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Recycled entanglement detection by arbitrarily many sequential and independent pairs of observers
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Two spatially separated observers, Alice and Bob, share a bipartite two-qubit entangled state and perform
measurements to witness entanglement. After their measurements, they pass their qubits to a subsequent pair
of observers who try to perform the same task independently, and so on. Here we ask: what is the maximum
number of such pairs that can perform this task successfully? It has previously been conjectured that not more
than one pair of observers can detect Clauser-Horne-Shimony-Holt “Bell-nonlocal” correlations in this setup. We
prove that, on the contrary, entanglement can be witnessed by arbitrarily many pairs of observers. The dissimilar
nature between entanglement and Bell-nonlocal correlations is therefore uncovered in a rather radical way, when
considering sequentially acting pairs of observers. We prove this statement to be true when the initial shared
state is any pure entangled state, a class of Bell-nonlocal mixed states, or a class of Bell-local entangled states.

DOI: 10.1103/PhysRevA.106.032419

I. INTRODUCTION

Quantum entanglement [1,2] is among the most crucial
resources in quantum information processing and communi-
cation. It plays a key role in numerous applications, such
as quantum cryptography [3,4], quantum dense coding [5],
quantum teleportation [6], entanglement swapping [7,8], and
device-independent tasks like key distribution [9–11], ran-
domness amplification [12], randomness expansion [13–15],
etc. It is therefore useful to learn about different techniques
of characterizing, quantifying, and utilizing entanglement. A
valuable tool to analyze and characterize entanglement ex-
ploits a class of functionals called entanglement witnesses
(EWs) [1,2,16]. Given an entangled state, there always exists
an EW [2,17–20], and for example, Bell inequalities [21,22],
such as the Clauser-Horne-Shimony-Holt (CHSH) Bell in-
equality [23], that detect the so-called “Bell-nonlocal” (or
“nonlocal”) states are also EWs.

In Ref. [24], the authors introduced a scenario where, given
an initial bipartite entangled state, a single observer, Alice,
owns one subsystem while the other subsystem is passed
among multiple sequential and independent observers, Bobs.
The task is to obtain a sequential violation of the CHSH
Bell inequality. Initially, an unbounded number of recycled
nonlocal correlations was detected only for “biased” mea-
surement strategies [24]. Later the same was attained for a
certain family of nonlocal states using a measurement strat-
egy [25] that is unbiased. However, the question whether the
same holds for all nonlocal states remains open. Nonlocal
states are certainly entangled, and thus this result also answers
the question about arbitrary recyclability of entanglement for
Bell-nonlocal states. Recently, it was also observed that it
is possible to witness and recycle entanglement an arbitrary
number of times using a CHSH Bell-local entangled state

[26]. For other theoretical works in the direction of recyclabil-
ity of entangled and nonlocal correlations, see Refs. [27–40].
For experimental works, see Refs. [41–45].

Studying the sequential detection scenario of quantum re-
sources is certainly of fundamental significance. It tries to
answer about the fundamental limits on recycling of these
resources. The fact that till now only some of the entan-
gled quantum states are shown to facilitate an arbitrary-times
sequential detection of certain quantum resources raises the
interesting open problem about the situation for the rest of
the entangled states [25,26]. Also, gaining information about
entanglement or Bell-nonlocal correlations of a quantum state
causes disturbance in the state, so that the sequential detection
of these resources can tell us about the trade-off between in-
formation gain and state disturbance for the resources. Along
with being fundamentally interesting, such scenarios of se-
quential detection of quantum resources can have potential
applications in quantum technologies and can also be useful
in situations when there is significant restrictions on quantum
state preparation [25].

