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In quantum state discrimination, one aims to identify unknown states from a given ensemble by performing
measurements. Different strategies such as minimum-error discrimination or unambiguous state identification
find different optimal measurements. Maximum-confidence measurements (MCMs) maximize the confidence
with which inputs can be identified given the measurement outcomes. This unifies a range of discrimination
strategies including minimum-error and unambiguous state identification, which can be understood as limiting
cases of MCM. In this work we investigate MCMs for general ensembles of qubit states. We present a method
for finding MCMs for qubit-state ensembles by exploiting their geometry and apply it to several interesting
cases, including ensembles of two and four mixed states and ensembles of an arbitrary number of pure states.
We also compare MCMs to minimum-error and unambiguous discrimination for qubits. Our results provide
interpretations of various qubit measurements in terms of MCM and can be used to devise qubit protocols.
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I. INTRODUCTION

One fundamental difference between classical and quan-
tum physics is that, while all information about the physical
state of a quantum system is captured by its quantum
state, such states are in general not perfectly distinguish-
able. Specifically, no measurement can perfectly discriminate
nonorthogonal quantum states. This is closely related to other
fundamental results in quantum mechanics such as the im-
possibility of perfectly copying quantum states [1] and of
faster-than-light signaling [2]. The limits to discriminating be-
tween quantum states have numerous applications in quantum
information science. Such limits are key to the security of
quantum key distribution [3,4]; near-optimal state discrimina-
tion enables approximate quantum error correction [5]. They
are also useful for operationally interpreting the differences
between separable and entangled states [6,7] (see also [8,9]).
For further examples of the wide impact of quantum state
discrimination, see the related reviews Refs. [10–16].

If it is impossible to perfectly discriminate quantum states,
the natural thing to ask is precisely how well one can. This in
turn introduces the need for different figures of merit, corre-
sponding to variations of the discrimination task. In general,
the task consists in identifying states drawn from some ensem-
ble, given a single copy of the state and prior knowledge of
the possible states. Two well-studied cases are minimum-error
discrimination (MED) and unambiguous state discrimination
(USD). In MED, one aims to minimize the probability that
the state is misidentified while forbidding inconclusive out-
comes [17–19]. In USD, one instead enforces that the state
is never misidentified, at the price of allowing for a nonzero
inconclusive-outcome rate, which one then aims to minimize
[20–22]. Both MED and USD are naturally formulated as

statements about the conditional probabilities for observing
certain outcomes, given that particular states were prepared.

Interestingly, distinct figures of merits in quantum state
discrimination can be rephrased in terms of predictive
and retrodictive formulations of quantum probabilities [23].
Predictive probabilities are probabilities of future events
conditioned on past events, which, in this context, are the
probabilities of the outcomes conditioned on the input states.
Retrodictive probabilities are probabilities of past events con-
ditioned on future events occurring; here this means the
probabilities, conditioned on the observed outcomes, that par-
ticular input states were prepared. Predictive and retrodictive
probabilities can be linked via Bayes’ theorem.

In this work we focus on maximum-confidence discrimi-
nation, which is most naturally formulated in the retrodictive
picture. The figure of merit here is the confidence, defined as
the conditional probability that an input was prepared given
that the corresponding outcome was observed. A maximum-
confidence measurement (MCM) is a measurement strategy
which achieves the best possible confidence. Maximum-
confidence measurements were introduced in Ref. [24]. They
unify the MED and USD settings of state discrimination. In
particular, MCMs implement USD whenever USD is possible
for the given ensemble and MED if a zero inconclusive rate is
enforced and the maximum confidence considers an ensemble
itself. In general, they make optimal use of detection events
for guessing which states were prepared in the past [25–30].

We investigate MCMs for qubit states and determine gen-
eral relations between a given ensemble and its MCM. We
present a method for finding MCMs by exploiting the ge-
ometry of the Bloch sphere directly, without reference to the
algebraic optimization problem, in a similar manner to geo-
metric schemes for MED of n qubit states [31–33]. We then
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consider several particular ensembles of qubit states, derive
their MCMs, and also compare to MED and USD.

The article is structured as follows. In Sec. II we start
by briefly recalling the state discrimination problem in the
simplest case of two pure states and results for optimal MED
and USD. In Sec. III we summarize MCMs. In Sec. IV we for-
mulate the problem of identifying an optimal MCM for qubits
as a semidefinite program and present optimality conditions.
The relations between state ensembles and MCMs are found
by exploiting the Bloch sphere geometry. In Sec. V various
ensembles of qubit-state ensembles are considered and their
MCMs are explicitly derived. We consider two mixed states,
geometrically uniform states, tetrahedron states, and asym-
metric states. In Sec. VI we summarize.

