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Decoherence predictions in a superconducting quantum processor
using the steepest-entropy-ascent quantum thermodynamics framework
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The current stage of quantum computing technology, called noisy intermediate-scale quantum technology, is
characterized by large errors that prohibit it from being used for real applications. In these devices, decoherence,
one of the main sources of error, is generally modeled by Markovian master equations such as the Lindblad
master equation. In this paper, the decoherence phenomena are addressed from the perspective of the steepest-
entropy-ascent quantum thermodynamics framework in which the noise is in part seen as internal to the system.
The framework is as well used to describe changes in the energy associated with environmental interactions.
Three scenarios, an inversion recovery demonstration, a Ramsey demonstration, and a two-qubit entanglement-
disentanglement demonstration, are used to demonstrate the applicability of this framework, which provides
good results relative to the demonstrations and the Lindblad equation; it does so, however, from a different
perspective as to the cause of the decoherence. These demonstrations are conducted on the IBM superconducting
quantum device ibmq_bogota.
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I. INTRODUCTION

Decoherence, which is perhaps one of the most critical as-
pects of quantum computation, is the loss of information that
exists in the subsystems of a quantum device. It is typically
viewed as resulting from environmental effects and random
disturbances that affect the capacity of quantum systems to
store information. Hence, the development of realistic quan-
tum computers requires understanding, controlling, and/or
correcting for decoherence.

The typical approach to modeling decoherence is to use
linear Markovian quantum master equations (QMEs) of the
Kossakowski-Lindblad-Gorini-Sudrashan type to represent
the dynamics of system state evolution [1–3] and the loss
of correlation. These QMEs assume that the system interacts
with an environment and that the only relevant effect is that on
the system. Nevertheless, the QMEs are still linear in nature
and, thus, can at best only mimic the nonlinear dynamics
that may be in play. Despite this fact, QMEs have shown
good agreement with experimental data [4–6]. Even so, if the
weak interactions needed for the QMEs equations are real,
Nakatani and Ogawa [2] have shown that the Born-Markov
approximation for obtaining evolution equations, i.e., QMEs,
cannot be used for composite systems in the strong-coupling
regime, no matter how short the reservoir correlation time.

An alternative approach results when, instead of assuming
that the relevant irreversible effect on the system is due to an
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environment, quantum mechanics is complemented with the
second law of thermodynamics represented by the steepest-
entropy-ascent (SEA) principle. Such an approach assumes
that the irreversible effect is fundamental to the system itself.
This idea can be traced back to the work of Hatsopoulos and
coworkers [7–11] and has matured over the last four decades
and grown substantially in the last decade. A consequence
of this work has been the construction of dynamical models
based on the SEA principle that explain nonequilibrium phe-
nomena at all levels of description, from the macroscopic to
the microscopic (e.g., [12–35]).

With the advent of noisy intermediate-scale quantum
(NISQ) devices [36], the study and simulation of noise in
quantum devices have attracted great attention. Applications
range from error mitigation techniques [37–39] to the sim-
ulation of quantum devices with real noise [40–42] to the
simulation of quantum algorithms with decoherent error to un-
derstand how this noise affects NISQ algorithms in quantum
machine learning models [43]. Recent work suggests that the
steepest-entropy-ascent quantum thermodynamics (SEAQT)
framework is suitable for modeling decoherence in quantum
computation as is shown in [18] where SEAQT is used to show
the interaction of a quantum cavity with a qubit and in [19]
where it is used to predict the state evolution of a two-qubit
system when a controlled-PHASE (CPHASE) gate is applied to a
double quantum dot architecture. Both models are compared
with demonstrations and show good predictive capabilities.

In the present paper, the loss of coherence in three different
scenarios is evaluated through demonstrations. First, a qubit
relaxation demonstration is implemented to determine how
fast the system loses information due to the interaction with
the environment. This phenomenon is measured in terms of
the time T1. Next, the dephasing on individual qubits using
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the Ramsey demonstration is evaluated. This demonstration
measures the loss of phase by a system through time, which
is quantified with the time T ∗

2 . The last demonstration is a
two-qubit cross-resonance (CR) interaction. Here, the loss of
entanglement by a composite system is evaluated. To conduct
this experiment, a two-qubit system in a Bell state |�〉 is en-
tangled and disentangled. The demonstrations are conducted
on IBM’s ibmq_bogota quantum device in qubits 0–4 for
the T1 and T ∗

2 demonstration and in qubits 0 and 1 for the
entanglement demonstration. The demonstration results are
compared with simulations using the SEAQT framework and
the Lindblad approach.