In the present work, we consider the scenario in which both
the subsystems of a bipartite quantum state are passed on to
multiple pairs of independent observers [37–40] (see Fig. 1).
It has been conjectured in Ref. [37], with analytical and nu-
merical evidence, that recycling of nonlocal correlations, via
violation of the CHSH Bell inequality, is impossible in this
scenario. That is, not more than one pair of Alice and Bob can
share a CHSH Bell-nonlocal state. This is intriguing, since a
single Alice can share CHSH Bell-nonlocal correlations with
an arbitrary number of sequential and independent Bobs [25],
but allowing multiple Alices and Bobs seems to restrict such
shareability. It is therefore interesting to ask whether entangle-
ment correlations also have such limitations. Contrary to the
case of Bell nonlocality, we show that entanglement can be
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FIG. 1. Schematic of sequential entanglement detection by in-
dependent pairs of observers. Let Alice1 and Bob1 share a bipartite
quantum system in the state ρAB1 , with one subsystem in possession
of Alice1 and the other in control of Bob1. Their task is to detect
entanglement and then pass on their subsystems to Alice2 and Bob2,
respectively. Now, Alice2 and Bob2 act on their subsystems to detect
entanglement and pass the quantum system to another subsequent
pair, and this continues till the entanglement content of the shared
state vanishes. The question is: how many such pairs of observers
can detect entanglement acting sequentially and independently?

detected and recycled in this scenario an arbitrary number of
times. Therefore, where only one pair could detect CHSH Bell
nonlocality in shared two-qubit states, an arbitrary number
of pairs can detect entanglement in at least specific instances
of the same. Thus, our result uncovers an interesting face of
the distinct behavior between entanglement correlation and
Bell-nonlocal correlation of two-qubit quantum states, within
the realm of sequential witnessing. We provide a measurement
strategy with which an unbounded number of detections of
entanglement can be achieved for any pure entangled two-
qubit state and for a class of mixed states. We also show
that such a property can be unleashed by a class of states
which are CHSH Bell-local and whose entanglement content
vanishes in the limit of the number of observing pairs growing
unboundedly. This observation also hints at the possibility that
the whole set of entangled states maybe used to generate ar-
bitrary sequences of entangled correlations in these sequential
entanglement detection scenarios.

II. ENTANGLEMENT WITNESSES AND UNSHARP
MEASUREMENTS

Entanglement witnesses [1,2,16] use expectation values of
Hermitian operators which separate the set of separable states
from some of the entangled states. This method of entan-
glement detection utilizes the Hahn-Banach theorem [46,47],
which says that, corresponding to any element falling outside
a closed and convex set of a normed linear space, there always
exists a functional on that space which “separates” the element
with the closed and convex set. An entanglement witness
operator is thus an operator W , such that 〈W 〉ρs � 0, for all
separable states, ρs, and there exists at least one entangled
state, ρe, for which 〈W 〉ρe < 0, where 〈W 〉ρ represents the
expectation value of the Hermitian operator W with respect
to a state ρ. For example, entanglement of the bipartite state
|ψ+〉 = 1√

2
(|01〉 + |10〉) can be detected by the Hermitian

operator Wψ+ = |φ−〉〈φ−|T , where |φ−〉 = 1√
2
(|00〉 − |11〉),

T represents partial transposition of operators, i.e., transpo-

sition with respect to any of the local parties (but a fixed
one), and |0〉 and |1〉 represent the eigenstates of the Pauli
operator σz with eigenvalues 1 and −1, respectively. The ex-
pectation values required for witnessing entangled states can
also be computed locally, since Hermitian operators acting
on a joint Hilbert space can be decomposed in Hermitian
operators acting on the local Hilbert spaces of the joint Hilbert
space. For example, the entanglement witness operator Wψ+ ,
corresponding to |ψ+〉, can be decomposed as [20]

Wψ+ = 1
4 [I4 + σz ⊗ σz − σx ⊗ σx − σy ⊗ σy], (1)

where Id represents the identity operator acting on the d-
dimensional Hilbert space Cd , and σx, σy, and σz are the Pauli
matrices.

