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Perfect teleportation with a partially entangled quantum channel
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Quantum teleportation provides a way to transfer unknown quantum states from one system to another via an
entangled state as a quantum channel without physical transmission of the object itself. The entangled channel,
measurement performed by the sender (Alice), and classical information sent to the receiver (Bob) are three
key ingredients in the procedure, which need to cooperate with each other. To study the relationship among
the three parts, we propose a scheme for perfect teleportation of a qubit through a high-dimensional quantum
channel in a pure state with two equal largest Schmidt coefficients. The scheme requires less entanglement of
Alice’s measurement but more classical bits than the original scheme via a Bell state. The two quantities increase
with the entanglement of the quantum channel when its dimension is fixed and thereby can be regard as Alice’s
necessary capabilities to use the quantum channel. And the two capabilities appear complementary to each other.
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I. INTRODUCTION

Significant differences between the quantum and classical
worlds are revealed by several quantum information processes
without classical counterparts [1]. One of these processes is
quantum teleportation [2], in which Alice (the sender) can
transfer unknown quantum states from her system to Bob (the
receiver) without physical transmission of the object itself.
In the simplest and original form, the task of Alice is to
teleport a qubit state to Bob. They share a two-qubit Bell
state as the quantum channel in advance. Alice makes a joint
measurement on the state to be teleported and her qubit from
the Bell state, projecting them onto one of the four Bell states.
After Alice informs him of the outcome through a classical
channel, Bob can perform appropriate unitary operations on
his qubit to perfectly rebuild the state to be teleported.

The teleportation protocol has been extended in many
branches, including probabilistic teleportation through a par-
tially entangled pure state [3–7], controlled teleportation
involving a third party as a controller [8,9], teleportation
in high dimensions [10–12], and so on. These schemes
play key roles in various contexts in quantum communica-
tion, including in quantum repeaters, quantum networks, and
cryptographic conferences [13–17]. What these versions of
teleportation have in common is that the entanglement of
quantum channels is destroyed by Alice’s measurement and
thereby is the cost of accomplishing the task. Consequently,
teleportation serves as an important example for the quantum
information processes, in which entanglement plays the role
of a key resource [18,19].

The entangled quantum channels, Alice’s joint measure-
ment, and the classical information sent to Bob should be
regarded as three key ingredients in the procedure, which
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need to cooperate with each other. Measurement of entangled
states, as well as their generation, is a technical challenge in
laboratories [11,12] which theoretically can be implemented
by using the inverse process of entanglement preparation and
local measurements [1]. The primary objective of this work
is to study the relationships among the three key ingredients
in the procedures for teleportation. We focus on the perfect
teleportation (with 100% success probability and fidelity) of a
qubit, the smallest unit of quantum information.

Our first step is to propose a general scheme for perfect
teleportation of a qubit by using partially entangled two-qudit
(a d-dimensional quantum system with d � 3) states, which
form continuous regions in the spaces of entanglement invari-
ants [19–21]. In most of the protocols for perfect teleportation
[2,10–12], quantum channels are limited to maximally entan-
gled states, locating at vertices of the areas of entanglement
invariants. To the best of our knowledge, Gour [22] proposed
the only protocol for perfect teleportation via partially en-
tangled two-qudit states in the literature. However, in Gour’s
protocol, the classical bits are fixed to be the logarithm of
the total dimension of the two subsystems in Alice’s hands,
instead of relying on the entanglement of quantum channel.
Here, we propose a general scheme for perfect teleportation
of a qubit with a lower classical communication cost by us-
ing two-qudit pure states in which the two largest Schmidt
coefficients are equal. These quantum channels are coherent
superpositions of a set of maximally entangled states in sub-
spaces which form a (d − 2)-dimensional polyhedron in the
space of entanglement invariants [19–21].