The paper is organized as follows. In Secs. II A–II D differ-
ent features of the SEAQT equation of motion are laid out and
discussed, while Sec. II E presents the Lindblad-type quan-
tum master equation used here. Section III then describes the
demonstration setup of IBM’s ibmq_bogota quantum device
for each of the three demonstrations conducted. Section IV
then provides the results of the demonstrations and the simu-
lations and a discussion of the results. The paper then wraps
up with a number of conclusions in Sec. V.

II. MATHEMATICAL MODEL

A. SEAQT framework

In the SEAQT framework, the dynamics of the density
operator, ρ̂, of a quantum system is governed by both a
symplectic (unitary) and a dissipation (nonunitary) term. The
former, the so-called von Neumann term of quantum me-
chanics, captures the reversible (i.e., linear) dynamics of state
evolution, while the latter, which is based on the principle
of SEA, captures the irreversible (i.e., nonlinear) dynamics.
This principle states that at every instant of time the density
operator evolves in the direction of maximal entropy increase
such that the conservation constraints placed on the generators
of the motion (e.g., the Hamiltonian and the identity operator)
are satisfied. Note that the view of physical reality assumed
here is one in which the nonlinear dynamics of state evolu-
tion resulting from the dephasing phenomenon are intrinsic
to the system and not a consequence of interactions with an
environment. This contrasts with the standard open quantum
system framework (see Sec. II E) that forms the basis for the
Lindblad equation of motion, which assumes that this phe-
nomenon is the result of a continual cyclic buildup and loss of
correlations between the system and environment. As pointed
out in Sec. I, this assumption fails if the system-environment
coupling is strong [2], a limitation which does not apply to the
SEAQT framework. Of course, in the case of the relaxation
phenomenon, the SEAQT framework also assumes a system-
environment interaction since this phenomenon involves an
exchange of energy between the system and environment.
However, there is no limitation in the SEAQT framework on
the strength of the coupling.

The SEAQT equation of motion for a general quantum
system [44] is written as

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂] −

∑
J

(
1

τDJ

D̂J ⊗ ρ̂J̄

)
(1)

where Ĥ and ρ̂ are the Hamiltonian and the density operator,
respectively, for a composite system. The ρ̂J (J = 1, 2, . . .)
are the density operators for each individual qubit with ρ̂J =
TrJ̄ (ρ̂) and J̄ indicating the direct product on the Hilbert
space that does not contain the subsystem J . In addition, the
τDJ (J = 1, 2, . . .) are internal-relaxation parameters that are
positive constants or positive functionals of the ρ̂J , while the
D̂J (J = 1, 2 . . .) are the dissipation operators for each qubit.
To assure positivity and hermiticity of the density operator, ρ̂,
the latter operators are written as

D̂J = 1
2 [

√
ρ̂J D̃J + (

√
ρ̂J D̃J )†] (2)

where the symbol † signifies the adjoint and each D̃J for a
two-qubit system is expressed as

D̃J =

∣∣∣∣∣∣
√

ρ̂J (B̂ ln ρ̂)J √
ρ̂J (Î )J √

ρ̂J (Ĥ )J

(Î, B̂ ln ρ̂ )J (Î, Î )J (Î, Ĥ )
J

(Ĥ , B̂ ln ρ̂)J (Ĥ, Î )J (Ĥ, Ĥ )J

∣∣∣∣∣∣∣∣∣∣ (Î, Î )J (Î, Ĥ )J

(Ĥ, Î )J (Ĥ , Ĥ )J

∣∣∣∣
. (3)

Here (·, ·)J is the Hilbert-Schmidt inner product defined on
Hilbert space HJ by (F̂ , Ĝ)J = TrJ (ρ̂J{(F̂ )J , (Ĝ)J}) with J =
A, B, (F̂ )A = TrB[(ÎA ⊗ ρ̂B)F̂ ], and (F̂ )B = TrA[(ρ̂A ⊗ ÎB)F̂ ].
In Eq. (3), B̂ is the projector onto the range of ρ, i.e., the
idempotent operator that results from summing up all of the
eigenprojectors of ρ̂ belonging to its nonzero eigenvalues.

Note that the first term to the right of the equal sign in
Eq. (1), the so-called Hamiltonian term, moves the density
or state operator, ρ̂, in the direction of a unitary isentropic
evolution. In contrast, the dissipation operator in Eq. (1) for
a given qubit, D̂J , describes the spontaneous attraction of the
qubit’s density operator in the local direction of SEA. This
direction is orthogonal to the direction of the unitary evolution
and compatible with mean values of the non-Hamiltonian time
invariants. In other words, this term pulls the density operator
in the direction of the orthogonal projection of the gradient
of the entropy functional, −Tr(ρ̂J lnρ̂J ), onto the hyperplane
of constant Tr(ρ̂J ÎJ ) and Tr(ρ̂J ĤJ ). This is, in effect, an im-
plementation of the maximum entropy production principle in
quantum theory. Furthermore, from a variational standpoint,
identifying the SEA direction at each state ρ̂ (i.e., at each
instant of time) is accomplished by looking at all possible
paths through ρ̂, with each path characterized by a possible
choice of D̂J . The path with the highest entropy generated
in the interval dt is chosen. For more details, the reader is
referred to [13–15].