While the expectation value of Wψ+ will recognize the en-
tanglement in |ψ+〉, the projective measurements involved to
evaluate the expectation value will destroy the entanglement
present in the state. However, it is possible to detect entangle-
ment as well as preserve some amount of entanglement at the
same time, if one performs an unsharp version of the required
projective measurements [24,25]. Consider an observable, P,
acting on the qubit space, and let the state of the qubit be ρ.
Corresponding to the projection measurement with the projec-
tion operators P0 and P1, with P0 + P1 = I2 and P = P0 − P1,
we can define an unsharp version of the measurement, with
the sharpness parameter λ, which consists of the operators,

Eλ
0 = 1

2 (I2 + λP), Eλ
1 = 1

2 (I2 − λP), (2)

where 0 � λ � 1. Note that, for λ = 1, the positive operator-
valued measure {Eλ

0 , Eλ
1 } reduces to the projective measure-

ment {P0, P1}, whereas for λ = 0, measurement operators are
identity. Therefore, disturbance to the state, due to the mea-
surement, is the greatest when λ = 1, whereas λ = 0 leads to
a trivial measurement in the sense that the state is totally un-
affected. Notice that the unsharp version of the measurement
will lead to an expectation value of P multiplied by the sharp-
ness parameter, since Eλ

0 − Eλ
1 = λP. The postmeasurement

state is given by the von Neumann-Lüder’s rule [48] as

ρ →
√

Eλ
0 ρ

√
Eλ

0 +
√

Eλ
1 ρ

√
Eλ

1 . (3)

III. SCENARIO

We consider a generalized version of the sequential sce-
nario presented in Ref. [24]. It involves a bipartite entangled
state that is shared between a pair of observers, namely, the
first Alice-Bob pair (AB1). The pair performs their tasks in
spatially separated labs. To witness entanglement, the first
Alice (A1) and the first Bob (B1) each performs one of three
local measurements at random on their qubit. Both the post-
measurement subsystems are then passed to A2 and B2 who
run the same task on their respective qubits independently
and with no prior knowledge of the outcomes attained by
their previous observers. This process continues until the state
reaches a pair who fail to detect entanglement. The ultimate
aim of this task is to maximize the number of pairs that can
witness entanglement independently. We prove that using the
weak measurement strategy presented below, one can achieve
an arbitrarily long sequence of Alice-Bob pairs who can suc-
cessfully detect entanglement for any pure entangled state, a
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class of mixed entangled states, and certain weakly entangled
(again, mixed) states.

A. Adopted measurement strategy and entanglement witness

Let the kth Alice-Bob (ABk) pair share the state ρABk , and
let the witness operator used by the pair be given as follows:

Wk = 1
4 [I4 + σz ⊗ σz − λkσx ⊗ λkσx − λkσy ⊗ λkσy], (4)

where λk is the sharpness parameter. Therefore, each observer
has three measurement settings, viz., σx, σy, and σz. For ease
of notation, we denote the Pauli matrices σx, σy, and σz as σ1,

σ2, and σ3. The sharpness parameter corresponding to any of
the two kth local observers, for the setting σi, is denoted as
λ

(i)
k , where i = 1, 2, and 3. One can see from Eq. (4) that

λ
(3)
k = 1 and λ

(1)
k = λ

(2)
k = λk.

Note that 〈Wk〉 � 0 for all separable states as 0 � λ
(i)
k � 1

[26]. Let {Aλ
(i)
k

0 ,Aλ
(i)
k

1 } and {Bλ
(i)
k

0 ,Bλ
(i)
k

1 } denote the measure-
ments performed by the observers Ak and Bk , respectively, and
let their forms be taken as given in Eq. (2). Since it is assumed
that all the measurement settings applied by each Alice-Bob
pair are equally probable, i.e., unbiased, the state at the hand
of the kth pair in the sequence is given by