II. MED AND USD FOR TWO PURE STATES

Let us consider the simplest nontrivial ensemble, consist-
ing of two pure states |ψ0〉 and |ψ1〉 generated with a priori
probabilities q0 and q1, respectively. A measurement device
receives state |ψx〉 with x ∈ {0, 1}, drawn from this ensemble,
and provides an output y ∈ {0, 1, 2}. The output can be un-
derstood as a guess for what input was prepared, i.e., for the
value of x, with y = 2 denoting inconclusive outcomes. One
can thus define an average error rate and an inconclusive rate,
respectively, as

ηerr = q0 Pr(y = 1|x = 0) + q1 Pr(y = 0|x = 1) (1)

and

ηinc = q0 Pr(y = 2|x = 0) + q1 Pr(y = 2|x = 1), (2)

where Pr(y|x) denotes the conditional probability of observing
outcome y given input x.

In MED, the goal is to minimize ηerr under the constraint
that no inconclusive outcomes occur, i.e., Pr(y = 2|x = 0) =
Pr(y = 2|x = 1) = 0. In this case, the minimal error rate is
known as the Helstrom bound [17–19]

ηerr = 1
2 − 1

2‖q0|ψ0〉〈ψ0| − q1|ψ1〉〈ψ1|‖1, (3)

where ‖ · ‖1 denotes the trace norm.
This result applies to an arbitrary pair of quantum states

and is found by a measurement with a construction as follows.
As it is shown in Eq. (3), the optimal measurement can be
found in the support of given states |ψ0〉 and |ψ1〉. Then two
optimal positive-operator-valued measure (POVM) elements
M0 and M1 are found as projectors with positive and negative
eigenvalues of the operator (q0|ψ0〉〈ψ0| − q1|ψ1〉〈ψ1|).

One can also notice that, independently of the dimension
of the Hilbert space where two states can be described, the
two-state discrimination problem can be reduced to a two-
dimensional space spanned by |ψ0〉 and |ψ1〉. In this sense,
the two-state problem is equivalent to discrimination of two
qubit states. Then, by referring to a Bloch sphere, an optimal
measurement with POVM elements M0 and M1 can be found
in a diameter of a half plane due to the completeness, i.e.,
M0 + M1 = I. The Helstrom bound in Eq. (3) clarifies that the
diameter should be parallel to the difference (q0|ψ0〉〈ψ0| −
q1|ψ1〉〈ψ1|).

In USD, on the other hand, the goal is to minimize ηinc un-
der the constraint that no errors occur, i.e., Pr(y = 1|x = 0) =

Pr(y = 0|x = 1) = 0. In this case, the minimal inconclusive
rate is

ηinc = 2
√

q0q1|〈ψ0|ψ1〉|. (4)

If one hopes to be certain about which state was prepared,
it suffices to rule out the other option. If one measurement
outcome is |ψ̄0〉 such that 〈ψ0|ψ̄0〉 = 0, then that outcome
can never occur when |ψ0〉 is measured. This means that the
prepared state must have been |ψ1〉. The same holds for the
other state, so the POVM must include among its elements
the two states orthogonal to those in the ensemble. A mea-
surement consisting of just those outcomes, however, will not
be complete, and so the POVM must be completed by a third
element, which is the inconclusive one. Each of the elements
must be weighted by constant factors and that associated with
the third outcome determines the inconclusive rate. It is thus
minimized. In this manner, the rate (4) is attained [13].

III. MAXIMUM-CONFIDENCE MEASUREMENT

We now turn to the more general case of discriminating
between an arbitrary number of states. Let S denote an ensem-
ble of qubit states in which the states ρx are generated with a
priori probabilities qx:

S = {qx, ρx}n−1
x=0, ρ =

n−1∑
x=0

qxρx. (5)

The most general measurement corresponds to an (n + 1)-
outcome POVM, defined by M = {My}n

y=0, where outcome
n collects inconclusive events, while outcome y for y =
0, . . . , n − 1 denotes a guess that the input ρy was prepared.

Let ρx denote a state of particular interest in the ensemble.
The probability that the correct state is identified is the confi-
dence associated with the measurement [24],

C(x) : = Pr(ρx|Mx )

= Pr(ρx ) Pr(Mx|ρx )

Pr(Mx )
= qxtr(ρxMx )

tr(ρMx )
, (6)

where Bayes’ rule is applied and Pr(Mx|ρx ) is the probability
that the outcome associated with Mx is triggered by the state
ρx. For example, C(x) = 1 for some x signifies unambiguous
identification of the state ρx by a detection event on Mx.
Given a detection event, a state ρx is verified with certainty.
Unambiguous discrimination of quantum states is achieved
when C(x) = 1 for all x = 0, . . . , n − 1.

The confidence in Eq. (6) can be maximized by optimizing
over each POVM element according to

max C(x) = max
Mx

qxtr(ρxMx )

tr(ρMx )
, (7)

where 0 � Mx � 1. A valid POVM, which attains the opti-
mum for all x, can always be obtained by rescaling the Mx

and including one additional element Mφ which collects in-
conclusive outcomes. Such a measurement is called an MCM.
In general, we have Mφ �= 0.