B. Equation for a system interacting with a reservoir

One way to represent the interaction between a system
J and a reservoir R consists of considering the degrees of
freedom of both subsystems to be orthogonal [45]. This
allows one to represent the Hilbert space of the two subsys-
tems as H = HS ⊕ HR. In this framework, the eigenenergies
of both subsystems are independent and unentangled. The
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representation of the dissipative term for the system is

D̃JR = −
√

ρ̂J

∣∣∣∣∣∣∣∣

−B̂ ln ρ̂J ÎJ 0̂J ĤJ

〈s〉J PJ 0 〈e〉J
〈s〉R 0 PR 〈e〉R

〈es〉J + 〈es〉J 〈e〉J 〈e〉R 〈e2〉J + 〈e2〉R

∣∣∣∣∣∣∣∣
�

.

(4)
Here the expected values for the system are
〈s〉J = −Tr(ρ̂J ln ρ̂J ), 〈e〉J = Tr(ρ̂J ĤJ ), and 〈es〉J =
−Tr(ρ̂J ĤJ ln ρ̂J ). Also, | · | is a determinant and � is a
Gram determinant. Expanding this last expression results in

D̃JR =
√

ρ̂J

(
B̂ ln ρ̂J − B1

�
ÎJ − B3

�
ĤJ

)
(5)

where

B1 =
∣∣∣∣∣∣

〈s〉J 0 〈e〉J
〈s〉R PR 〈e〉R

〈es〉J + 〈es〉R 〈e〉R 〈e2〉J + 〈e2〉R

∣∣∣∣∣∣, (6)

B3 =
∣∣∣∣∣∣

〈s〉J PJ 0
〈s〉R 0 PR

〈es〉J + 〈es〉R 〈e〉J 〈e〉R

∣∣∣∣∣∣, (7)

� =
∣∣∣∣∣∣

PJ 0 〈e〉J
0 PR 〈e〉R

〈e〉J 〈e〉R 〈e2〉J + 〈e2〉R

∣∣∣∣∣∣. (8)

In the limit, when the number of eigenlevels of the reservoir
PR are much greater than those of the system PJ (PR � PJ ),
one can show that B3 reduces to

B3

�
≈ 〈es〉R − 〈e〉R〈s〉R

〈e2〉R − 〈e〉2
R

. (9)

Now assuming a canonical distribution for the reservoir
characterized by the inverse temperature βR and the Hamil-
tonian ĤR, B3 is approximately

B3

�
≈ −βR. (10)

Therefore, D̃J of Eq. (3) for the system (i.e., for J) interacting
with a reservoir can be expressed as

D̃JR =
√

ρ̂J [B̂ ln ρ̂J + 〈s〉J ÎJ + βR(ĤJ − 〈e〉J ÎJ )]. (11)

The first two terms in Eq. (11) account for dephasing in the
system, while the last term, i.e., βR(ĤJ − 〈e〉J ÎJ ), accounts for
relaxation.

C. Model of relaxation and dephasing

Even though Eq. (11) by its own can represent the phe-
nomena of relaxation and dephasing, experimental results
show that those phenomena are happening at different rates.
This can be taken into account by increasing or decreasing
the value of βR in Eq. (11) relative to the rate at which the
relaxation occurs or, alternatively, by separating the effects of
the phenomenon of relaxation from that of dephasing as in the
Lindblad equation. Therefore, in the SEAQT framework, the
phenomenon of dephasing is coupled with that of relaxation,
and the general form of the SEAQT equation of motion,
Eq. (1), is modified to include the effects of the reservoir
interaction that only generates the relaxation transition, i.e.,

with βR(ĤS − 〈e〉S ÎS ) in Eq. (11). Therefore, the equation of
motion for this case is written as

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂] −

∑
J

(
1

τDJ

D̂J ⊗ ρ̂J̄ + 1

τDR

D̂JR ⊗ ρ̂J̄

)

(12)
where

D̂JR = 1
2 [

√
ρ̂J D̃JR + (

√
ρ̂J D̃JR)†] (13)

and

D̃JR =
√

ρ̂J [βR(ĤJ − 〈e〉J ÎJ )]. (14)