ρABk = 1

9

3∑
i, j=1

1∑
a,b=0

√
Aλ

(i)
k−1

a ⊗
√
Bλ

( j)
k−1

b ρABk−1

√
Aλ

(i)
k−1

a ⊗
√
Bλ

( j)
k−1

b

= 1

36

3∑
i, j=1

[(
1 + �i

k−1

)(
1 + �

j
k−1

)
ρABk−1 + (

1 + �i
k−1

)(
1 − �

j
k−1

)
I2 ⊗ σ jρABk−1I2 ⊗ σ j

+ (
1 − �i

k−1

)(
1 + �

j
k−1

)
σi ⊗ I2ρABk−1σi ⊗ I2 + (

1 − �i
k−1

)(
1 − �

j
k−1

)
σi ⊗ σ jρABk−1σi ⊗ σ j

]
, (5)

where �i
k =

√
1 − λ

(i) 2
k , so that �i

k =
√

1 − λ2
k for i = 1 and

2, and is denoted as �k . Now, the expectation values of each
term present in the witness operator Wk with respect to ρABk

can be expressed in terms of their expectation values with
respect to the state ρAB1 , i.e.,

Tr [σz ⊗ σzρABk ] = Tr[σz ⊗ σzρAB1 ]�k−1
l=1

(1 + 2�l )2

9
,

Tr [σx ⊗ σxρABk ] = Tr[σx ⊗ σxρAB1 ]�k−1
l=1

(1 + �l )2

9
. (6)

Note that Tr[σx ⊗ σxρABk ] = Tr[σy ⊗ σyρABk ] for each k ∈ N.

IV. SEQUENTIAL ENTANGLEMENT DETECTION
ARBITRARILY MANY TIMES

In this section, we study the considered scenario with the
first pair of observers in the sequence sharing a state chosen
from different classes of states.

A. Maximally entangled state

Let the pair AB1 share a maximally entangled state, i.e.,
ρAB1 = |ψ+〉〈ψ+|. Therefore, the first pair will observe en-
tanglement if Tr[ρAB1W1] < 0,

⇒ λ2
1 > 0. (7)

And the pair ABk will able to witness the entanglement if
Tr[ρABkWk] < 0,

⇒ λ2
k >

1 − �k−1
l=1

(1+2�l )2

9

2�k−1
l=1

(1+�l )2

9

. (8)

Therefore, let us define the sequence λ2
k for k ∈ N as

λ2
k =

⎧⎨
⎩

(1 + ε)
1−�k−1

l=1
(1+2�l )2

9

2�k−1
l=1

(1+�l )2

9

, if λ2
k−1 ∈ (0, 1),

∞, otherwise,
(9)

with 0 < λ2
1 < 1 and where ε > 0. Note that λ2

k ∈ (0, 1)
implies that the pair ABk will be able to witness the entan-
glement, whereas λ2

k = ∞ implies that the pair ABk will not
be able to witness entanglement. Now for λ2

k ∈ (0, 1),

λ2
k+1

λ2
k

= 9

(1 + �k )2

1 − �k
l=1

(1+2�l )2

9

1 − �k−1
l=1

(1+2�l )2

9

> 1, (10)

since �k =
√

1 − λ2
k ∈ (0, 1). Therefore, the sequence λ2

k in
Eq. (9) is positive and increasing. The next important obser-
vation about this sequence is that, as λ2

1 → 0, we have λ2
k → 0

for all k ∈ N. This proves that an arbitrarily long sequence of
Alice-Bob pairs will be able to witness entanglement starting
from a maximally entangled state.

Interestingly, one can check that the state received by each
pair during the process is a CHSH Bell-nonlocal state when
the initial state is maximally entangled. Therefore, an arbitrary
number of pairs can share Bell nonlocality in the process
of witnessing entanglement. However, the measurement set-
tings required to witness such Bell nonlocality are different
from the measurement settings that are required to witness
the entanglement present in the state. Thus, this observation
definitely does not overturn the conjecture made in Ref. [37].

B. Pure entangled states and a class of mixed entangled states

Any pure entangled state, up to a local unitary, can be
written as |ψα〉 = √

α|01〉 + √
1 − α|10〉 for α ∈ (0, 1

2 ] and,
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in Hilbert-Schmidt decomposition, can be expressed as

1
4 [I4 − σz ⊗ σz + 2

√
α(1 − α)σx ⊗ σx

+ 2
√

α(1 − α)σy ⊗ σy]. (11)

