob having two qubits, and they share
a quantum field φ mediating the communication—the total
Hilbert space is a tensor product of six distinct Hilbert spaces:

H = HA1 ⊗ HA ⊗ HB︸ ︷︷ ︸
kinematical

⊗ HA2 ⊗ HB1 ⊗ Hφ︸ ︷︷ ︸
communication

. (25)

The idea is that we assume Alice and Bob can initialize
and protect their qubits in the “kinematical sector” Hkin ≡
HA1 ⊗ HA ⊗ HB perfectly (since they can simply perform
state preparation at the very beginning). Then Alice and
Bob communicate using two UDW detectors interacting with
quantum field in the “communication sector” Hcomm ≡ HA2 ⊗
HB1 ⊗ Hφ . For our purposes, the field’s Hilbert space is with
respect to the Gelfand-Naimark-Segal (GNS) representation
of the vacuum state (which is a quasifree state).

Crucially, it is worth stressing that the above setup is dif-
ferent from the “relativistic” teleportation protocol considered
in the literature [4,9] because there what is relativistic is the
environment and the states of motion of Alice’s and Bob’s
qubits. The fact that the teleportation fidelity decreases in gen-
eral is simply a manifestation that detector-field interaction
decreases purity of the qubits; furthermore, states of motion of
both detectors and local curvature of spacetimes generically
provide additional sources of noise that impact the fidelity
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even further. Therefore, strictly speaking there is nothing rel-
ativistic about the protocol itself: one would get the same
result if one were to replace the field with a lattice of quantum
harmonic oscillators and consider nonrelativistic trajectories.
In contrast, for a genuine relativistic teleportation protocol,
it is essential that (at least) the CC part of the teleportation
protocol is relativistic: local curvature and states of motion
of the detector are secondary contributions that can be made
consistent with the description of the CC component.

Our task is to construct a quantum channel � that is
fundamentally relativistic and is able to transmit classical
information from Alice to Bob. One way to do this is to use
the sort of quantum channel considered in [17] (or [51,52] if
we use a gapless detector), which we review below.

We suppose that Alice’s qubit A2 and Bob’s qubit B1 are
associated to a UDW detector—for convenience we will drop
the subscript and call them A and B. The UDW detector is a
two-level system (“a qubit”) with the free Hamiltonian given
by

h j = � j

2

(
σ̂ z

j + 1
)
, j = A, B (26)

where σ̂ z
j is the usual Pauli-Z operator for detector j, the

ground and excited states |g j〉 and |e j〉 of which have energy
0 and � j , respectively. Let τ j be the proper time of detector
j the center of mass of which travels along the world line
x j (τ j ). A priori the proper times may not coincide (i.e., the
sense that dτA/dτB 	= 1) due to relativistic redshift caused by
relative motion or different gravitational potential.

The covariant generalization of the UDW model is first
given by [53]: the interaction Hamiltonian four-form (in the
interaction picture) reads

hI, j (x) = dV f j (x)μ̂ j[τ j (x)] ⊗ φ̂(x), (27)

where dV = d4x
√−g is the invariant volume element in

M, and f j (x) ∈ C∞
0 (M) prescribes the interaction region

between detector j and the field. The monopole moment of
the detector j, denoted μ̂ j (τ j ), is given by

μ̂ j (τ j ) = σ̂ x
j (τ j ) = σ̂+

j ei� jτ j + σ̂−
j e−i� jτ j , (28)

where σ̂± are the su(2) ladder operators with σ̂+
j |g j〉 = |e j〉

and σ̂−
j |e j〉 = |g j〉.

The total unitary time evolution for the detector-field sys-
tem is given by the time-ordered exponential with respect to
some time parameter t (in the interaction picture) [54]:

U = Tt exp

[
−i

∫
M

dV hI,A(x) + hI,B(x)

]
. (29)

The issue of time ordering of such a unitary has been investi-
gated in [54].

The delta-coupling regime for the UDW model is the
regime where the interaction timescale between the detector
and the field is assumed to be much faster than all the relevant
timescales of the problem. This regime is particularly suited

for the analysis of the teleportation problem. For our pur-
poses, the way to handle this is to consider the delta-coupling
detector in terms of Fermi normal coordinates8 (FNCs), de-
noted by (τ, x) so that we have

f j (x) = λ jη jδ(τ j − τ j,0)Fj (x), (30)

Since supp fA ∩ supp fB = ∅, there is no problem using local
FNCs associated to each trajectory. From global hyperbolicity,
there exists a global time function t coming from the foliation
M ∼= R × �t so we are able to make sense of time ordering
between the two interaction regions.9 If the trajectories are
stationary so that the proper times are proportional to coordi-
nate time t , then the time ordering is clear since we can align
t with the proper times of the detectors.