To measure Alice’s effort in her joint measurement, we
define the entanglement of measurement as the average en-
tanglement of its basis. In general, our scheme requires less
entanglement of Alice’s measurement but more classical bits
than the ones with Bell states. The two quantities can be regard
as Alice’s necessary capabilities to use the quantum channel,
which increase with its entanglement when the dimension is
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fixed. And the two abilities are complementary to each other,
as the price to decrease the entanglement in the measurement
is to send more classical bits to Bob.

In the next section, we explain our protocol by using the
example of a three-level entangled quantum channel. The gen-
eral scheme is presented in Sec. III. The relationship among
the entangled channel, the entanglement of Alice’s measure-
ment, and the classical information in the task are studied in
Sec. IV. In Sec. V, we give an intuitive understanding of the
relationship and show the robustness of our protocol under
an inhomogeneous phase noise. Finally, Sec. VI presents a
summary.

II. TWO-QUTRIT QUANTUM CHANNEL

Let us first explain our basic idea to design the protocol
by using the example of a two-qutrit (three-level systems)
entangled quantum channel. Suppose Alice wishes to teleport
to Bob the qubit state

|φ〉1 = α|0〉1 + β|1〉1, (1)

with |α|2 + |β|2 = 1, and they share a two-qutrit entangled
quantum channel

|�〉23 = a0|00〉23 + a1|11〉23 + a2|22〉23, (2)

with
∑2

j=0 |a j |2 = 1. Without loss of generality, one can as-
sume the Schmidt coefficients aj=0,1,2 are real numbers and
0 � a0 � a1 � a2. Here, we set a1 = a2. Then, the entan-
glement entropy [23,24] of |�〉23 is larger than 1 and is a
monotone increasing function of a0. And in the space of
entanglement invariants [21], the points of |�〉23 form one of
the three edges of the region of arbitrary two-qutrit pure states.
The two extreme cases,

|�〉(a)
23 = 1√

3
(|00〉23 + |11〉23 + |22〉23), (3a)

|�〉(b)
23 = 1√

2
(|11〉23 + |22〉23), (3b)

locate at two end points of the edge. The former is the maxi-
mally entangled two-qutrit state, and the latter is equivalent to
the two-qubit Bell states. Based on these entanglement prop-
erties of |�〉23, we expect it can be adopted as the quantum
channel to teleport the qubit state |φ〉1 perfectly.

The most crucial step for the teleportation is Alice’s joint
measurement on her qubit 1 and qutrit 2, which projects
Bob’s qutrit 3 into a state dependent on Alice’s measure-
ment result and the state |φ〉1. After Alice informs Bob of
her measurement result through a classical channel, Bob per-
forms a corresponding operation on his system to recover
|φ〉3 = α|0〉3 + β|1〉3. To teleport the state perfectly (with a
fidelity of 1 and success probability of 1), two conditions
should be satisfied as follows: (i) Alice’s measurement is a
projective one; (ii) the collapsed states of particle 3 are of
the form α|0̃〉 + β|1̃〉, with |0̃〉 and |1̃〉 being two orthogonal
states independent of α and β. The contrasting cases are the
two schemes for probabilistic teleportation [3–7] in which
Alice unambiguously discriminates nonorthogonal states or
Bob performs an extracting quantum state process.

To construct the basis of Alice’s measurement, we write
the total tripartite state as

|�〉123 = |φ〉1|�〉23

=[
a0|00〉α|0〉 + a1|01〉α|1〉 + a1|02〉α|2〉

+ a0|10〉β|0〉 + a1|11〉β|1〉 + a1|12〉β|2〉]
123. (4)

For the two extreme cases in Eqs. (3), one can easily find
a translation strategy from the above form in which Alice
operates a measurement with the eigenstates∣∣ψ (a)

0±
〉
12

= 1√
2

(|00〉 ± |11〉)12,

∣∣ψ (a)
1±

〉
12

= 1√
2

(|01〉 ± |12〉)12,

∣∣ψ (a)
2±

〉
12

= 1√
2

(|02〉 ± |10〉)12 (5)

for case (3a), while she measures the entangled states∣∣ψ (b)
1±

〉
12

= 1√
2

(|01〉 ± |12〉)12,

∣∣ψ (b)
2±

〉
12

= 1√
2

(|02〉 ± |11〉)12 (6)

for case (3b). The former was studied in a recent work [10],
and the latter is precisely the original scheme [2] with the
simple substitutions |0〉 → |1〉 and |1〉 → |2〉 in subsystem 2.
In fact, to be complete, the basis for (3b) also contains two
vanished states, |00〉 and |10〉, whose probabilities are zero in
the measurement.