Consider now a mixed entangled state shared by AB1, given
by

ρAB1 = p1|ψα〉〈ψα| + p2|01〉〈01| + p3|10〉〈10|, (12)

where p1 > 0, p2, p3 � 0, and p1 + p2 + p3 = 1. In this case,
using the same measurement strategy and witness operator,
the sequence of sharpness parameters for the pair of observers
will come out to be

λ2
k =

⎧⎨
⎩

(1 + ε)
1−�k−1

l=1
(1+2�l )2

9

4p1
√

α(1−α)�k−1
l=1

(1+�l )2

9

, if λ2
k−1 ∈ (0, 1),

∞, otherwise,

(13)

with 0 < λ2
1 < 1 and where ε > 0. This sequence of sharpness

parameters is also positive, increasing, and goes to zero as
λ2

1 → 0. Therefore, an unbounded number of entanglement
detections are possible by sequential Alice-Bob pairs, where
the first sequential pair may share any pure entangled state or
a particular class of mixed entangled states, viz., those given
by Eq. (12). Note that the unbounded sequential detection
of these entangled states can be shown, in a similar fashion,
even for the scenario where a single Alice shares the state
with multiple Bobs, acting sequentially. However, it is already
known that these states can produce an unbounded chain
of nonlocal states [25], which in turn imply an unbounded
chain of entanglement detection, so a separate analysis is not
needed.

V. ARBITRARY SEQUENCE OF OBSERVERS STARTING
FROM A CHSH BELL-LOCAL ENTANGLED STATE

In the scenario where multiple Bobs could witness and
recycle entanglement with a single Alice, an arbitrarily
long sequential entanglement detection is possible even with
CHSH Bell-local entangled states [26]. The CHSH Bell-local
entangled states are defined as the states which do not violate
any CHSH Bell inequality. While a CHSH Bell-local state
does not have a Bell-nonlocal correlation, nevertheless, it still
is a resource and gives quantum advantage in some tasks.
Therefore, it is potentially important to investigate whether re-
cycling of states is possible only with Bell-nonlocal entangled
states or if even Bell-local states can allow such a feat.

In this section, we investigate the scenario of multiple pairs
of observers detecting and recycling entangled states with the
initial pair sharing the state,

ρAB1 = 1
4 [I2 ⊗ I2 − cos θσz ⊗ σz + α sin θσx ⊗ σx

+ α sin θσy ⊗ σy], (14)

where θ ∈ (0, π
4 ] and 1−cos θ

2 sin θ
< α � 1. Note that these states

are CHSH Bell-local states; i.e., they do not violate any CHSH
Bell inequality, whereas the class of states given in Eq. (12)
are CHSH Bell-nonlocal. The kth observer pair, ABk , uses
the same witness operator as given in Eq. (4). Therefore,

the sequence of the sharpness parameter after applying the
condition Tr[ρABkWk] < 0 appears as follows:

λ2
k =

⎧⎨
⎩

(1 + ε)
1−cos θ

∏k−1
l=1

(1+2�l )2

9

2α sin θ
∏k−1

l=1
(1+�l )2

9

, if λ2
k−1 ∈ (0, 1),

∞, otherwise,
(15)

with λ2
1 > 1−cos θ

2α sin θ
and where ε > 0. We define another se-

quence for θ ∈ (0, π
4 ], which upper bounds the sequence in

Eq. (15):

γ 2
k =

⎧⎨
⎩

(1 + ε)
1−

(
1− θ2

2

)∏k−1
l=1

(
1− 2γ 2

k
3

)2

θ
∏k−1

l=1

(
2−γ 2

k
3

)2 , if γ 2
k−1 ∈ (0, 1),

∞, otherwise,

(16)

with γ 2
1 = (1 + ε) θ

2α
> λ2

1. It is easy to show that γ 2
k > λ2

k

for all k such that λ2
k is finite, since

√
1 − x2 > 1 − x2 for 0 <

x < 1, cos θ > (1 − θ2

2 ), and sin θ > θ
2 for θ ∈ (0, π

4 ].
Again, similar to the sequences given in Eqs. (9) and (13),

this sequence, γ 2
k , is also strictly positive and increasing. Also,

for θ → 0 and for k ∈ N, γ 2
k → 0. This implies that λ2

k → 0
as θ → 0. Therefore, detection and recycling of entanglement
is possible when θ → 0, an arbitrary number of times. It is
important to notice that as θ → 0, entanglement of the state
ρAB1 , given in Eq. (14), tends to zero. Therefore, for the class
of states in Eq. (14), an arbitrary number of pairs of observers
detecting entanglement becomes possible only in the situa-
tion, for our measurement strategy, when the initial state has
an entanglement that becomes vanishingly small.