The unitary U reduces to a product of two simple (ordered)
unitaries U = UBUA, where

Uj = exp[−iμ̂ j (τ j,0) ⊗ Ŷj], (31)

Ŷj = φ̂( f j ) =
∫
M

dV f j (x)φ̂(x), (32)

with f j (x) given in Eq. (30). This unitary can be written as a
sum of bounded operators:

Uj = 1 ⊗ cos Ŷj − iμ̂ j (τ j,0) ⊗ sin Ŷj . (33)

Again here τ j,0 can be ordered using the global time co-
ordinate since we will be mostly interested in stationary
trajectories (for which teleportation is our focus), noting that
some additional care is required if the trajectory of each de-
tector is nontrivial (e.g., accelerating detectors).10

In what follows, we will exploit the fact that the oper-
ators cos φ̂( f j ) and sin φ̂( f j ) are bounded operators in the
algebra of observables A(M) of the quantum field, thus the
framework of algebraic quantum field theory (AQFT) is very
convenient (see the Appendix for more details). That said, the
results of this paper using the delta-coupled detector are not
strictly speaking at the level of rigor of pure mathematics since
the spacetime smearing f j (x) for delta coupling in Eq. (30)
does not belong to C∞

0 (M). Intuitively, delta coupling cor-
responds to very rapid interactions, i.e., an approximation of
smooth compactly supported functions that are very localized
in time. The use of AQFT in this paper is mainly to ensure that
the setting generalizes easily to arbitrary curved spacetimes
and for any of the GNS representations, and such coupling
seems natural for the teleportation protocol.

In what follows we drop the subscript in A2 and B1 and
write A and B to remove clutter since we are working strictly
only in the communication sector HCOMM. Let us consider the

8For much more comprehensive discussions on Fermi normal co-
ordinates and their applications and limitations, see [55].

9Note that this can be really difficult in general unless the trajecto-
ries have some symmetries, since there is a lot of arbitrariness in how
to embed Cauchy slices in M.

10Again, the problem is that we can always have good time ordering
between two detectors by choosing suitable Cauchy surfaces, but the
one that works best may not coincide with the global time coordinate
most naturally associated to the spacetime of interest.
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initial state of the detector-field system to be given by initially
uncorrelated state

ρ̂0 = ρ̂0
A ⊗ ρ̂0

B ⊗ ρ̂0
φ. (34)

We are interested in the quantum channel � : D (HA) →
D (HB), where D (H j ) is the space of density matrices

associated to Hilbert space H j of detector j. The channel is
naturally defined in the Stinespring-like representation

�
(
ρ̂0

A

) = trB,φ (U ρ̂0U †). (35)

We can calculate the channel explicitly in closed form: it is
given by [56]

ρ̂ABφ = U
(
ρ̂0

A ⊗ ρ̂0
B ⊗ ρ̂0

φ

)
U †

= ρ̂0
B ⊗ (

ρ̂0
A ⊗ CBCAρ̂0

φCACB + μ̂Aρ̂0
Aμ̂A ⊗ CBSAρ̂0

φSACB + iρ̂0
Aμ̂A ⊗ CBCAρ̂0

φSACB − iμ̂Aρ̂0
A ⊗ CBSAρ̂0

φCACB

)
+ μ̂Bρ̂

0
Bμ̂B ⊗ (

ρ̂0
A ⊗ SBCAρ̂0

φCASB + μ̂Aρ̂0
Aμ̂A ⊗ SBSAρ̂0

φSASB + iρ̂0
Aμ̂A ⊗ SBCAρ̂0

φSASB − iμ̂Aρ̂0
A ⊗ SBSAρ̂0

φCASB

)
+ iρ̂0

Bμ̂B ⊗ (
ρ̂0

A ⊗ CBCAρ̂0
φCASB + μ̂Aρ̂0

Aμ̂A ⊗ CBSAρ̂0
φSASB + iρ̂0

Aμ̂A ⊗ CBCAρ̂0
φSASB − iμ̂Aρ̂0

A ⊗ CBSAρ̂0
φCASB

)
− iμ̂Bρ̂

0
B ⊗ (

ρ̂0
A ⊗ SBCAρ̂0

φCACB + μ̂Aρ̂0
Aμ̂A ⊗ SBSAρ̂0

φSACB + iρ̂0
Aμ̂A ⊗ SBCAρ̂0

φSACB − iμ̂Aρ̂0
A ⊗ SBSAρ̂0

φCACB

)
, (36)

using the shorthand Cj ≡ cos Ŷj and S j ≡ sin Ŷj , and here it
is understood that μ̂ j ≡ μ̂ j (t j,0) in order to alleviate nota-
tion. For an algebraic state associated to ρ̂0

φ , which defines
the distinguished folium of normal states associated to some
algebraic state Hω (see Sec. A or [57]), let us define another
shorthand:11

γi jkl := ω
(
X (i)

A X ( j)
B X (k)

B X (l )
A

)
≡ tr

(
ρ̂0

φX (i)
A X ( j)