One may expect that the orthogonal basis of Alice’s mea-
surement, for an arbitrary |�〉23 with a1 = a2, is intermediate
states between the two sets of extreme basis. A natural idea
is to reduce the proportions of |00〉 and |10〉 in |ψ (a)

0±〉12 and
|ψ (a)

2±〉12, while inserting the terms |02〉 and |11〉, respectively,
as their replacement. However, this breaks the orthogonality
in condition (i), mainly because it is a continuous transition
from the four states to two. Thus, we suspect that the two
postmeasured states of qutrit 3 corresponding to |ψ (b)

2±〉12 can
be collapsed to four orthogonal states with the aid of the
two vanished vectors, |00〉 and |10〉. One option is that we
can replace |ψ (b)

2±〉12 by |ψ (b)
2+〉12 ± |10〉12 and |00〉12 ∓ |ψ (b)

2−〉12

(which are un-normalized). These can be connected smoothly
with |ψ (a)

j±〉12 by the six orthogonal bases

|ψ0±〉12 = 1√
2

[|00〉 ± (c|11〉 − s|02〉)]12,

|ψ1±〉12 = 1√
2

[|01〉 ± |12〉]12,

|ψ2±〉12 = 1√
2

[(c|02〉 + s|11〉) ± |10〉]12, (7)

with the two real numbers satisfying c2 + s2 = 1.
Now, we show that the teleportation can be accomplished

perfectly by performing a joint measurement in the above
basis (7) with an appropriate pair of c and s. The (un-
normalized) collapsed states of qutrit 3, corresponding to
Alice’s measurement results |ψ j±〉12, can be derived by
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|φ j±〉3 =12〈ψ j±|�〉123, which are

|φ0±〉3 = 1√
2

[α(a0|0〉3 ∓ a1s|2〉3) ± βa1c|1〉3],

|φ1±〉3 = 1√
2

[αa1|1〉3 ± βa1|2〉3],

|φ2±〉3 = 1√
2

[αa1c|2〉3 + β(a1s|1〉3 ± a0|0〉3)]. (8)

It is easy to find that they fulfill condition (ii) when

c =
√

1
2

(
1 + a2

0

a2
1

)
, s =

√
1
2

(
1 − a2

0

a2
1

)
. (9)

Then, the probabilities of Alice’s outcome are given by the
overlap Pj± =3 〈φ j±|φ j±〉3 as

P0± = P2± = 1

4

(
a2

0 + a2
1

)
, P1± = 1

2
a2

1. (10)

Here, we omit Bob’s unitary operators to transform the state
on his end to |φ〉3, which can be directly constructed by using
the forms of |φ j±〉3.

III. GENERAL PROTOCOL

Now we turn to the general protocol for teleporting a qubit
through the following partially entangled two-qudit state as
the quantum channel:

|�〉23 =
n∑

i=0

ai|i〉2|i〉3, (11)

where n = d − 1 = 2, 3, . . . and the real Schmidt coefficients
0 � a0 � a1 � a2 � · · · � an−1 = an and

∑n
i=0 a2

i = 1. Our
only requirement for the quantum channel is that the two
largest Schmidt coefficients are equal. The state |�〉23 is a
coherent superposition, with real non-negative probabilistic
amplitudes, of a set of states,

|�〉(τ )
23 =

n∑
i=τ

1√
n + 1 − τ

|i〉2|i〉3, (12)

with τ = 0, 1, . . . , n − 1, which are equivalent to
(n + 1 − τ )-dimensional maximally entangled states. The set
of |�〉23 for a fixed n is an (n − 1)-dimensional polyhedron,
with n vertices corresponding to |�〉(τ )

23 , in the space of
entanglement invariants [19–21]. Its entanglement entropy
[23,24] is lower bounded by 1, and the lower bound is
attained by the state with an−1 = an = 1/

√
2, or, say, the Bell

state |�〉(n−1)
23 .