For any finite value of entanglement in the initial shared
state in Eq. (14), the number of pairs of sequential observers
is finite. However, as we decrease the value of entanglement
of the initial state, the sequence of pairs of observers becomes
longer and longer, and in the limit of the entanglement be-
coming infinitesimally small, the sequence is infinitely long.
Given any finite number, n0, however large, of the sequence of
detections, there always exists a state with some finite (nonva-
nishing) entanglement and a measurement strategy that uses
the state as the initial state to detect entanglement n0 times.
This can be shown by noting the fact that the sequence λk is
positive, increasing, and goes to zero when θ goes to zero.

VI. CONCLUSION

Sequential detection of correlations like Bell nonlocality
and entanglement are fundamentally important as it tells us
about the ultimate limits on the recyclability of such re-
sources. These studies form an interesting way to understand
and analyze the information gain versus state disturbance
trade-off, since detection of any correlation causes disturbance
in the underlying state. Such a scenario can also come in
handy in quantum technologies where state preparation is
costly.

The first sequential scenario considered in the literature
had a single observer detecting CHSH Bell nonlocality with
a spatially separated set of observers acting sequentially and
independently [24]. It was subsequently shown that such a
sequence of detections can be arbitrarily long, for both Bell
nonlocality and entanglement [25,26]. While this shows that
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both the correlations (Bell nonlocality and entanglement)
behave similarly in this scenario, there remained an open
question on their behavior in the scenario where both the
spatially separated observers can act sequentially on their
parts of the bipartite system. The importance of this question
stems, in particular, from the fact that there exist differences
between detecting Bell nonlocality and entanglement. Detect-
ing entanglement requires a larger set of assumptions than
when detecting Bell nonlocality, e.g., quantum mechanics is
accepted in the former whereas the latter does not require
such an assumption. It is also known that there exist pairs
of measurements on qubit pairs that can be used to detect
entanglement if the appropriate expectation value exceeds

√
2,

whereas one has to exceed 2 for the same in order to violate
the CHSH inequality [49,50].

In this article, we analyzed the scenario of detection of
entanglement of a two-qubit system by sequential and inde-
pendent pairs of observers. We found that an arbitrary number
of such pairs of observers can witness the entanglement. This
result is potentially of importance, given that it has been
conjectured that not more than a single pair of observers can

detect CHSH Bell-nonlocal correlations in the same scenario
[37–39]. Assuming that the conjecture in the literature is true,
our finding demonstrates a stark distinction between “entan-
glement nonlocality” and “Bell nonlocality,” with respect to
sequential witnessing by pairs of observers.

We identified classes of quantum states which can produce
arbitrarily long sequences of entangled correlations. Specifi-
cally, all pure entangled states and a certain class of CHSH
Bell-nonlocal mixed entangled states are helpful in complet-
ing the task. We also showed that one can succeed in such
tasks even with a class of CHSH Bell-local entangled states.
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[16] D. Chruściński and G. Sarbicki, Entanglement witnesses: Con-
struction, analysis and classification, J. Phys. A: Math. Theor.
47, 483001 (2014).

[17] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of
mixed states: Necessary and sufficient conditions, Phys. Lett. A
223, 1 (1996).

[18] B. M. Terhal, Bell inequalities and the separability criterion,
Phys. Lett. A 271, 319 (2000).

[19] D. Bruß, J. I. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M.
Lewenstein, and A. Sanpera, Reflections upon separability and
distillability, J. Mod. Opt. 49, 1399 (2002).