B X (k)
B X (l )

A

)
(37)

where i, j, k, l = c, s for cosine and and sine respectively,
e.g., X (c)

A ≡ cos ŶA. By taking the partial trace over B and φ,
we get

�
(
ρ̂0

A

) = [γcccc + γcssc + iβ(γcscc − γccsc)]ρ̂0
A

+ [γsccs + γssss + iβ(γsscs − γscss)]μ̂Aρ̂0
Aμ̂A

+ i[γsccc + γsssc + iβ(γsscc − γscsc)]ρ̂0
Aμ̂A

− i[γcccs + γcsss + iβ(γcscs − γccss)]μ̂Aρ̂0
A, (38)

where β = tr(μ̂Bρ̂
0
B ). The coefficients can be computed

straightforwardly for quasifree or Gaussian states using only
properties of the Weyl algebra and Weyl relations (A8). Note
that, as stated in Eq. (38), the result is valid for any initial
state of Alice and Bob, and furthermore it is also valid for any
initial algebraic state of the field.

For convenience let us consider the field to be initially in
a quasifree Hadamard state, which includes the vacuum state.
This implies that γi jkl = 0 if there are odd numbers of sines
and cosines and we get

�
(
ρ̂0

A

) = (γcccc + γcssc)ρ̂0
A + (γsccs + γssss)μ̂Aρ̂0

Aμ̂A

+ β(γcscs − γccss)μ̂Aρ̂0
A − β(γsscc − γscsc)ρ̂0

Aμ̂A.

(39)

The remaining coefficients can be computed using the follow-
ing identities proven in [56].

11This shorthand is slightly different from the definition given in
[17] but simpler to use in terms of the ordering of the operators.

Lemma. We have the “twisted” product-to-sum formulas
for Weyl algebra:

2CiCj = Ci+ je
−iEi j/2 + Ci− je

iEi j/2, (40a)

−2SiS j = Ci+ je
−iEi j/2 − Ci− je

iEi j/2, (40b)

2CiS j = Si+ je
−iEi j/2 − Si− je

iEi j/2, (40c)

2SiCj = Si+ je
−iEi j/2 + Si− je

iEi j/2, (40d)

where Ci± j ≡ cos[φ̂( fi ± f j )], Si± j ≡ sin[φ̂( fi ± f j )] and
Ei j := E ( fi, f j ) is the smeared causal propagator. If supp( fi )
and supp( f j ) are spacelike separated, we have Ei j = 0 and
these reduce to the standard product-to-sum formula in
trigonometry for complex numbers (or for commuting oper-
ators).

The coefficients are given by

γcccc + γcssc = 1
2 [1 + νB cos(2EAB)], (41a)

γsccs + γssss = 1
2 [1 − νB cos(2EAB)], (41b)

γcscs − γccss = γsscc − γscsc = i

2
νB sin(2EAB), (41c)

where νB = ω[W (2E fB)] = e−2W( fB, fB ). Therefore, we can
write

�
(
ρ̂0

A

) = 1 + νB cos(2EAB)

2
ρ̂0

A + 1 − νB cos(2EAB)

2
μ̂Aρ̂0

Aμ̂A

+ νB sin(2EAB)

2

[
ρ̂0

A, μ̂A

]
. (42)

It is worth noting that if one wishes to be extremely strict
with rigor and assumes that we cannot compute νB using the
definition of the quasifree state because fB 	∈ C∞

0 (M), the
calculation of νB can be justified in canonical quantization
using a more brute-force approach along the lines of [58].

This channel � has been shown to have channel capacity
equal to [17]

C(�) = H
(1

2
+ νB

2
| cos(2E ( fA, fB))|

)
− H

(1

2
+ νB

2

)
,

(43)
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where H is the binary Shannon entropy. Crucially, the channel
capacity is zero if Alice’s and Bob’s qubits are space-
like separated, as we expect from first-principle relativistic
communication. Another way to see this is that relativistic
causality is encoded in the coefficients of �: if Alice and
Bob are spacelike separated, the smeared causal propagator
E ( fA, fB) = 0 and Bob’s final state after interaction is purely
due to local noise coming from its interaction with the field
(since it only depends on fB). In [17] it was also shown that
the maximum classical channel capacity can be attained with
suitable tuning of the detector parameters—in particular, it
is generically the case that Alice’s coupling must be much
stronger than Bob for the capacity to be maximized, and Bob
just needs to pick a pure state ρ̂0

B = |gB〉〈gB|. Therefore, Al-
ice can communicate her classical message perfectly to Bob.
Once Bob performs the decoding operation to infer Alice’s
message m, Bob can then perform the corresponding unitary
in Eq. (5).

This result is quite general since the channel is completely
specified by the properties of Bob’s detector, the initial state,
and the expectation value of the quantum field observables
in arbitrary curved spacetime and is also independent of the
GNS representation we consider so long as the algebraic state
is quasifree.