As mentioned, when unambiguous discrimination is possi-
ble for an ensemble, the MCM is identical to the measurement
giving unambiguous discrimination. An MCM for an ensem-
ble of two pure states, for instance, will identify each state
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with perfect confidence. Note, however, that an MCM can be
introduced for ensembles for which unambiguous discrimina-
tion is impossible, such as three-qubit states.

One may consider the maximum confidence for an ensem-
ble itself: Denoting by px the probability that a detector Mx

shows a detection event, i.e., px = tr(ρMx ), the maximization

max
n−1∑
x=0

pxC(x) (8)

over a complete measurement equals the highest success prob-
ability in minimum-error state discrimination [13]. We remark
that an MCM provides a unifying picture of different fig-
ures of merits in quantum state discrimination.

Note that the maximization in Eq. (7) is computationally
feasible [24]. One can apply the transformation

ρ̃x = √
ρ

−1qxρx
√

ρ
−1

, (9)

where ρ = ∑
j q jρ j , in order to rewrite the optimization prob-

lem in Eq. (7) as

max C(x) = max
Qx�0,tr(Qx )=1

tr(ρ̃xQx ). (10)

It is not difficult to see that the maximum confidence above
corresponds to the operator norm

max C(x) = ‖√ρ
−1qxρx

√
ρ

−1‖op, (11)

where ‖ · ‖op denotes the operator norm ‖A‖op =
sup‖v‖=1 ‖Av‖. Once an optimal operator in Eq. (10), denoted
by Q∗

x , is obtained, an optimal POVM element M∗
x is found as

M∗
x = cx

√
ρ

−1Q∗
x
√

ρ
−1 (12)

for some constant cx > 0. Note that {cx} may be chosen such
that

∑
x M∗

x � I.

IV. MCM FOR QUBIT STATES

In this section we approach the maximum confidence in
Eq. (7) from the point of view of convex optimization. We
first show a semidefinite program (SDP) for the optimization
problem and then analyze the optimality conditions in order to
show that a general structure relates the states to their MCM.

A. Convex optimization

We begin with the maximization problem in Eq. (10),
which is linear with respect to a state of interest. The opti-
mization problem can be written as an SDP as

p∗ = max tr(ρ̃xQx )

s.t.Qx � 0, tr(Qx ) = 1. (13)

Its dual problem is found by constructing the Lagrangian

L(Qx, λx, Zx ) = tr(ρ̃xQx ) + λx[1 − tr(Qx )] + tr(QxZx ), (14)

where Zx � 0 and λx are dual variables. Maximizing this
Lagrangian gives the dual function

g(λx, Zx ) = max
Qx

L(Qx, λx, Zx )

= λx + max
Qx

tr[(ρ̃x − λxI + Zx )Qx]. (15)

It can be seen that the function g(λx, Zx ) does not converge
if ρ̃x − λxI + Zx �= 0. Therefore, the optimal dual parameters
Z∗

x and λ∗
x satisfy the condition

ρ̃x − λ∗
xI + Z∗

x = 0, (16)

called the Lagrangian stability. We note that the primal prob-
lem is feasible. The next condition that optimal parameters
satisfy is called the complementary slackness, given as

tr(Z∗
x Q∗

x ) = 0. (17)

The dual problem is then obtained as

d∗ = min λx

s.t.λxρ − qxρx � 0. (18)

Since both problems are feasible, one can find the maximum
confidence from both primal and dual problems above, p∗ =
d∗ = max C(x).

The linear complementarity problem (LCP) approach may
be used to understand the convex optimization problem’s
structure [34]. Technically speaking, while an SDP, either a
primal or dual problem, is formed with inequalities, an LCP
directly analyzes the optimality conditions, which are given in
terms of equalities. Those primal and dual parameters satisfy-
ing the equalities automatically find an optimal solution.

We are now in a position to derive the optimality conditions
in terms of an ensemble ρ and state of interest ρx. From the
transformation in Eq. (9), we introduce new parameters rx > 0
and a state σx such that rxσx = √

ρZ∗
x
√

ρ, so the optimality
conditions can be rewritten as

λxρ = qxρx + rxσx (Lagrangian stability), (19)

rxtr(σxMx ) = 0 (complementary slackness). (20)

Since both primal and dual problems are feasible, those primal
and dual parameters satisfying Eqs. (19) and (20) automati-
cally pinpoint the optimization problem’s solution. Once dual
parameters are found from Eq. (19), the optimal POVM ele-
ment is characterized by Eq. (20). Note that an optimal POVM
element is found by the equalities given in the optimality
conditions.