The total state in the teleportation is given by

|�〉123 = |φ〉1|�〉23

=
n∑

i=0

(ai|0i〉12α|i〉3 + ai|1i〉12β|i〉3). (13)

When |�〉23 = |�〉(τ )
23 , the basis of Alice’s measurement can

also be chosen according to the translation strategy as

2(n + 1 − τ ) entangled states∣∣ψ (τ )
j±

〉
12

= 1√
2

(|0 j〉 ± |1, j + 1〉)12,

∣∣ψ (τ )
n±

〉
12 = 1√

2
(|0n〉 ± |1τ 〉)12, (14)

with j = τ, τ + 1, . . . , n − 1, and 2τ vanished product states
|0k〉 and |1k〉, with k = 0, . . . , τ − 1. Just like the result of
the two-qutrit channel in (7), the basis for the intermediate
case between |�〉23 = |�〉(τ )

23 and |�〉23 = |�〉(τ+1)
23 can be

derived by a unitary transformation acting on the subspace
of {|0n〉, |1, τ + 1〉}. Therefore, we surmise that the basis
for a general case can be obtained by a sequence of unitary
operations in order as

uk = ∣∣0n
〉〈0n| + ∣∣1, k + 1

〉〈1, k + 1|
+ (1 − |0n〉〈0n| − |1, k + 1〉〈1, k + 1|) (15)

on |ψ (0)
j±〉12, with k = 0, . . . , n − 2 and j = 0, . . . , n. Here,

the states |0n〉 = ck|0n〉 + sk|1, k + 1〉, and |1, k + 1〉 =
ck|1, k + 1〉 − sk|0n〉, with

ck =
√

1
2

(
1 + a2

k

a2
k+1

)
, sk =

√
1
2

(
1 − a2

k

a2
k+1

)
.

That is, the bases are given by

|ψ j±〉12 = un−2un−3 · · · u3u2u1u0

∣∣ψ (0)
j±

〉
12

= |0 j〉 ± c j |1, j + 1〉

∓ s j

⎛
⎝ n−2∏

k= j+1

ck|0n〉 +
n−2∑

l= j+1

l−1∏
k= j+1

cksl |1, l + 1〉
⎞
⎠, (16)

|ψn±〉12 = un−2un−3 · · · u0

∣∣ψ (0)
n±

〉
12

=
(

n−2∏
k=0

ck|0n〉 +
n−2∑
l=0

l−1∏
k=0

cksl |1, l + 1〉
)

± |10〉,

where j = 0, . . . , n − 1. Here, we omit their normalization
coefficients (1/

√
2) and the subscript identifying Alice’s sub-

systems.
One can prove that the teleportation can be accomplished

perfectly by the joint measurement in the above orthonormal
basis (16) by deriving the postmeasured states of qudit 3 left
to Bob and showing they satisfy condition (ii). Namely, the
(un-normalized) collapsed states are given by

|φ j±〉3 = α

(
a j | j〉 ∓ s j

n−2∏
k= j+1

ckan|n〉
)

± β

(
c ja j+1| j + 1〉 − s j

n−2∑
l= j+1

l−1∏
k= j+1

ckslal+1|l + 1〉
)

,

|φn±〉3 = α

(n−2∏
k=0

ckan|n〉
)

+ β

(n−2∑
l=0

l−1∏
k=0

ckslal+1|l + 1〉 ± a0|0〉
)

, (17)
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where j = 0, . . . , n − 1. And the corresponding probabilities
of Alice’s outcome are

Pj± = 1

2

(
a2

j + s2
j

n−2∏
k= j+1

c2
ka2

n

)
, Pn± = 1

2

n−2∏
k=0

c2
ka2

n. (18)

A direct calculation shows the probability amplitudes in the
above results satisfying

a2
j + s2

j

n−2∏
k= j+1

c2
ka2

n = c2
j a

2
j+1 + s2

j

n−2∑
l= j+1

l−1∏
k= j+1

c2
ks2

l a2
l+1,

n−2∏
k=0

c2
ka2

n =
n−2∑
l=0

l−1∏
k=0

c2
ks2

l a2
l+1 + a2

0.