D. Qubit-reservoir interaction relaxation parameter

A usual approach for simulating a quantum process with
the SEAQT equation of motion is to consider the relaxation
parameter τD in Eq. (1) as a constant determined for a spe-
cific process. This approach has given good results when
the process is at constant energy. However, the energy in
the one-qubit demonstrations described in this paper changes
considerably with time. A link between the rate of change
of quantum states and the energy of the system proposed by
Mandelstam and Tamm (see [46,47]) shows that the quan-
tum speed limit can be bound by the energy of the system.
In addition, Fermi’s “golden rule” [48], which describes the
transition rate between quantum states of a quantum system as
a result of a weak perturbation, also describes such a transition
in terms of the energy of the system. Thus, it is assumed here
that the relaxation parameter fluctuates with the energy of the
system. In particular, a qubit-reservoir relaxation parameter
τDR varying linearly with the expectation energy is assumed
such that

τDR [ρ̂(t )] = x0(1 + 〈Ĥ〉) (15)

where x0 is a constant to be determined. The Hamiltonian for
a transmon qubit can be described using a Duffing oscillator
[49] so that

Ĥ = ωb̂†b̂ + δ

2
b̂†b̂(b̂†b̂ − Î ) (16)

where ω and δ are the transmon frequency and anharmonic-
ity, respectively, and b̂ is the annihilation operator. Using
the definitions that b̂†b̂ = ∑

j j| j〉〈 j| for the eigenlevels j of

the transmon and ω j = (ω − δ
2 ) j + δ

2 j2, the Hamiltonian is
rewritten as

Ĥ =
∑

j

ω j | j〉〈 j|. (17)

For simplicity, it is assumed that the transmon is a two-
level system. In that case, the Hamiltonian is given by

Ĥ = − 1
2 h̄ωqσ̂z (18)

and, as a consequence, the relaxation parameter can be written
as

τDR (ρ̂) = x0{1 + Tr[ρ̂(t )σ̂z]}. (19)

Here, σ̂z is the z-component Pauli matrix with the set of
Pauli matrices given by σ̂x = [0 1

1 0], σ̂y = [0 −i
i 0 ], and σ̂z =

[1 0
0 −1].
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E. Open quantum system model

The Lindblad equation, which is also known as the Gorini-
Kossakowski-Sudarshan-Lindblad master equation, predicts
the evolution of state of a quantum system as Markovian inter-
actions between the system and multiple baths [1]. Generally,
it uses a linear description to predict the nonlinear evolution
of the density operator ρ̂, preserving the laws of quantum me-
chanics and assuming a weak interaction between the system
and the environment (baths). It has played an important role in
quantum information and decoherence [50–53], which makes
it suitable for the present paper. The equation of motion of the
Lindblad type used here is expressed as

d ρ̂s

dt
= − i

h̄
[Ĥ , ρ̂s] + 1

2

2∑
j=1

γ j (2L̂ j ρ̂sL̂
†
j − L̂†

j L̂ j ρ̂s − ρ̂sL̂
†
j L̂ j )

(20)
where

L̂1 = √
γ1b̂ (21)

and

L2 = √
γ2σ̂z. (22)

The L1 operator is used to simulate the amplitude damping
phenomenon (i.e., the relaxation), while the L2 operator is
employed to simulate dephasing. γ1 is the strength of the
relaxation and γ2 is that of the dephasing.

III. DEMONSTRATION SETUP

The ibmq_bogota device used in the demonstrations
is a superconducting quantum processor with a Falcon
r4L architecture, five qubits, a quantum volume of 32,
an average T1 = 88.34 μs, an average T2 = 128.54 μs,
and an average controlled-NOT (CNOT) gate (see the Ap-
pendix) error of 1.056 × 10−2. Qubits Q0–Q4 are em-
ployed with the following excitation frequencies: f0,1,2,3,4 =
5.00, 4.85, 4.78, 4.86, and 4.98 GHz. Three demonstrations
were conducted on this device: an inversion recovery demon-
stration, a Ramsey demonstration, and a two-qubit entan-
glement demonstration in the qubits 0 and 1. The first two
demonstrations involved all of the qubits. The inversion re-
covery and the Ramsey demonstrations are based on the
Hamiltonian given by

Ĥ = h̄�ωσ̂z + h̄θG(t )σ̂y (23)

where �ω = ωq − ωd , ωq, and ωd are the qubit and electric-
field frequencies, respectively, and θG(t ) is the pulse applied to
the qubit to generate a transition, a π rotation for the inversion
recovery demonstration, and a π/2 rotation for the Ramsey
demonstration.

For all three demonstrations, the number of shots, n, for
each demonstration is 8192 and is the number of times that a
demonstration is repeated to get back the probability of 〈Ẑ〉 =
Tr(ρ̂σ̂z ) on each qubit. The inversion recovery and the Ramsey
demonstrations are repeated four times with some time lapse
between each demonstration. Their variation is presented in
the results with the points representing the mean value and
the error bars the standard deviation. This number of shots is

FIG. 1. Schematic representation of an inversion recovery
demonstration characterized by T1: (a) the pulse in the D0 channel
is a Xπ gate, M0 is the measurement, and (b) a pulse is applied in this
channel to recover the state after the delay time. The demonstrations
were conducted on the ibmq_bogota device from IBM, and using an
open-pulse control in the QISKIT PYTHON library.

the maximum number allowed and reduces the statistical error
of the demonstration to 1/

√
n.