[20] O. Gühne, P. Hyllus, D. Bruss, A. Ekert, M. Lewenstein, C.
Macchiavello, and A. Sanpera, Experimental detection of entan-
glement via witness operators and local measurements, J. Mod.
Opt. 50, 1079 (2003).

[21] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys.
Fiz. 1, 195 (1964).

[22] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[23] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theories,
Phys. Rev. Lett. 23, 880 (1969).

[24] R. Silva, N. Gisin, Y. Guryanova, and S. Popescu, Multiple
Observers Can Share the Nonlocality of Half of an Entangled
Pair by Using Optimal Weak Measurements, Phys. Rev. Lett.
114, 250401 (2015).

032419-5

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.71.4287
https://doi.org/10.1103/PhysRevA.57.822
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1038/nphys2300
http://arxiv.org/abs/arXiv:0911.3814
https://doi.org/10.1088/1751-8113/44/9/095305
https://doi.org/10.1038/nature09008
https://doi.org/10.1088/1751-8113/47/48/483001
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(00)00401-1
https://doi.org/10.1080/09500340110105975
https://doi.org/10.1080/09500340308234554
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.114.250401


PANDIT, SRIVASTAVA, AND SEN PHYSICAL REVIEW A 106, 032419 (2022)

[25] P. J. Brown and R. Colbeck, Arbitrarily Many Independent
Observers can Share the Nonlocality of a Single Maximally
Entangled Qubit Pair, Phys. Rev. Lett. 125, 090401 (2020).

[26] C. Srivastava, M. Pandit, and U. Sen, Entanglement witnessing
by arbitrarily many independent observers recycling a local
quantum shared state, Phys. Rev. A 105, 062413 (2022).

[27] S. Mal, A. S. Majumdar, and D. Home, Sharing of nonlocality
of a single member of an entangled pair of qubits is not pos-
sible by more than two unbiased observers on the other wing,
Mathematics 4, 48 (2016).

[28] A. Bera, S. Mal, A. Sen(De), and U. Sen, Witnessing bipartite
entanglement sequentially by multiple observers, Phys. Rev. A
98, 062304 (2018).

[29] D. Das, A. Ghosal, S. Sasmal, S. Mal, and A. S. Majumdar,
Facets of bipartite nonlocality sharing by multiple observers via
sequential measurements, Phys. Rev. A 99, 022305 (2019).

[30] S. Saha, D. Das, S. Sasmal, D. Sarkar, K. Mukherjee, A. Roy,
and S. S. Bhattacharya, Sharing of tripartite nonlocality by
multiple observers measuring sequentially at one side, Quantum
Inf. Process. 18, 42 (2019).

[31] A. G. Maity, D. Das, A. Ghosal, A. Roy, and A. S. Majumdar,
Detection of genuine tripartite entanglement by multiple se-
quential observers, Phys. Rev. A 101, 042340 (2020).

[32] C. Srivastava, S. Mal, A. Sen(De), and U. Sen, Sequential
measurement-device-independent entanglement detection by
multiple observers, Phys. Rev. A 103, 032408 (2021).

[33] S. Roy, A. Kumari, S. Mal, and A. S. De, Robustness of higher
dimensional nonlocality against dual noise and sequential mea-
surements, arXiv:2012.12200.

[34] A. Cabello, Bell nonlocality between sequential pairs of ob-
servers, arXiv:2103.11844.

[35] C. Ren, X. Liu, W. Hou, T. Feng, and X. Zhou, Nonlocality
sharing for a three-qubit system via multilateral sequential mea-
surements, Phys. Rev. A 105, 052221 (2022).

[36] T. Zhang and S.-M. Fei, Sharing quantum nonlocality and gen-
uine nonlocality with independent observables, Phys. Rev. A
103, 032216 (2021).

[37] S. Cheng, L. Liu, T. J. Baker, and M. J. W. Hall, Limitations on
sharing Bell nonlocality between sequential pairs of observers,
Phys. Rev. A 104, L060201 (2021).