B. MCM for qubit states

We now investigate the optimality conditions for qubit
states and show how one can solve the optimization problem
directly. Both the maximum confidence and optimal POVM
elements can be found. Let us begin with the condition in
Eq. (20). The product of a complementary state σx and an
optimal POVM must be zero. Since the optimal measurement
satisfies M∗

x �= 0 ∀x = 0, . . . , n − 1, it holds that both σx and
M∗

x must be rank 1 and orthogonal to each other.
Let us consider the Lagrangian stability in Eq. (19), which

can be rewritten for all x = 0, . . . , n − 1 as

ρ = μxρx + (1 − μx )σx, (21)

where μx = qx

λx
. Note that decompositions above for qubit

states have been also obtained in Ref. [30]. Maximum-
confidence measurements can be computed analytically from
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this relation, which implies

tr
(
σ 2

x

) = 1

(1 − μx )2
tr[(ρ − μxρx )2]. (22)

For qubit cases, the left-hand side is given by 1 since the
complementary state is rank 1. It is straightforward to find
the value μx as follows. Suppose that the state of interest ρx is
pure, i.e., tr(ρ2

x ) = 1. We then have

μx = 1 − tr(ρ2)

2[1 − tr(ρρx )]
, (23)

which can be computed from an ensemble ρ and a state of
interest ρx.

When a state ρx is not pure, we have

μx = [1 − tr(ρρx )] − Det(ρ, ρx )

1 − tr
(
ρ2

x

) , (24)

where Det(ρ, ρx ) = {[1 − tr(ρρx )]2 − [1 − tr(ρ2)][1 −
tr(ρ2

x )]}1/2. The maximum confidence is obtained as

max C(x) = λ∗
x = qx

μx
, (25)

when the state is prepared with a priori probability qx. We
have therefore shown how to compute the maximum confi-
dence for a state of interest. Once μx is found as above, one
can find the complementary state σx in Eq. (21), from which
the optimal POVM element is also found.

Example: N qubit pure states

To illustrate our approach, let us consider an ensemble of N
arbitrary pure states {|ψ j〉}N−1

j=0 , where |ψ0〉 = |0〉 and |ψ j〉 =
cos θ j

2 |0〉 + eiφ j sin θ j

2 |1〉 for j = 1, . . . , N − 1. Note that the
angles (θ j and φ j) are arbitrary and the state of interest is
denoted by |ψ0〉. One can compute the maximum confidence
as

max C(0) = 2[1 − tr(ρ0ρM )]

N + 1 − (N − 1)tr
(
ρ2

M

) − 2 tr
(
ρ0ρM

) , (26)

where ρM is an equally weighted mixture of N − 1 states |ψ j〉
for j = 1, . . . , N − 1. It can be seen that the maximum confi-
dence depends on two parameters: the purity of an ensemble
ρM and the fidelity between ρM and ρ0.

In addition, as shown in Refs. [35,36], the maximum con-
fidence is closely related to the outcome rate, the probability
that a detection event occurs, defined by η0 = tr(ρM0). Here
the outcome rate is upper bounded by

η+ = 1 + μ0tr(ρρ0) − tr(ρ2)

1 − μ0
, (27)

where μ0 = [1 − tr(ρ2)]/{2[1 − tr(ρρ0)]} [see Eq. (23)].
It is worth emphasizing that any N-state discrimination

problem within the MCM framework can be turned into a two-
state discrimination problem. Since an MCM only focuses on
one state of interest (ρ0), the rest can be collected in a mixture
ρM . Maximum confidence can be straightforwardly com-
puted with (26), which is equivalent to (25) for equiprobable
preparations.

ρ
μxρx

(1 − μx)σx

ρx

σx

A

B

S

O

M

C

U

V
μx

(1 − μx)

FIG. 1. Geometry of the MCM for qubit states shown on the
Bloch sphere. The arrows represent Bloch vectors. For instance,
Bloch vectors OM and OV on the sphere, i.e., pure states, denote
orthogonal qubit states. An ensemble ρ and a state of interest ρx

correspond to OS and OU , respectively. A complementary state
σx is pure, i.e., lies on the sphere. Since ρ is a convex combina-
tion of ρx and a complementary state σx [see Eq. (21)] the state
σx is immediately obtained as OV by extending US. An optimal
POVM element corresponds to OM. It holds that OA + OB = OS
and OS + OC = OB ∝ OV .

C. Geometry of qubit states and an MCM

The general structure of qubit states and MCMs can be
depicted on the Bloch sphere. We analyze here the opti-
mality condition geometrically and present the structure. We
also show forms of the maximum confidence different from
Eq. (25).

Let us refer to Fig. 1. Note that the natural distance measure
in the Bloch sphere is given by the Hilbert-Schmidt norm,
which turns out to be proportional to the trace norm for qubit
cases [37], i.e., √

2dHS(ρ, σ ) = ‖ρ − σ‖1, (28)

where dHS(ρ, σ ) =
√

tr[(ρ − σ )2]. For instance, the trace
norm between two orthogonal qubit states equals 2 and the
Hilbert-Schmidt distance is

√
2. Thus, one can consider two

measures interchangeably in the Bloch sphere and relate them
by a factor of

√
2.