A. Inversion recovery

The inversion recovery demonstration provides informa-
tion about how fast a qubit suffers thermalization because of
its interaction with an environment (or reservoir). It is mea-
sured with the relaxation time T1 where T1 is the time that it
takes the qubit to reach 1 − 1/e or 63% of its initial condition.
Here, a π pulse gate (X gate) is used to move the system
from state |0〉 to state |1〉. Next, a delay time is applied and
measurement made. This process is repeated with 25 different
delay times, ranging from 0 to 42.6 μs. What is observed is a
decay of the probability of being in state |1〉. This decay can
be approximated with the relation

ρ̂(t ) = ρ̂(0)(1 − e−t/T1 ) (24)

where ρ̂(0) is the density operator at time zero, t is the time,
and T1 is the relaxation time constant. Figure 1 schematically
shows the circuit and the pulse representation of this demon-
stration. Here, D0 is the channel, which transmits the signals
to the qubits, allowing single-qubit gate operations, and M0

is a measurement channel, which transmits a measurement
stimulus pulse for readout. The pulse on D0 is an X gate. This
Xπ gate’s pulse is known as a derivative removal via an adia-
batic gate (DRAG) [54] composed of a Gaussian shaped pulse
θG(t ) = 1√

2πσ
e−( t−to

σ
)2

with rotation π about the y axis and a
derivative of the Gaussian pulse responsible for eliminating
Xπ imperfections about the x axis. The Xπ has a gate time of
tg = 35.2 ns where σ = tg/4.

B. Ramsey demonstration

The Ramsey demonstration measures the dephasing time
T ∗

2 and the qubit detuning [55]. Ideally, the frequency used
for the pulse rotations is the resonant frequency of the qubit.
However, due to imperfections and an inability to tune the
resonant frequency, the qubit suffers from an oscillation pro-
portional to the detuning. On the other hand, the dephasing
phenomenon moves the qubit’s Bloch vector towards the
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FIG. 2. Schematic representation of the Ramsey demonstration
(a) circuit mode and (b) pulse mode to determine the coherence time
T ∗

2 : The demonstration is conducted using the ibmq_bogota device
and the pulse level control from IBMQ.

center of the Bloch sphere. The demonstration consists in
applying a Xπ/2 gate pulse on the drive channel D0 and then
allowing the system to evolve during a delay time, after which
the qubit 〈Ẑ〉 observable is measured. Figure 2 presents the
circuit and pulse representation for the demonstration to de-
termine T ∗

2 relative to qubit zero.

C. Two-qubit entanglement state demonstration

The two-qubit entanglement state demonstration, shown
in Fig. 3, consists of an entanglement and disentanglement
scenario where the Bell state |�〉 = 1/

√
2(|00〉 + |11〉) is ob-

tained in the case of maximum entanglement. This is achieved
using a Hadamard gate on the control qubit followed by a CR
protocol with a Han echo sequence on the CR channel [56,57].
This sequence is used to reduce the noise of the CR channel
due to imperfections of the pulse applied. This is explained
in detail in the Appendix. In Fig. 3, D0 and D1 are the drive
channels for Q0 and Q1, respectively, and U1 is the control
channel for the interaction between Q0 and Q1. A modification
of the default ibmq_bogota pulse calibration is used with a

FIG. 3. The circuit to create the entanglement and disentangle-
ment sequence: here, tg/2 is the width of the CR pulse and 0.1a
corresponds to the amplitude of the pulse where “a” is the default
amplitude of the CR pulse for a CNOT gate. The channel D0 represents
the pulses on the control qubit, channel D1 represents the pulses on
the target qubit, and the brown and yellow pulses in U1 represent the
CR pulses that entangle both qubits.

FIG. 4. Results from the inversion recovery demonstration for
the time evolution of the 〈Ẑ〉 component or observable: The demon-
stration results for all five qubits are compared with simulation
results from the SEAQT and the Lindblad equations of motion. The
error bars represent the standard deviation.

change in the U1 and D0 amplitude to 0.1 of the default pulses
during the CR section. In addition, the CR pulse width is
modified from tg = 0 to 20.45 μs with 30 intermediate pulse
widths. Here, a maximum time of 20.45 μs, which is different
from the time of the one-qubit demonstrations, is used because
there is a limitation on the number of samples that can be
created for a pulse in the IBM quantum hardware. In this case,
that limit is closed to 20.45 μs for the CR pulse. Furthermore,
for the one-qubit experiments, a delay time, which does not
involve a sample pulse, is used. To construct the density state
operator, a tomography process based on the work of Smolin
et al. [58] is used with nine independent measurements to
recover the two-qubit system density operator.