Therefore, they are of the form α|0̃〉 + β|1̃〉. Consequently,
according to the classical information from Alice, Bob can
transform these states to |φ〉3 perfectly using appropriate uni-
tary operations, which are independent of the state being
teleported.

IV. ENTANGLEMENT AND CLASSICAL INFORMATION

The generation and measurement of entangled states of
high-dimensional systems are two technical challenges in
laboratories [11,12]. The process of sending classical infor-
mation to Bob, the preparation of the quantum channel, and
Alice’s joint measurement can be regarded as three key in-
gredients consuming resources in the procedure. Our general
scheme provides a continuous region to explore these re-
sources in the perfect teleportation of a qubit, which consists
of bipartite states whose two largest Schmidt coefficients are
equal.

To measure these resources, we adopt the following three
quantities analytically expressed in terms of the Schmidt co-
efficients. First, the entanglement entropy [23] of the quantum
channel is given by

E (|�〉23) = −
n∑

i=0

a2
i log2 a2

i . (19)

Second, the entanglement of Alice’s joint measurement is
defined by the average of the basis

E12 =
n∑

j=0

[Pj+E (|ψ j+〉23) + Pj−E (|ψ j−〉23)]. (20)

It is a direct generalization of the definition in the work of
Li et al. [3], in which their four bases have the same entan-
glement degree. The entanglement entropy of the qubit-qudit
states (16) can be expressed as a monotone increasing function
of their concurrences [24], which are

C(|ψ j±〉23) =
√√√√1 − s4

j

n−2∏
k= j+1

c4
k ,

C(|ψn±〉23) =
n−2∏
k=0

ck

√√√√2 −
n−2∏
l=0

c2
l , (21)

with j = 0, . . . , n − 1. Third, the classical bits sent to Bob are
given by the Shannon entropy of the distribution (18) as

H12 = −
n∑

j=0

(Pj+ log2 Pj+ + Pj− log2 Pj−). (22)

Below we list the results of two series of one-parameter quan-
tum channels to show the properties of the three quantities
more clearly.

Case I. The first (n − 1) Schmidt coefficients are equal.
Let x = a0/an ∈ [0, 1]; one can find that only un−2 is non-
trivial with the parameters cn−2 =

√
(1 + x2)/2 and sn−2 =√

(1 − x2)/2, while the other unitary operations uk = 1. Two
pairs of the concurrence may be lower than 1:

C(|ψ(n−2)±〉23) = C(|ψn±〉23) = 1

2

√
3 + 2x2 − x4. (23)

Their corresponding outcome probabilities are

P(n−2)± = Pn± = 1 + x2

4[2 + (n − 1)x2]
. (24)

The other (n − 1) bases are equivalent to two-qubit Bell states
with a concurrence of 1, whose outcome probabilities are
given by

Pk± = x2

2[2 + (n − 1)x2]
, P(n−1)± = 1

2[2 + (n − 1)x2]
,

with k = 0, . . . , n − 3.
Case II. The first (n − 2) Schmidt coefficients are zero.