We begin by interpreting Eq. (21): An ensemble ρ is given
as a convex mixture of a state of interest ρx and its comple-
mentary one σx. This means that the Bloch vector of a state
ρ lies on a line connecting two Bloch vectors of two states
ρx and σx. It also implies that the Bloch vector of a state σx

can be found on a line connecting those of two states ρ and
ρx. Let us recall from the optimality condition in Eq. (20)
that a complementary state σx must be rank 1 on the Bloch
sphere. Therefore, one can find a complementary state σx on
the surface at which the line connecting two known states ρ

and ρx meet (see Fig. 1). Once a complementary state is found,
an optimal POVM element is obtained as the orthogonal
complement,

M∗
x ∝ σ⊥

x . (29)

Both operators M∗
x and σx are rank 1.
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Let us also explain the relations between the states and
MCM, as shown in Fig. 1. Given states ρ and ρx, displayed
as OS and OU , respectively, an optimal measurement is found
as OM, which is orthogonal to OV obtained on the sphere by
extending US. The Bloch vector of a complementary state that
corresponds to OV can be found as follows.

Throughout, let �n(τ ) denote the Bloch vector of a qubit
state τ . Then a vector �r lying on a line defined by US is given
by

�r = [�n(ρ) − �n(ρx )]t + �n(ρ) (30)

for some t � 0. The complementary state’s Bloch vector �rx is
found with tx, by which ‖�r‖ = 1.

From the convex combination in Eq. (21), it holds that

‖ρ − ρx‖1

‖ρ − σx‖1
= 1 − μx

μx
. (31)

From the relation above, it is straightforward to find μx =
‖ρ − σx‖1/‖ρx − σx‖1 so that

max C(x) = qx‖ρx − σx‖1

‖ρ − σx‖1
. (32)

From Eq. (30) one can compute the maximum confidence
above in terms of the Bloch vector. It follows that

max C(x) = qx

(
1 + 1

tx

)
, (33)

where tx is found from the constraint ‖�r‖ = 1.
We have therefore shown that a complementary state can

be directly found by exploiting the qubit-state geometry, as
well as an MCM. In summary, the maximum confidence for
qubit states can be written in the various forms in Eqs. (25),
(32), and (33).

D. Minimizing the probability of inconclusive outcomes

Having found POVM elements for an MCM, let us
consider the probability inconclusive outcomes. As it is men-
tioned, it is clear that a POVM element in an MCM is rank 1:
For an ensemble in Eq. (5), let

Mx = ax
x (34)

define a POVM element for each state where ax is a non-
negative constant and 
x a rank-1 projector. The projectors
{
x}N−1

x=0 are immediately obtained such that they perform an
MCM. Then a set of constants {ax}N−1

x=0 is chosen to find the
probability of inconclusive outcomes, for which the POVM
element is defined by

Mφ = I −
∑

x

ax
x (35)

so that its probability is given by pinc = tr(ρMφ ).
Remarks are in order. First, an MCM for an ensemble [see

Eq. (5)] varies by choosing different values {ax}N−1
x=0 , for all

of which an MCM holds true. This immediately concludes
that an MCM for an ensemble is not unique. Second, if the
convex hull of POVM elements {
x} performing an MCM
contains the identity, i.e., {ax}N−1

x=0 can be chosen such that∑N−1
x=0 ax
x = I, one can find an MCM that is also complete.

Consequently, an inconclusive outcome does not occur, since
Mφ = 0 and pinc = 0.

Remark. Let {
x} denote a set of rank-1 projectors and
suppose that their convex hull contains the identity. Then an
MCM with the projectors {ax
x} can be constructed such that
an inconclusive outcome does not occur.

Third, if the convex hull of POVM elements {
x} does not
contain the identity, an optimization problem is introduced to
minimize the probability of inconclusive outcomes. From a
POVM in Eq. (35), the problem is defined as

Q = min tr(ρMφ )

s.t. ax � 0 ∀x, Mφ � 0. (36)

The optimization problem may be approached by a
Lagrangian,

L = tr(ρMφ ) −
∑

x

vxax − tr(KMφ ),

where K � 0 and vx � 0 are dual parameters. The optimality
conditions contain the Lagrangian stability, i.e., ∂L/∂ax = 0
for all x,

tr(ρ
x ) + vx − tr(ρ
x ) = 0, (37)

and the complementary slackness

vxax = 0, tr(KMφ ) = 0. (38)

The optimization problem works for an arbitrary ensemble
of quantum states. In what follows, we rewrite the problem
specifically for qubit states.

It is straightforward to find that Eq. (38) implies that Mφ is
rank 1 for qubit states. Hence, it holds that(

Mφ

tr(Mφ )

)2

= Mφ

tr(Mφ )
,

which is equivalent to, from Eq. (35),

1 −
∑

x

ax + 1
2

∑
x,y

[1 − tr(
x
y)]axay = 0. (39)

In addition, also from Eq. (35), we have tr(Mφ ) � 0, meaning
that 2 − ∑

x ax � 0. With the constraints, the optimization
problem in Eq. (36) for qubit states can be written as

Q = min tr

[
ρ

(
1 −

∑
x

ax
x

)]

s.t. ax � 0, 2 −
∑

x

ax � 0, and

1 −
∑

x

ax + 1

2

∑
x,y

[1 − tr(
x
y)]axay = 0 ∀x.