IV. RESULTS

A. Inversion recovery demonstration

The inversion recovery demonstration is used to char-
acterize how fast a qubit loses information because of an
interaction with the environment. Figure 4 shows the demon-
stration results of the 〈Ẑ〉 component for the five qubits of
ibmq_bogota. As seen, the probability of getting state |1〉
monotonically decreases with time until it reaches a point
close to the |0〉 state. This phenomenon is modeled using
the Lindblad equation employing an annihilation operator in
the master equation. To model this phenomenon within the
SEAQT framework, the modification of its equation of motion
outlined in Sec. II B is used. The results show that both the
Lindblad and SEAQT models produce similar results for this
demonstration. Models to fit the constants γ1 and γ2 for the
Lindblad equation and τDR for the SEAQT equation of motion
are used.

The results seen in this figure indicate that the qubit that
loses information the fastest is Q1, while the loss for the
other four qubits is significantly less. In addition, there is
some deviation between the demonstrations and the Lindblad
and SEAQT predictions. This deviation could come from ei-
ther source of coherent errors or instabilities of near-resonant
two-level systems coupled to the qubit. This phenomenon is
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TABLE I. Summary of the simulation and parameter values used
for each of the ibmq_bogota qubits.

Parameter Q0 Q1 Q2 Q3 Q4

x0(τDR ) (μs) 117.5 60.5 141.3 117.5 130.6
τDJ (μs) 40.6 11.3 43.9 28.1 49.8
τ

2Q
DJ

(μs) 26.5 25.5
1/γ1 (μs) 184.3 97.25 231.5 190.2 206.13
1/γ2 (μs) 751.4 73.2 637.6 277.4 692.1
T1 (μs) 24.3 71.2 5.9 96.6 100.7
T2 (μs) 41.9 41.9 59.1 160.5 171.1
� f (kHz) 152.6 161.1 303.1 128.7 88.5

usually reported in these kind of devices [59]. The Lindblad
relaxation and dephasing strength parameter values and the
SEAQT qubit-reservoir [x0(τDR )] and single-qubit dephasing
parameter (τDJ ) values used for each qubit are shown in Table I
as are the characteristic relaxation and dephasing times found
in the demonstration. The table also includes the detuning fre-
quency, � f , for each qubit. Note that the two-qubit dephasing
parameter τ

2Q
DJ

values are not used in this demonstration but
instead in the second scenario of the two-qubit entanglement
gate demonstration of Sec. IV C.

As shown in Eq. (19), the value of τDR depends on the
evolution of ρ̂. As ρ̂ approaches state |0〉, the relaxation pa-
rameter τDR increases, which translates into a decrease in the
dissipation experienced by the qubit-reservoir interaction. The
evolution of τDR for each qubit is shown in Fig. 5. As can be
seen, the rate of increase of τDR for Q1 is significantly less
than that for the other qubits and as a consequence the rate of
information loss in Q1 is in general greater than that for any
of the other qubits as shown in Fig. 4.

B. Ramsey demonstration

Figure 6 shows results for the Ramsey demonstration of
the time evolution of the 〈X̂ 〉 component or observable. The
oscillations observed in this demonstration are due to the
detuning frequency � f values given in Table I. As can be
seen, the amplitude of the oscillation decays with increments
in the delay time for all the qubits of the ibmq_bogota. This
phenomenon, called dephasing, is responsible for the loss of

FIG. 5. Evolution in time of τDR for each qubit.

FIG. 6. Results from the Ramsey demonstration for the time evo-
lution of the 〈X̂ 〉 = Tr(ρ̂σ̂x ) component: The demonstration results
are compared with the simulation results of the SEAQT and Lindblad
equations of motion for all five ibmq_bogota qubits. The error bars
represent the standard deviation.

information of the 〈X̂ 〉 and 〈Ŷ 〉 observables of single qubits.
The average rate of decay of dephasing is quantified by the
T ∗

2 time, by τDJ for the case of the SEAQT equation of mo-
tion, and by 1/γ2 for the Lindblad equation. Values for these
parameters are shown in Table I for the different qubits.

In addition to the decay of the 〈X̂ 〉 observable seen in this
demonstration, the relaxation phenomenon resulting from an
interaction with the environment (reservoir) is present. The
latter’s effect on the 〈Ẑ〉 component or observable is shown in
Fig. 7 and compared with the SEAQT and the Lindblad pre-
dictions. In this case, the values used for τDR for the SEAQT
equation of motion and γ1 for the Lindblad equation are those
obtained for the inversion recovery demonstration. As seen,
predictions for both models agree quite well with the demon-
stration results.