III. POSSIBLE EXTENSIONS AND VARIANTS

In this section we briefly comment on how our protocol
can be extended to fit the sort of setups considered in the past
literature.

A. Including environmental effects and states of motion

As we mentioned in the preceding section, the earlier
“relativistic teleportation” protocol is not strictly speaking a
relativistic protocol because what is relativistic is the environ-
ment and the states of motion of the qubits in the kinematical
sector Hkin. Recall that, in [4,9], what was being considered
is the impact of the quantum field environment interacting
locally with Alice’s and Bob’s detectors living in HA and HB

(while leaving HA1 intact). Indeed this part of the analysis is
relativistic in the sense that the quantum field constitutes a
relativistic bath, while the detectors are allowed to move along
relativistic trajectories consistent with special relativity. We
argued that what is necessary in this case is to make use of the
quantum field as part of the communication (sub)protocol.

Given the construction in Sec. II, it is now clearer how
to include the setup considered in [4,9]. The idea is to have
the same quantum field interact with all five qubit sectors.
For convenience we write down the six Hilbert spaces from
Eq. (25):

H = HA1 ⊗ HA ⊗ HB︸ ︷︷ ︸
kinematical

⊗ HA2 ⊗ HB1 ⊗ Hφ︸ ︷︷ ︸
communication

.

This time, however, we will need at least four qubits
A, B, A2, and B1 to interact with the quantum field φ (while

protecting Alice’s other half of the Bell state12). All we need
is to consider the same UDW detector coupling in (27) for all
four qubits: the total unitary is now the sum of four Hamilto-
nian four-forms:

U = T exp

[
−i

∑
j

∫
M
dV hj,I (x)

]
, (44)

where j = A, B, A2, B1. The spacetime smearings for each
qubit should be chosen so that fA and fA2 are spacelike sep-
arated (e.g., at the same Cauchy slice �t but separated by
finite but small proper distance); similarly fB and fB1 are also
spacelike (e.g., also at the same Cauchy slice �t ′ but sepa-
rated by finite but small proper distance). Then Bob carries
both qubits B and B1 along some relativistic trajectories in a
common moving laboratory and we can perform the same type
of calculations in the spirit of [4,9] to account for the effects
coming from states of motion.13

Since the communication part (which requires maximum
channel capacity) only involves A2 and B1, the dynamics of
detectors A and B can be evaluated perturbatively so we do
not need to make any restrictions to the type of interactions or
detectors, beyond the assumption that the coupling with the
field is weak (to justify perturbative calculation). If we wish
to study nonperturbatively how nontrivial states of motion can
impact the teleportation protocol, then we can consider the
moving detectors A and B to be gapless (as done in [51]) since
the delta-coupled detector cannot really capture the impact
of the states of motion beyond the fact that the spatial pro-
file gets distorted asymmetrically, e.g., when one considers
detector B′s center of mass to be uniformly accelerated (see,
for instance, [55] for how to capture accelerated motion of a
finite-sized detector in Fermi normal coordinates).

One complication with including two extra qubits’ states of
motion is that it is no longer obvious that the channel capacity
can be calculated as easily, since the quantum channel �

will get modified by additional interactions coming from the
detectors in the kinematical sector A and B. To get a sense
of what has changed, note that having four detectors couple to
the field would mean that the coefficients of the channel would
not in general depend only on products of four operators with
two distinct smearing functions (since γi jkl depends on fA2 and
fB1 ). This suggests that the calculation’s complexity parallels
that of having two detectors each coupling to the field twice,
as done in [20] in the context of entanglement harvesting, so
the new sets of coefficients will involve eight indices γ̃i jklmnop

depending on four spacetime smearings fA, fB, fA2 , and fB1 .
Since we know from [15,16] that perturbative coupling can
only influence channel capacity by a perturbatively small
amount, we expect that if the kinematical sector’s detectors
A and B interact weakly with the field then the channel capac-
ity will still be close to maximal. However, simply from the

12We could easily accommodate all five qubits interacting but we
do not do so here for simplicity.

13Of course, as before, one has to be careful about time ordering in
the delta-coupling approach if motion is not stationary; for practical
purposes we require that t (supp fA) � t (supp fB ), a condition analo-
gous to that imposed by [51].
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fact that detector-field interaction introduces some noise, we
know that the teleportation fidelity by including the kinemati-
cal sector’s qubits A and B will be worse than the situation we
considered in Sec. II.