Since the results for n = 2 are already incorporated into
case I, we show only the nontrivial quantities for n � 3
here. In addition, we adopt the convention that ck = 1 and
sk = 0 when ak = ak+1 = 0. Without special explanation, the
unitary operations uk default to 1, the values of the concur-
rence are 1, and the outcome probabilities are zero. We set
y = an−2/an ∈ [0, 1]. The parameters in unitary operators
un−3 and un−2 are cn−3 = sn−3 = √

1/2, cn−2 =
√

(1 + y2)/2,
and sn−2 =

√
(1 − y2)/2. There are three pairs of concur-

rences depending on the value of y,

C(|ψ(n−3)±〉23) =
√

1 − 1

16
(1 + y2)2,

C(|ψ(n−2)±〉23) = 1

2

√
3 + 2y2 − y4,

C(|ψ(n−2)±〉23) = 1

4

√
7 + 6y2 − y4, (25)

and four pairs of nonzero probabilities,

P(n−3)± = Pn± = 1 + y2

8(2 + y2)
,

P(n−2)± = 1 + y2

4(2 + y2)
, P(n−1)± = 1

2(2 + y2)
. (26)

Figure 1 shows the regions of the entanglement degrees for
Alice’s measurement and the quantum channel, along with the
curves for the two one-parameter cases, for a fixed dimension.
In general, the entanglement of the quantum channels is above
the two-qubit Bell states with an entanglement entropy of
1, which is a necessary condition for perfect teleportation
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FIG. 1. Entanglement of Alice’s measurement vs entanglement
of quantum channels. Dashed curves show the values for case I, and
solid ones show values for case II, accompanied by 10 000 random
quantum channels with for each value of n: (a) n = 2, (b) n = 4, and
(c) n = 6. The results for n = 2 overlap a single line.

of a qubit according to Theorem 1 in [22], while Alice’s
measurements are below them. In this sense, the entanglement
matching [3] does not appear in our scheme. On the other
hand, the entanglement of Alice’s measurement has an overall
upward trend as the entanglement of a quantum channel in-
creases for a fixed n. It reaches the maximum of 1 when the
channel is maximally entangled. Hence, the entanglement of
Alice’s measurement can be considered Alice’s ability to use
the quantum channel, and a stronger ability is required for a
more entangled quantum channel.

For a fixed n, the minimal entanglement of Alice’s mea-
surement occurs at the limit of case II with y → 0 and an−1 =
an → √

1/2. The minimums can be derived directly from
the above analytic expressions as E12 = 1

2 H ( 3
4 ) + 1

2 ≈ 0.906

when n = 2 and E12 = 1
4 H ( 3

4 ) + 1
4 H ( 15

16 ) + 1
2 ≈ 0.890 when

n = 3, 4, . . . , where H (t ) = − 1
2 (1 − √

1 − t ) log2
1
2 (1 −√

1 − t ) − 1
2 (1 + √

1 − t ) log2
1
2 (1 + √

1 − t ). Although the
minimum is independent of the dimension of the channel
when n � 3, the minimal entanglement in Alice’s single
measurement can be found to decrease with n. Namely, it is
the entanglement of |ψn±〉23 in the limit of ak/ak+1 → 0 and
ak → 0 and equals H[2−(n−3) − 2−(2n−4)]. This indicates that,
for a large n, one can design a protocol to detect such a small
amount of entanglement to teleport a qubit exactly. However,
the successful probability also decreases quickly with n as
Pn+ + Pn− = 2−(n−1).

One can also notice that the entanglement of Alice’s
measurement corresponding to a quantum channel |�〉(τ )

23 is
smaller than that of an (n + 1 − τ )-dimensional maximally
entangled state. The reason can be found in the example of
two-qutrit channels, where we superpose |ψ (b)

2±〉12 with the two
vanished vectors, |00〉 and |10〉. This reduces the entangle-
ment of Alice’s measurement while two outcomes are added,
which increases the classical information sent to Bob. That is,
the price to decrease the entanglement of Alice’s measurement
is to send more classical bits to Bob. This conclusion can be
confirmed by comparing Figs. 1 and 2.

Obviously, the classical information also has an overall
upward trend with the entanglement of the quantum channel.
The minimum of classical bits can be found at the limit of case
I with x → 0, which is 5/2 and independent of n.