C. Two-qubit entanglement-disentanglement demonstration

Finally, a two-qubit entanglement-disentanglement
demonstration between the qubits Q0 and Q1 is executed to

FIG. 7. Results from the Ramsey demonstration for the time evo-
lution of the 〈Ẑ〉 component: The demonstration results are compared
with simulation results of the SEAQT and Lindblad equation of
motion for all five ibmq_bogota qubits. The error bars represent the
standard deviation.
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FIG. 8. Demonstration and model results for the two-qubit
entanglement-disentanglement demonstration showing the time evo-
lution of (a) the concurrence and (b) the fidelity.

explore the decay rate of information stored in the two-qubit
system. This demonstration shows how the maximum
entanglement is lost with time. The results in Fig. 8(a) show a
continuous loss in the maximum concurrence as the width of
the CR sequence goes from 0 to 20.45 μs. In an ideal case, the
concurrence should be oscillating between 0 and 1. However,
the maximum concurrence never reaches 1 and gradually
decreases from a maximum value of about 0.75 to about 0.19
as the width of the CR pulse increases. The same is true for
the fidelity shown in Fig. 8(b) in which the maximum fidelity
decreases from about 0.85 to about 0.68 for the second peak.

Two different scenarios are tested with the SEAQT equa-
tion of motion. The first uses the relaxation τDR and dephasing
τDJ parameter values found for the single-qubit demonstra-
tions with qubits Q0 and Q1, while the second keeps the
relaxation parameter τDR values of the single-qubit demon-
strations but utilizes values for the dephasing parameters τ

2Q
DJ

found from the present two-qubit demonstration. The results
for the first scenario show that the decoherence is greater
than what is found in the two-qubit demonstration (see the
dotted-green line in Fig. 8). In contrast, the second case, which
utilizes two-qubit demonstration dephasing values for τ

2Q
DJ

and
single-qubit demonstration qubit-reservoir values for τDR , pre-
dicts the demonstration concurrence and fidelity values quite

well as seen in Fig. 8 with the red-solid line. Here, the im-
proved fit for scenario 2 is explained by the fact that the the T1

relaxation and T ∗
2 dephasing times characterizing the demon-

strations change with time, a conclusion supported by Burnett
et al. [59], who indicate that the decay times for relaxation and
dephasing are not constant but vary with time. In this scenario,
demonstrations for dephasing and relaxation were conducted
on the same day, while the two-qubit demonstration was taken
some days later. This could influence the different decay rates.
Another plausible explanation is that the disentanglement-
entanglement demonstration is improving the decay rate of the
decoherence phenomena by the dynamics involved. Further
investigation with respect to this is needed but is beyond the
scope of the present paper.

V. CONCLUSIONS

In this paper, an approach based on the principle of steepest
entropy ascent is used to predict the relaxation, dephasing, and
loss of entanglement phenomena in superconducting qubits
during the state evolution of inversion recovery, Ramsey,
and entanglement-disentanglement demonstrations. The re-
sults obtained suggest that the SEAQT framework can predict
the different decoherence scenarios occurring in supercon-
ducting qubits. These results supplement the purely dephasing
results found previously by applying the SEAQT framework
to a CPHASE gate on a double-quantum-dot qubit device [19].
In the present paper, the phenomenon of relaxation, which re-
quires an interaction with the environment and which was not
previously addressed, is successfully modeled. The SEAQT
framework is, thus, able to effectively describe both types
of phenomena. Predictions of the effects of the relaxation
and dephasing phenomena have been shown to be useful in
mitigating errors in NISQ devices [60]. Thus, the SEAQT
framework could potentially be used as the basis for an error
mitigation scheme in such devices. The method to do so would
be similar to the zero-noise extrapolation technique [37], but
in this case different delay times would be used to make the
extrapolation of a zero delay time such that the dephasing and
relaxation noise is reduced. However, a comparison with the
commonly used Lindblad equation would still be needed to
determine the advantages and disadvantages of such an error
mitigation technique.

Another point to make is that the use of a variable τDR that
depends on the energy of the system provides a relaxation
parameter for the SEAQT equation of motion that results in
predictions that compare well with the data for the relaxation
and Ramsey demonstrations.