B. Another possible form of classical communication

One other (naïve) possibility is to consider a different way
of sending the classical information to Bob, making use of the
coupling with the field. For example, consider applying the
UDW coupling of the form

00 → Hm
I (t ) = 1 ⊗ 1, (45a)

01 → Hm
I (t ) = σ̂ z ⊗ φ̂( f ), (45b)

10 → Hm
I (t ) = σ̂ x ⊗ π̂ ( f ), (45c)

11 → Hm
I (t ) = σ̂ y ⊗ π̂ ( f )φ̂( f ). (45d)

Here the three-smeared field operators are

φ̂( f ) =
∫

�t

d3x
√

h φ̂(t, x) f (t, x), (46)

π̂ ( f ) =
∫

�t

d3x
√

h ta∇aφ(t, x) f (t, x), (47)

with π (x) = √
hta∇aφ. The field operator φ̂( f ) in this case

can be obtained from the four-smeared field operator φ̂( f ) in
the sense of Sec. A but for the delta-coupling case we can
technically regard it as a three-smeared operator at some fixed
time slice.14

For this proposal, because the field helps in distinguishing
messages, in principle Alice only needs one auxiliary detector
to do this; part of the classical message will be encoded
into the vacuum fluctuations and Bob’s measurement would
differ because each interaction Hamiltonian induces different
kinds of channel Em associated to Hamiltonian Hm

I (t ). In other
words, Bob’s measurement is associated to the following:

σ A2B1
m = |m〉〈m| ⊗ tr

[
Em�m

(
ρ

A1
0

)]|m〉〈m| (48)

where now each channel �m is associated to each distinct
message m ∈ M.

In more detail, the key observation is that the channel �m

(m = 00, 01, 10, 11) takes exactly the same functional form
as � defined in Eq. (42), that is,

�m
(
ρ̂0

A

) = 1 + νm
B cos(2EAB)

2
ρ̂0

A + νm
B sin(2EAB)

2

[
ρ̂0

A, μ̂m
A

]
+ 1 − νm

B cos(2EAB)

2
μ̂m

A ρ̂0
Aμ̂m

A , (49)

where μ̂m
A = 1, σ̂ x, σ̂ y, σ̂ z depending on the values of m, and

similarly

νm
B = ω(eiÔm ( f ) ), (50)

where Ôm( f ) = 1, φ̂( f ), π̂ ( f ), π̂ ( f )φ̂( f ) depending on
which value of m. Alice should also pick her initial state

14Note that the interpretation of the Weyl algebra differs somewhat
from Sec. A if we work with canonical commutation relation repre-
sentation over a Cauchy surface (see [59,60]).

to be such that it does not commute with her monopole
operator (otherwise the result will not be distinguishable from
m = 00).

The success of this approach relies on the fact that the
monopole operators μ̂m

A are distinct (and orthogonal in the
Hilbert-Schmidt inner product) and the fact that νm

B can be
different. We have

ν00
B = 1, ν01

B = e−W( f , f )/2, (51)

while for ν10
B and ν11

B it is more complicated because π̂ ( f )
only makes sense as a three-smeared operator, while φ̂( f ) is a
four-smeared operator.15 However, all we need to know is that
they are all distinct, which follows from the fact that eiÔm ( f ) is
a (product of) displacement operator(s). Even for ν11

B , we have
from the Baker-Campbell-Hausdorff formula

eiÔ11( f ) = eiφ̂( f )eiπ̂ ( f )e−iθ1 (52)

where θ is some constant phase. This is a direct conse-
quence of (smeared) equal-time commutation relation at a
fixed Cauchy slice [59,60]. In flat space, this can be checked
explicitly (see [16] for an analogous calculation in entangle-
ment harvesting). All Bob needs to make sure of, then, is to
pick a pure state ρ̂0

B that does not commute with any of the
Pauli matrices. Suppose [ρ̂0

B, σ̂ y] = 0, then ρ̂0
B will be a fixed

point of �11, and so Bob is unable to distinguish �00 from �11

regardless of his choice of POVMs since �00 = �11 in that
case. Note that since the channel �m is practically identical
to the previous approach analogous to [17], we expect that
the channel capacity can be made equally large by suitable
adjustment of the detector parameters and choice of states for
embedding the classical information.

One complication with this approach is that if Alice wishes
to send 00 then it amounts to doing nothing, so both Alice and
Bob have to agree in advance that if at the prescribed time Bob
receives nothing from Alice via the quantum channel then Bob
does nothing as well and takes |ζ00〉 to be the actual state Alice
teleported. This is different from if Bob is causally discon-
nected from Alice, where Bob must average over all possible
outcomes according to the protocol, and it is not always clear
whether Bob can make this distinction. One possible way
out of this issue is to instead consider more general qudits,
but the detector-field interaction must be given in terms of
clock-and-shift matrices analogous to the approach adopted
in [61]. This allows more nontrivial operators for Alice to use
to encode her classical information, since ideally Alice would
want four distinct (orthogonal) operators that are not equal to
the identity operator.