(40)

The probability of inconclusive outcomes for an MCM of
qubit states can be generally obtained by solving the opti-
mization problem. We reiterate that, once a set of projectors
for an MCM {
x}N−1

x=1 is obtained, the optimization problem
above finds a set of optimal coefficients {ax}N−1

x=1 to minimize
the probability of inconclusive outcomes.
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ρ

O

M1

ρ1

E1

S1

U1

S0

ρ0

E0

M0

U0

A0 A1B

FIG. 2. Two states in Eq. (41) are depicted in the Bloch sphere.
Here OA and OB denote the Bloch vectors of the states ρ0 and
ρ1. Complementary states σ0 and σ1 on the sphere are found by
extending A0B and A1B and consequently OS0 and OS1. By flipping
them to their opposite directions, the MCM is obtained as OM0

and OM1, which coincide with OU0 and OU1 for p = 1. Note that
when two states are pure, unambiguous discrimination is possible
and is implemented by a POVM containing OU0 and OU1. The
optimal measurement for minimum error is given by OE0 and OE1.
It is therefore found that the MCM, OM0 and OM1, is in between
unambiguous and minimum-error discrimination.

V. VARIOUS QUBIT STATES

Let us apply the geometric structure of MCM to various
ensembles of qubit states. We show how states and their MCM
are related to each other. We also compare MCMs for qubit
states to measurements for unambiguous and minimum-error
discrimination.

A. Two states

The first example is two qubit states, each prepared with
equal a priori probabilities (see Fig. 2)

ρx = p|ψx〉〈ψx| + (1 − p)
I

2
, x = 0, 1

ρ = p

2
(|ψ0〉〈ψ0| + |ψ1〉〈ψ1|) + (1 − p)

I

2
. (41)

Unambiguous discrimination is not possible for these ensem-
ble states if p < 1. Two pure states may be parametrized by
cos θ = 〈ψ0|ψ1〉, so we can write, without loss of generality,

|ψx〉 = cos
θ

2
|0〉 + (−1)x sin

θ

2
|1〉. (42)

The maximum confidence for each state is computed as

max C(x) = 1

2

(
1 + p

√
1 − cos2 θ√

1 − p2 cos2 θ

)
. (43)

The MCM can then be obtained from the Bloch vectors of the
states:

�n(ρx ) = ((−1)x p sin θ, 0, p cos θ ), (44)

�n(ρ) = (0, 0, p cos θ ). (45)

From these, the Bloch vectors of the complementary states are
found, using Eq. (32), to be

r̂x = p((−1)x+1tx sin θ, 0, cos θ ), (46)

with

tx =
√

1 − p2 cos2 θ

p
√

1 − cos2 θ
, (47)

where we note that ‖r̂x‖ = 1. An optimal POVM element is
rank 1 and can be described by a unit Bloch vector, denoted
by m̂x,

m̂x = −r̂x = p((−1)xtx sin θ, 0,− cos θ ). (48)

That is, an optimal POVM element for state ρx is given by
Mx ∝ (I + m̂x · �σ )/2, where σ = (X,Y, Z ) with Pauli matri-
ces X , Y , and Z .

Remarks are in order. First, suppose that pure states
are given, i.e., p = 1. Then we have that m̂x = −�n(ρx+1),
meaning Mx ⊥ ρx+1. In this case, an MCM coincides with
unambiguous discrimination. Second, the MCM varies ac-
cording to a noise parameter p [see Eq. (48)]. Third, for
all values p ∈ (0, 1], an MCM is never a null measurement;
the same holds true even if different a priori probabilities
are given. That is, the act of not measuring can never give
the maximal confidence. This contrasts with certain cases of
minimum-error discrimination, in which a null measurement
is optimal whenever q0 − q1 > ‖q0ρ0 − q1ρ1‖1, where q1 and
q2 are a priori probabilities.

The probability of inconclusive outcomes can be mini-
mized [see Eq. (40)]. Since the a priori probabilities are equal,
it is not difficult to see that a0 = a1, from which it is straight-
forward to solve the optimization problem. It is obtained that
the minimal probability of inconclusive outcomes is given by

Q = p|〈ψ0|ψ1〉|. (49)

Note that the probability of inconclusive outcomes in USD is
reproduced in Eq. (4) with p = 1.