For a fixed n, at the left end points of the curves for the
two cases, which correspond to the same quantum channel but
different measurements, Alice measures more entanglement
in case I than in case II, but she sends more classical bits
to Bob in case II. In addition, the classical bits in case I
increase faster than in case II, while for the behaviors of
entanglement the opposite is true. In conclusion, the classical
information sent to Bob is also a necessary resource to use the
quantum channel, which appears to be complementary to the
entanglement of Alice’s measurement.

V. DISCUSSION

We provide some qualitative discussion of the above results
in this part. For simplicity, we show only the formulas for the
two-qutrit channel, although they can be directly extended to
the general case.

One can perform the unitary operation u0 with n = 2 in
(15) on the maximally entangled two-qutrit states [11] and
obtain a set of bases as

|ψ0 j〉12 = 1√
3

[|00〉 + ω j (c|11〉 − s|02〉) + ω2 j |22〉]12,

|ψ1 j〉12 = 1√
3

[|10〉 + ω j |21〉 + ω2 j (c|02〉 + s|11〉)]12,

|ψ2 j〉12 = 1√
3

[|21〉 + ω j |01〉 + ω2 j |12〉]12, (27)

where ω = exp(i 2π
3 ), j = 0, 1, 2, and c and s are defined in

(9). Measurement on such a basis can teleport a qutrit state

|φ〉(3)
1 = α|0〉1 + β|1〉1 + γ |2〉1, (28)
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FIG. 2. Classical bits sent to Bob vs entanglement of quantum
channels with the same parameters as Fig. 1.

with a state-dependent fidelity, via the two-qutrit channel
studied in Sec. II. Namely, the measurement collapses the
three-qutrit state |φ〉(3)

1 |�〉23 into

|φ0 j〉3 ∝ [α(a0|0〉 − ω ja1s|2〉) + βa1cω j |1〉 + γ a1ω
2 j |2〉]3,

|φ1 j〉3 ∝ [αca1ω
2 j |2〉 + β(a0|0〉 + a1sω2 j |1〉) + γ a1ω

j |1〉]3,

|φ2 j〉3 ∝ [γαa0|0〉 + αa1ω
j |1〉 + βa1ω

2 j |2〉]3.

In each collapsed state, the vectors multiplied by the coeffi-
cients α and β are orthogonal and equal in magnitude. When
γ = 0, according to Alice’s outcome, Bob can rebuild the
state |φ〉(3)

1 with a fidelity of 1 by performing appropriate
unitary operations on qutrit 3. These unitary operations are
similar to those in Sec. II, with ± being replaced by ω0,1,2.
However, when γ 
= 0, the same operations bring him only
a state with a fidelity less than 1, which is dependent on the

initial state, quantum channel, and Alice’s outcome. We derive
the average fidelity over Alice’s outcomes and the initial states
under the Haar measure [25] as

〈F〉 = 7

3
+ 5

2
a2

1 + a0a1 − 5

3
(
1 − a2

1

) . (29)

It increases from 1/4 to 1 as a0 increases from 0 to 1/
√

3.
The perfect protocol studied in Sec. II can be regarded as

an improved version of the above imperfect teleportation with
the aid of a priori knowledge of γ = 0. The prior knowledge
reduces the entanglement of Alice’s measurement and classi-
cal bits; for example, the nine maximally entangled two-qutrit
bases are replaced by the six maximally entangled states (5)
in subspaces when a0 = 1/

√
3.

The behaviors of Alice’s capabilities in the perfect protocol
can be understood by using the relation corresponding to the
imperfect teleportation. Taking the standard teleportation of a
qutrit [11] as a reference, the unitary operator u0, creating the
basis (27), from the maximally entangled states concentrates
the fidelity into the subspace of (α, β ) and simultaneously
decreases the entanglement of measurement and classical in-
formation. Similarly, the same unitary operator also decreases
the two quantities in the perfect protocol as it transforms
|ψ (a)

i± 〉12 in (5) into |ψ0±〉12 in (7). This leads to a smaller
entanglement of measurement than the Bell-state measure-
ment, while the classical bits are greater than 2 as the price
of increasing the dimension. The increasing of the entangle-
ment of |�〉23 enhances its ability to teleport the state |φ〉(3)

1 ;
therefore, the unitary operator u0 which ensures the fidelity
in the subspace of (α, β ) becomes smaller. Correspondingly,
this increases the entanglement of Alice’s measurement and
classical bits in the perfect protocol.