15Again, in the delta-coupled regime we are sort of abusing the
rigor, since f 	∈ C∞

0 (M). So one has to think of the delta-coupled
regime as a compactly supported smooth function which is very
tightly supported along the time direction. If one finds this approach
not palatable but still wishes for nonperturbative results, one can
always pass to the gapless detector regime where this issue does
not arise (but detector energy levels are degenerate and they have
no internal dynamics).
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IV. CONCLUSION

In this paper we close the gap in RQI by proposing a
genuine relativistic quantum teleportation protocol, in contrast
to the past proposals given in [4,9]. Our protocol is based on
the minimal requirement that at the fundamental level all the
relevant components for the protocol must respect relativis-
tic principles and the information and qubits are physically
accessible. While our protocol is unlikely to be useful from
practical or experimental standpoints, our goal is to show that
we can have a relativistically consistent quantum teleportation
protocol that fully respects causality by construction. The
practical implementation can then be viewed as a “coarse-
grained” protocol where relativity is no longer necessary for
the user to be aware of and be treated as a black box compo-
nent of the protocol.

The relativistic teleportation protocol we propose here is
also based on the UDW detector model but generalized to an
arbitrary globally hyperbolic Lorentzian manifold (M, gab),
using the sort of nonperturbative setups considered in [17,51].
The nonperturbative method is needed to ensure that the clas-
sical channel capacity is not perturbatively small. We stress
again that to accommodate the fully relativistic quantum tele-
portation protocol what needs to be changed is the classical
communication part, and less important is the fact that the
“noisy environment” is a relativistic quantum field. If we
simply assume that the LOCC is perfect somehow, then the
quantum teleportation protocol (or, really, any of the stan-
dard quantum protocols in quantum information theory) is
completely independent of whether relativity theory holds, or
even whether spacetime exists at all (see, e.g., [22,23] and
references therein).

This paper has several natural extensions for future work.
First, since our goal is to set this up to make sure that the rel-
ativistic component is obvious from first principles, we have
not made any attempt to really control or evaluate the one-
shot channel capacity in relativistic settings. Clearly, since the
hypothesis testing channel capacity in Sec. II is a function of
the relativistic channel, we expect that spacelike separated de-
tectors have zero one-shot channel capacity for any ε ∈ [0, 1).
It would be desirable to obtain a more explicit expression
for this, in the same way that the entanglement-breaking
property allows for the asymptotic Holevo information to be
computed. The one-shot analysis is also conceptually useful
because “repeated use of the channel” is not easy to think
about in relativistic settings—we cannot literally “reset” the
background spacetime (though this approximation is sensible,
since this is how particle physics experiments make sense).
There may be ways to account for this more simply.

Second, as per constructions in [17,51], we are still con-
sidering spherically symmetric broadcast using scalar fields.
For classical capacity, this is not a problem, but for quantum
capacity this is known to be detrimental in general without
having Bob to be delocalized over large regions [16]. Analy-
ses of “directional” transmission of classical information and
classical propagation of information using nonscalar fields are
of independent interest. Also, note that in [16] the authors
used two detectors coupled to the field locally twice in some
appropriate sense (though specialized to flat spacetimes) and
this allowed for transmission of qubits with arbitrarily high

quantum channel capacity. This could be used to replace
the CC component since one can then use this to transmit
classical information as well. However, intuitively we expect
that typically quantum channels that can transmit quantum
information are “costlier” and more difficult to work with than
those that can only transmit classical capacity, so it would be
nice to see if our proposals are really “simpler” than using the
kind of settings in [16].

Third, one of the interesting applications of quantum tele-
portation is the so-called gate-based teleportation [62,63].
This allows for universal quantum computation using only
single-qubit gates, Bell measurements, and also tripartite en-
tangled Greenberger-Horne-Zeilinger states. There is also a
variant of teleportation called remote state preparation (RSP)
[64,65]. Here the RSP protocol differs from teleportation in
that Alice knows what state to send to Bob, so the resources
required to perform this task are fewer. It is of independent
interest to see if a relativistic version of the teleportation
protocol can be adapted for these applications and see whether
there are any additional features or insights to be gained from
them (for RSP we expect, at least, that it will not be too
different).

Last but not least, with the recent constructions of the
Fewster-Verch framework for local measurement theory [66],
it is perhaps natural to see if there is a way to fit teleportation
into such a framework where the probe is also a quantum
field. While the physicality of the measurement schemes, the
general approach, and the comparison with the UDW model
are still part of an ongoing debate, from a mathematical stand-
point we find it a worthwhile line of investigation simply
because the nature of what is being teleported is not obvious
at all. Since we know that we cannot teleport a single field
mode as done in [4], it is desirable to even know whether it
makes sense to talk about teleportation when all components
are purely quantum fields. We believe there may be a way to
do this, based on two separate ideas: (1) that the split property
of the quantum fields allows us to think of embedding “Cbits”
into spacetime regions (see, e.g., [57]) and (2) that commonly
used finite-dimensional concepts such as entanglement dis-
tillation and positive partial transpose make sense even in
quantum field theory (see, e.g., [67]). As is usual for a typical
theoretical physicist, we leave these (very) interesting lines of
investigations for future work.
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APPENDIX: CONDENSED REVIEW OF SCALAR QFT
IN CURVED SPACETIMES

In order to ensure that this paper is self-contained, in this
Appendix we very briefly review the algebraic framework
for quantization of a real scalar field in arbitrary (globally
hyperbolic) curved spacetimes, which is a condensed review
of [56]. Readers can find an accessible introduction to ∗ alge-
bras and C∗ algebras for QFT applications in [57,60,68,69].
Readers who are more interested in the bird’s eye view of
the relativistic generalization are invited to read Sec. II and
consult this Appendix as the need arises.