[38] S. Cheng, L. Liu, T. J. Baker, and M. J. W. Hall, Recycling
qubits for the generation of Bell nonlocality between indepen-
dent sequential observers, Phys. Rev. A 105, 022411 (2022).

[39] J. Zhu, M.-J. Hu, G.-C. Guo, C.-F. Li, and Y.-S. Zhang,
Einstein-Podolsky-Rosen steering in two-sided sequential mea-
surements with one entangled pair, Phys. Rev. A 105, 032211
(2022).

[40] A. K. Das, D. Das, S. Mal, D. Home, and A. S. Majumdar,
Resource theoretic efficacy of the single copy of a two-qubit
entangled state in a sequential network, arXiv:2109.11433.

[41] M. Schiavon, L. Calderaro, M. Pittaluga, G. Vallone, and
P. Villoresi, Three-observer Bell inequality violation on a
two-qubit entangled state, Quantum Sci. Technol. 2, 015010
(2017).

[42] M.-J. Hu, Z.-Y. Zhou, X.-M. Hu, C.-F. Li, G.-C. Guo, and Y.-S.
Zhang, Observation of non-locality sharing among three ob-
servers with one entangled pair via optimal weak measurement,
npj Quantum Inf. 4, 63 (2018).

[43] G. Foletto, L. Calderaro, A. Tavakoli, M. Schiavon, F.
Picciariello, A. Cabello, P. Villoresi, and G. Vallone, Experi-
mental Certification of Sustained Entanglement and Nonlocal-
ity after Sequential Measurements, Phys. Rev. Appl. 13, 044008
(2020).

[44] Y.-H. Choi, S. Hong, T. Pramanik, H.-T. Lim, Y.-S. Kim, H.
Jung, S.-W. Han, S. Moon, and Y.-W. Cho, Demonstration of
simultaneous quantum steering by multiple observers via se-
quential weak measurements, Optica 7, 675 (2020).

[45] T. Feng, C. Ren, Y. Tian, M. Luo, H. Shi, J. Chen, and X. Zhou,
Observation of nonlocality sharing via not-so-weak measure-
ments, Phys. Rev. A 102, 032220 (2020).

[46] G. F. Simmons, Introduction to Topology and Modern Analysis
(McGraw-Hill, New York, 1963).

[47] P. D. Lax, Functional Analysis (Wiley-Interscience, New York,
2002).

[48] P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory
of Measurement, 2nd ed. (Springer, Berlin, 1996).

[49] J. Uffink and M. Seevinck, Strengthened Bell inequalities for
orthogonal spin directions, Phys. Lett. A 372, 1205 (2008).

[50] P. Lougovski and S. J. van Enk, Strengthened Bell inequalities
for entanglement verification, Phys. Rev. A 80, 034302 (2009).

032419-6

https://doi.org/10.1103/PhysRevLett.125.090401
https://doi.org/10.1103/PhysRevA.105.062413
https://doi.org/10.3390/math4030048
https://doi.org/10.1103/PhysRevA.98.062304
https://doi.org/10.1103/PhysRevA.99.022305
https://doi.org/10.1007/s11128-018-2161-x
https://doi.org/10.1103/PhysRevA.101.042340
https://doi.org/10.1103/PhysRevA.103.032408
http://arxiv.org/abs/arXiv:2012.12200
http://arxiv.org/abs/arXiv:2103.11844
https://doi.org/10.1103/PhysRevA.105.052221
https://doi.org/10.1103/PhysRevA.103.032216
https://doi.org/10.1103/PhysRevA.104.L060201
https://doi.org/10.1103/PhysRevA.105.022411
https://doi.org/10.1103/PhysRevA.105.032211
http://arxiv.org/abs/arXiv:2109.11433
https://doi.org/10.1088/2058-9565/aa62be
https://doi.org/10.1038/s41534-018-0115-x
https://doi.org/10.1103/PhysRevApplied.13.044008
https://doi.org/10.1364/OPTICA.394667
https://doi.org/10.1103/PhysRevA.102.032220
https://doi.org/10.1016/j.physleta.2007.09.033
https://doi.org/10.1103/PhysRevA.80.034302