Clearly, the SEAQT framework is a reasonable model for
predicting the dynamics of quantum protocols, providing an
alternative approach for determining T1 and T2 in supercon-
ducting quantum processors. As described at the beginning
of Sec. II A, conceptually the SEAQT framework treats the
dephasing phenomenon as intrinsic to the system, while the
open quantum system framework, which is the basis for
the Lindblad equation, treats it extrinsically, requiring two
limiting assumptions: weak couplings with an environment
and a linear description of the nonlinear evolution of the
density operator. Neither of these limitations applies to the
SEAQT framework. Of course, with this loss of generality,
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the computational cost of the Lindblad equation is less than
that of the SEAQT equation but only slightly so. Further-
more, the SEAQT framework’s greater generality results in
an easier setup since the specific form of the environmental
interaction needed by the Lindblad equation for the dephasing
phenomenon is not required by the SEAQT equation, which
treats this phenomenon intrinsically via the SEA principle.
Even for the relaxation phenomenon, a specific form of the
interaction is not needed by the SEAQT equation of motion.
Of course, both the Lindblad and SEAQT equations of motion
can be scaled to larger qubit arrays and do so on the basis of
2N where N is the number of qubits in the array. Thus, since
both equations are first-order ordinary differential equations in
time, an array of up to at least 20 qubits could be run on a
desktop computer (e.g., an iMac). Larger arrays would require
additional computational resources although even then both
approaches would in the end be limited to relatively small
quantum devices or subsets of larger devices.

Additional detailed comparisons of the Lindblad and
SEAQT approaches in predicting the behavior of one or more
quantum devices are needed. Although the comparisons made
here show little difference, past comparisons of SEAQT pre-
dictions with those developed by standard approaches found
in the literature (e.g., Lindblad [19] and the correlation sig-
nal [18]) do show differences. For example, in [19], the
loss of entanglement of a CPHASE gate in a singlet-triplet
qubit implemented via confining two electrons to a double
quantum dot in a two-dimensional electron gas positioned be-
low a GaAs-AlGaAs heterostructure surface [61] is modeled.
SEAQT predictions generally do as well as and at times better
than those of the Lindblad approach. In [18], the SEAQT pre-
dictions of the time-dependent decoherence of the “meter” in
a quantum measurement of a cavity quantum electrodynamic
experiment are generally better and more physically realistic
than those of the correlation signal [62] used by Brune et al.
[63]. Though none of this is conclusive, it does suggest that
the SEAQT framework is a viable alternative to existing ap-
proaches.

Finally, the possibility of conducting demonstrations on
cloud-based quantum devices opens opportunities for testing
different equations of motion and scenarios for the nonequi-
librium evolution of quantum systems. Future work will focus
on developing ways to mitigate the error inherent to these
devices and recover as much of the information as possible
that is lost in the operation of these devices.
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APPENDIX

For the case of superconducting qubits as in the case of the
IBM ibmq_bogota device, the CNOT gate is composed of a CR
interaction [64] and single-qubit DRAG pulses with virtual z
rotations [65,66]. In a recent paper, Magesan and Gambetta
[67] introduced the effective Hamiltonian of a CR interaction,
i.e.,

Ĥ (�) = νZX
ẐX̂

2
+ νIZ

Î Ẑ

2
+ νIX

ÎX̂

2

+ νZI
Ẑ Î

2
+ νZZ

ẐẐ

2
, (A1)

where {Î, X̂ , Ŷ , Ẑ} are the identity and Pauli matrices. For the
different tensor products (e.g., ẐX̂ ), the convention is that
the first acts on the control qubit and the second acts on the
target qubit. The coefficients νi j in Eq. (A1) are functions
of the system parameters and the CR pulse amplitude �.
In this Hamiltonian, only the ẐX̂ term, which is locally the
equivalent of a CNOT gate, is of interest here. Applying the
echo sequence Û = X̂ Î · e−iĤ (−�)tg · X̂ Î · e−iĤ (�)tg , which as
shown in Sundaresan et al. [68] can be modeled by Û =
AII Î Î + AIY ÎŶ + AIZ ÎẐ + AZX ẐX̂ , the following Hamiltonian
is obtained:

Ĥeff = ν̃ZX
ẐX̂

2
+ ν̃IY

ÎŶ

2
+ ν̃IZ

Î Ẑ

2
. (A2)

Here, the ν̃i, j are coefficients of the echo sequence effec-
tive Hamiltonian and the {AII , AIY , AIZ , AZX } are functions of
these coefficients. If there is crosstalk or phase misalignment,
the additional rotations ẐŶ and ẐẐ show up in Eq. (A2).

Two main strategies have been used to reduce the coher-
ent error for the CR pulse, namely, an active cancellation on
the target qubit [57] and the addition of target rotary pulses
[68]. These strategies reduce the error in the two-qubit sub-
space and even on spectator qubits, which are neighbors of
the target qubit, using the approach of Sundaresan et al. [68].
Both papers have a clear strategy for reducing coherent errors.
First, they identify the unwanted CR Hamiltonian error terms
remaining after the standard echo sequence. Second, they
devise strategies to measure the error. Finally, they mitigate
the error with additional pulses on the target qubit.

Our approach is to use this calibration process for the
IBM ibmq_bogota device, creating an entanglement state for
different coupling factors in νZX .
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