1. Algebra of observables

For this paper, we restrict our attention to a real scalar
field φ in (3 + 1)-dimensional globally hyperbolic Lorentzian
spacetime (M, gab), the equation of motion of which is given
by

Pφ = 0, P = ∇a∇a − m2 − ξR, (A1)

where ξ � 0, R is the Ricci scalar and ∇ is the Levi-Civita
connection with respect to gab. Since it is globally hyperbolic,
it admits a foliation M ∼= R × � where � is a Cauchy surface
and there is a good notion of global time ordering (we can
speak of “constant-time surfaces”).

The big picture of the algebraic framework for free scalar
field quantization is as follows. First, we need to construct
the algebra of observables A(M) for the field theory as
well as quantum states on which A(M) acts. The building
blocks of the quantum theory are made out of solutions to
(A1), which in turn can be constructed out of certain Green’s
functions. We also need to provide an implementation of dy-
namics and canonical commutation relations (CCRs). Finally,
we also need to provide a family of quantum states without
reference to any Hilbert-space structure: in QFT there are
many unitarily inequivalent Hilbert-space representations. A
physically reasonable choice of such a set of states is known
as the Hadamard state [60,70], which respects local flatness
properties and certain regularity conditions.

First, we need to construct solutions to build the alge-
bra of observables. Let f ∈ C∞

0 (M) be a smooth compactly
supported test function on M. We consider the retarded
and advanced propagators E± ≡ E±(x, y) associated to the
Klein-Gordon operator P, defined to be the Green’s functions
such that they solve the inhomogeneous wave equation. That
is, we have P(E± f ) = f , with

E± f ≡ (E± f )(x) :=
∫

dV ′ E±(x, x′) f (x′), (A2)

where dV ′ = d4x′√−g is the invariant volume element. The
causal propagator is defined to be the advanced-minus-
retarded propagator E = E− − E+. The key fact we need is
that if O is an open neighborhood of some Cauchy surface
� and ϕ ∈ SolR(M) is any real solution to Eq. (A1) with
compact Cauchy data, then there exists f ∈ C∞

0 (M) with
supp( f ) ⊂ O such that ϕ = E f [69].

The quantization of the real scalar field theory φ in AQFT
is regarded as an R-linear mapping from the space of smooth
compactly supported test functions to a unital ∗ algebra

A(M),

φ̂ : C∞
0 (M) → A(M), f �→ φ̂( f ), (A3)

together with the following requirements.
(a) Hermiticity: φ̂( f )† = φ̂( f ) for all f ∈ C∞

0 (M).
(b) Klein-Gordon: φ̂(P f ) = 0 for all f ∈ C∞

0 (M).
(c) CCRs: [φ̂( f ), φ̂(g)] = iE ( f , g)1 for all f , g ∈ C∞

0 (M),
where E ( f , g) is the smeared causal propagator

E ( f , g) :=
∫

dV f (x)(Eg)(x). (A4)

(d) Time slice axiom: A(M) is generated by the unit el-
ement 1 and the smeared field operators φ̂( f ) for all f ∈
C∞

0 (M) with supp( f ) ⊂ O, where O is a fixed open neigh-
borhood of some Cauchy slice �.

A(M) is called the algebra of observables for the scalar
field theory and the smeared field operator reads

φ̂( f ) =
∫

dV φ̂(x) f (x). (A5)

What we usually use in canonical quantization, namely, (un-
smeared) field operator φ̂(x), is formally an operator-valued
distribution.

Next, the vector space of solutions SolR(M) can
be equipped with a symplectic form σ : SolR(M) ×
SolR(M) → R, defined as

σ (φ1, φ2) :=
∫

�t

d�a [φ1∇aφ2 − φ2∇aφ1], (A6)

where d�a = −t ad�, −t a is the inward-directed unit normal
to the Cauchy surface �t , and d� = √

h d3x is the induced
volume form on �t [71,72]. For our purposes, the symplectic
form (A6) is mainly to relate to the usual canonical quantiza-
tion procedure, since we will need to have the Klein-Gordon
inner product for the one-particle Hilbert space (sometimes
called “positive-frequency Hilbert space”).