B. Geometrically uniform states

A set of N states {ρx}N−1
x=0 is geometrically uniform when

there exists a unitary transformation U such that UρxU † =
ρx+1 for all x, i.e., U N = I [38]. As one example, geometri-
cally uniform qubit pure states can be written as

|ψx〉 = cos
θ

2
|0〉 + e(2/π iN )x sin

θ

2
|1〉 (50)

for some θ . Note that a set of N states {ρx}N−1
x=0 generalizes

the three qubit states considered in Ref. [24]. Assume that
the states are given with equal a priori probabilities: The
ensemble is then given by

ρ = 1
2 [I + (cos θ )Z]. (51)

Since we consider pure states, we have μx = 1
2 for each x [see

Eq. (23)]. The maximum confidence is given by

max C(x) = 2

N
. (52)
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Ax+1
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Ex
Ex+1

FIG. 3. Geometrically uniform pure states OAx form a circle
defined by a radius BAx where OB denotes the ensemble of the states
with equal probabilities. For a state OAx , its complementary state is
found at OSx by extending BAx . By rotating it with respect to the
origin, an optimal POVM element OMx that is orthogonal to the
state OSx is obtained. The half plane may be defined precisely by
the collection of midpoints of AxMx . Note that the measurement for
minimum-error discrimination contains OEx obtained by projecting
states OAx onto the half plane. Alternatively, for those states in the
half plane, an MCM coincides with a measurement for MED.

In this case, it is shown that the maximum confidence
concerning a particular state of interest only depends on the
cardinality of an ensemble: A larger set shows a lower value
of the maximum confidence and vice versa.

An optimal measurement can be found as follows. Bloch
vectors of the states are given by

�n(ρx ) =
(

cos
2πx

N
sin θ, sin

2πx

N
sin θ, cos θ

)
, (53)

�n(ρ) = (0, 0, cos θ ) (54)

and Bloch vectors of complementary states are obtained as

�rx =
(

− cos
2πx

N
sin θ,− sin

2πx

N
sin θ, cos θ

)
= −m̂x,

(55)

where {m̂x}N
x=1 denote Bloch vectors of optimal POVM

elements.
The minimal probability of inconclusive outcomes can be

obtained by solving the optimization problem in Eq. (40).
Since the a priori probabilities are equal, it is not difficult to
see that a0 = a1 = · · · = aN−1. Then the minimal probability
is computed as

Q = |cos θ |, (56)

which reproduces the result in Ref. [24] for the case of N = 3.
Note that USD cannot be performed for N > 2 qubit

states. The measurement for minimum-error discrimination
is found on the half plane (see Fig. 3) and the guessing
probability is given by (1 + sin θ )/N [32]. That is, for geomet-
rically uniform states with θ = π/2, the MCM also performs
minimum-error discrimination.

C. Tetrahedron states

The next example we consider is an ensemble of tetrahedral
states

|ψ0〉 = |0〉, |ψx〉 =
√

1

3
|0〉 + e2π ix/3

√
2

3
|1〉, x = 1, 2, 3,

(57)

so called because they form a tetrahedron in the Bloch sphere.
These are symmetric informationally complete states, since
|〈ψx|ψy〉| = 1

3 for x �= y [39].
To be more general, we consider noisy tetrahedron states

ρx = p|ψx〉〈ψx| + (1 − p)
I

2
for x = 0, 1, 2, 3, (58)

given with equal a priori probabilities so that ρ = I/2. From
Eqs. (23) and (24) it follows that

μx = 1

1 + p
, max C(x) = 1 + p

4
for x = 0, 1, 2, 3.

(59)

Note that for pure states the maximum confidence is given by
1
2 . Since the Bloch vectors of tetrahedron states are given by

�n(ρ0) = (0, 0, p), (60)

�n(ρx ) =
(

2
√

2

3
p cos

2πx

3
,

2
√

2

3
p sin

2πx

3
,−1

3
p

)
, (61)

�n(ρ) = (0, 0, 0), (62)

where x = 1, 2, 3, one can find the Bloch vectors of comple-
mentary states,

r̂x = −1

p
�n(ρx ) = −m̂x for x = 0, 1, 2, 3. (63)

Thus, an MCM for tetrahedron states is shown in Fig. 4. It is
worth mentioning that the MCM coincides with the minimum-
error measurement for the tetrahedron states [32,37]. We also
remark that, as shown in Sec. IV D, since the convex hull
of the projectors contains the identity, an MCM can be con-
structed such that inconclusive outcomes do not occur.

D. Asymmetric states I

In this section we consider the ensemble of three asymmet-
ric states, which is constructed by slightly modifying one of
the three geometrically uniform states. We look at the three
states

|ψ0〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉,

|ψ1〉 = 1

2
|0〉 +

√
3

2
|1〉), |ψ2〉 = 1

2
(|0〉 −

√
3|1〉).

(64)
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M0

M1
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M3 1AA

FIG. 4. Ensemble of noisy tetrahedron states OAx for x =
0, 1, 2, 3, given as I/2, corresponding to the origin O. Then, com-
plementary states are found on the Bloch sphere in the opposite
directions to given states: OSx for x = 0, 1, 2, 3. Optimal POVM
elements are rank 1 and found by rotating OSx about O: OMx for
x = 0, 1, 2, 3 are in the same direction as given states OAx .

That is, two states |ψ1〉 and |ψ2〉 are fixed and a state |ψ0〉
is varied by an angle θ . The Bloch vectors are

�n(ψ0) = (sin θ, 0, cos θ ), �n(ψ1) =
(√

3

2
, 0,−1

2

)
,

�n(ψ2) =
(−√

3

2
, 0,−1

2

)
, �n(ρ) = 1

3
(sin θ, 0,−1 + cos θ ).