It is also necessary to compare our protocol in Secs. II and
III and the standard teleportation of a qubit via a Bell state
under the influence of environmental noise. We now show our
protocol is more robust than the standard one under some spe-
cific noise channels. Namely, we assume that qutrit 3 passed
through an inhomogeneous phase noise when it was sent to
Bob, which brings each ket a random phase as | j〉 → eiθ j | j〉,
with j = 0, 1, 2. Suppose 〈eiθ j 〉 = 1 − q j and q j ∈ [0, 1]. One
can derive the fidelity of teleportation under the noise by
calculating the overlaps between Bob’s collapsed states and
their ideal forms in (8) and then its average value 〈F〉 over
the initial states. When qj′ 
= j = 0, the average fidelity can be
expressed as 〈F〉 = 1 − (1 − qj ) f j , and

f0 = 1 + 2a2
0 − 7a4

0

3
(
1 + a2

0

) , f1 = f2 = 2a2
0

(
3 − 5a2

0

)
3
(
1 + a2

0

) . (30)

In the same one-sided channel, the fidelity of the standard
scheme has a similar form with f0 = f1 = 1/3 and f2 = 0.
Here, f2 = 0 is due simply to the absence of |2〉 in the stan-
dard scheme. These amounts of fi quantify the responses of
fidelities to the random phases, which are shown in Fig. 3.
When the random phase occurs in |1〉, our two-qutrit protocol
is more robust than the standard teleportation via a Bell state.
When it occurs in |0〉, the former performs better than the
latter when a2

0 > 1/7, while the latter is more robust when
a2

0 < 1/7.
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FIG. 3. The responses of fidelities to the random phases vs a2
0.

The dashed and dot-dashed curves show f0 and f1 in (30), respec-
tively, and the solid line is for the value of 1/3.

VI. SUMMARY

We presented a scheme for perfect teleportation of a qubit
by using a two-qudit pure state in which the two largest
Schmidt coefficients are equal. For a fixed dimension d ,
the quantum channels, no longer confined to the maximally
entangled states, form a continuous area in the space of en-
tanglement invariants. To play the role of a quantum channel,
the entangled state requires an appropriate joint measurement
by Alice and enough classical bits being sent to Bob. Our
scheme requires less entanglement of Alice’s measurement
but more classical bits than the standard teleportation via a
Bell state. The two quantities increase with the entanglement
of the quantum channel and thereby can be regard as Alice’s

necessary capabilities to use the channel. The two capabilities
appears complementary to each other. For a fixed amount of
entanglement of the quantum channel, the entanglement in
Alice’s measurement can be partially replaced by classical bits
sent to Bob. We also provided an intuitive understanding of
these behaviors by using imperfect teleportation of a qutrit,
in which the fidelity in a subspace is ensured to be 1. Under
some specific noise channels, our protocol is more robust than
the standard teleportation.

It would be interesting to consider the following open ques-
tions or extensions. First, can our scheme be generalized to the
teleportation of high-dimensional states? We conjecture that a
d ′-level state can be teleported perfectly by using a two-qudit
(d � d ′) pure state in which the d ′ largest Schmidt coefficients
are equal. However, we find that the joint measurement for
high-dimensional teleportation may not be constructed by a
simple generalization of (16), and therefore, the development
of new methods to design the protocol is still necessary.
Second, while we focused here on the teleportation between
two participants, hybridizing the present ideas to controlled
teleportation would be interesting. Third, implementing the
protocol experimentally is a natural direction. Besides the
generation of high-dimensional quantum channels, both Al-
ice’s measurement and Bob’s operations are challenges in the
laboratory. The techniques developed in recent experiments
[11,12] open the possibility of implementing the process in an
optical system.
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