In this paper, as is standard we will work with the “ex-
ponentiated version”of φ̂( f ) which forms a Weyl algebra
W (M), which is a unital C∗ algebra generated by elements
that formally take the form

W (E f ) ≡ eiφ̂( f ), f ∈ C∞
0 (M), (A7)

obeying Weyl relations

W (E f )† = W (−E f ),

W [E (P f )] = 1,

W (E f )W (Eg) = e− i
2 E ( f ,g)W [E ( f + g)] (A8)

where f , g ∈ C∞
0 (M). The Weyl algebra is more useful here

since the elements are bounded operators and we do not have
to deal with functional-analytic domain issues associated to
A(M). Causal behavior associated to two disjoint regions
f and g is encoded in the third Weyl relations due to the
appearance of causal propagator E ( f , g).
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2. Algebraic states and quasifree states

An algebraic state is defined to be a C-linear functional
ω : W (M) → C [similarly for A(M)] such that

ω(1) = 1, ω(A†A) � 0, ∀A ∈ W (M). (A9)

In words, the algebraic state is essentially a map from ob-
servables to expectation values. We say that the state ω is
pure if it cannot be written as ω = αω1 + (1 − α)ω2 for any
α ∈ (0, 1) and any two algebraic states ω1 and ω2 and it is
mixed otherwise.

The GNS reconstruction theorem [68,69,73] relates the al-
gebraic approach to the canonical approach. The theorem says
that given W (M) and ω, we get a GNS triple (Hω, πω, |�ω〉),
where πω : W (M) → B(Hω ) is a Hilbert-space representa-
tion with respect to ω. Any algebraic state ω is realized as
a vector state |�ω〉 ∈ Hω in its own GNS representation,
and observables A ∈ W (M) are realized as bounded opera-
tors Â := πω(A) ∈ B(Hω ). The expectation values will then
take the familiar form ω(A) = 〈�ω|Â|�ω〉. The GNS theorem
allows us to only deal with specific representations (out of
infinitely many inequivalent ones) “at the end.”

We can essentially characterize the scalar QFT by com-
puting the n-point correlation functions (also known as the
Wightman n-point functions), given by

W( f1, . . . , fn) := ω[φ̂( f1) . . . φ̂( fn)], (A10)

where f j ∈ C∞
0 (M). Although the right-hand side seems to

involve the algebra A(M), the GNS representation of the
Weyl algebra W (M) lets us calculate these correlators using
derivatives: for example, we have the smeared Wightman two-
point function

W( f , g) ≡ − ∂2

∂s∂t

∣∣∣∣∣
s,t=0

ω(eiφ̂(s f )eiφ̂(tg) ) (A11)

where the right-hand side should be viewed in the GNS repre-
sentation of W (M).

It is generally accepted that any physically reasonable
states should be Hadamard states [60,70]. The specific fea-
tures of Hadamard states need not concern us in this paper:
all we need is that there are nice subsets of Hadamard states
that are quasifree: these have vanishing odd-point correlation

functions and all higher even-point functions can be written
as in terms of just two-point functions. We reserve the phrase
Gaussian states to nonquasifree states where all higher-
point functions only depend on one- and two-point functions.
Examples of quasifree states include vacuum, squeezed
vacuum, and thermal states; examples of nonquasifree Gaus-
sian states include coherent states and squeezed coherent
states.

In fact, for our purposes we can simply define a quasifree
state ω as one given by

ω[W (E f )] = e− 1
2 W( f , f ) (A12)

(see, e.g., [60,69] for more details). In situations with enough
symmetries, the right-hand side can be computed in closed
form. The most important one for us is the vacuum state ω0,
the (unsmeared) vacuum Wightman function of which takes a
familiar form:

W0(x, y) =
∫

d3k uk(x)u∗
k(y), (A13)

where uk(x) are “positive-frequency” modes of Klein-Gordon
operator P normalized with respect to Klein-Gordon inner
product (φ1, φ2)KG := iσ (φ∗

1 , φ2), where φ j ∈ SolC (M) are
complexified solutions to Eq. (A1) (see [74]). The smeared
version is of course given by

W0( f , f ) =
∫

dV dV ′ f (x) f (y)W0(x, y). (A14)

In most situations, the relevant states of interest give Wight-
man correlators that are related to the vacuum correlators in
the sense that they take the form

W( f , g) = W0( f , g) + �W( f , g), (A15)

where �W( f , g) is an extra term that depends on geometry
and the state [60,73,75]. In flat spacetimes, we can actually
calculate this extra term straightforwardly for well-known
Gaussian states such as thermal states, coherent states, and
squeezed states (see, e.g., [76,77]). Note that the well-known
inequivalence of Rindler and Minkowski vacua refers to dis-
tinct vacuum components, i.e., they cannot be related by
Eq. (A15) in all of M, since the Rindler vacuum is really
associated to one “wedge” of Minkowski spacetime.
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