O
B

A0

A1A2

S0

S1

M0

M1

M2

S2

A

FIG. 5. Three states OA, OA1, and OA2 are geometrically uni-
form. The first state is slightly tilted so that an ensemble of three
states OAx for x = 0, 1, 2 is considered. The ensemble is denoted
by OB. Complementary states OSx are found by extending AxB, and
optimal POVM elements are found by inverting OSx with respect to
O. None of the elements OMx are identical to states OAx .

FIG. 6. Three states OA0, OA1, and OA2 are considered where
OA1 and OA2 are orthogonal. Complementary states OSx are found
on the sphere by extending AxB. An optimal POVM consists of OA0,
OM1, and OM2. A measurement for minimum-error discrimination
contains two POVM elements OA1 and OA2.

It turns out that an MCM for them does not contain any sym-
metry, as can be seen in Fig. 5. We make use of the expression
(33) to get

t0 = 9 − 2(1 − cos θ )

9 − 4(1 − cos θ )
, (65)

tx = 9 − 2(1 − cos θ )

9 − (1 − cos θ ) + 3
√

3(−1)x sin θ
, x = 1, 2.

(66)

The maximum confidence is found to be (1 + 1/tx )/3. It is
seen that an MCM for the asymmetric states does not contain
any symmetry. Since the convex hull of the projectors contains
the identity, an MCM without inconclusive outcomes can be
constructed.

E. Asymmetric states II

The next example of asymmetric states considered is

|ψ0〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉, |ψ1〉 = |+〉, |ψ2〉 = |−〉,

where each state is prepared with equal a priori probability.
Similarly to the previous case, two states |ψ1〉 and |ψ2〉 are
fixed and a state |ψ0〉 varies by an angle θ . In contrast with
the ensemble in Eq. (64), the pair of states |±〉 contains a
symmetry; they are invariant under a rotation about the x axis.
Their Bloch vectors are

�n(ψ0) = (sin θ, 0, cos θ ), �n(ψ1) = (1, 0, 0),

�n(ψ2) = (−1, 0, 0), �n(ρ) = 1
3 (sin θ, 0, cos θ ). (67)

We again exploit the expression (33) to find

t0 = 2, t1 = 4

5 − 3 sin θ
, t2 = 4

5 + 3 sin θ
. (68)

032422-8



MAXIMUM-CONFIDENCE MEASUREMENT FOR QUBIT … PHYSICAL REVIEW A 106, 032422 (2022)

It follows that

max C(x) = 1

3

(
1 + 1

tx

)
. (69)

Interestingly, the maximum confidence for the state |ψ0〉,
which is parametrized by θ , does not depend on the angle. The
maximum confidence for the other two states depends upon
the angle θ from the other state |ψ0〉.

In contrast to the three states in the case of the ensemble
in Eq. (64), the MCM contains a symmetry (see Fig. 6), seen
from the Bloch vectors of the complementary states which are

r̂0 = −�n(ψ0),

r̂1 = (
1
3 sin θ − 1, 0, 1

3 cos θ
)
t1 + 1

3 (sin θ, 0, cos θ ),

r̂2 = (
1
3 sin θ + 1, 0, 1

3 cos θ
)
t2 + 1

3 (sin θ, 0, cos θ ). (70)

That is, an optimal POVM element for the state |ψ0〉 shares
its Bloch vector with the state �n(ψ0). An MCM for two states
|±〉 depends on the angle θ of the other state |ψ0〉. Since the
convex hull of the projectors of an MCM for the asymmetric
states contains the identity, the probability of inconclusive
outcomes is also zero.

In the case of minimum-error discrimination for the ensem-
ble, an optimal measurement does not aim to detect a state
|ψ0〉. It contains two POVM elements having Bloch vectors
�n(ψ1) and �n(ψ2). Then a detection event on the first (second)
POVM element characterized by �n(ψ1) [�n(ψ2)] concludes a
state |ψ1〉 (|ψ2〉). In this way, the guessing probability is given
as 2

3 [32].

VI. CONCLUSION

In summary, we have investigated MCMs for qubit states.
We have presented a simple scheme to find MCMs for qubit
states when an ensemble and a state of interest are given.
The scheme exploits the geometry in a Bloch sphere without
resorting to the computational optimization problem. We then
considered various qubit states. From the cases of two qubit
states, it was shown that an MCM lies between two strategies:
minimum-error and unambiguous discrimination. An MCM
for geometrically uniform states generalizes an example from
Ref. [24]. An MCM for tetrahedron states is identical to a
measurement for minimum-error discrimination. Otherwise,
when an ensemble does not contain any symmetry, it was seen
that MCMs highly depends on the particular state of interest.

Our results elucidate the meanings of different qubit mea-
surements, each of which may aim to maximize different
figures of merit. Measurements for various qubit ensembles
may also be used to devise quantum protocols to verify the
properties of qubit states.
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