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Limited by today’s physical devices, quantum circuits with a long depth are usually noisy and difficult to
realize in practice. The novel computing architecture of distributed quantum computing is expected to reduce
the noise and depth of quantum circuits. In this paper, we study Simon’s problem in distributed scenarios and
design a distributed quantum algorithm to solve the problem. The algorithm proposed by us has the advantage
of exponential acceleration compared with classical distributed computing and has the advantage of square
acceleration compared with the best distributed quantum algorithm proposed before in query complexity. In
particular, the previous distributed quantum algorithm for Simon’s problem cannot be extended to the case of
more than two computing nodes (i.e., two subproblems), but our distributed quantum algorithm can be extended
to the case of multiple computing nodes (i.e., multiple subproblems).
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I. INTRODUCTION

Quantum computing has been proved to have great po-
tential in factorizing large numbers [1], unordered database
searches [2], and chemical molecular simulations [3,4]. How-
ever, due to the limitations of today’s physical devices,
large-scale general quantum computers have not been real-
ized. At present, quantum technology has entered the noisy
intermediate-scale quantum (NISQ) era [5]. So it is possible
that we can implement quantum algorithms on middle-scale
circuits.

Distributed quantum computing is a novel computing
architecture which combines quantum computing with dis-
tributed computing [6–9]. In distributed quantum computing
architecture, multiple quantum computing nodes are allowed
to communicate information through channels and cooper-
ate to complete computing tasks. Compared with centralized
quantum computing, the circuit size and depth can be re-
duced by using distributed quantum computing, which helps
to reduce the noise of circuits. In the current NISQ era,
the adoption of distributed quantum computing technology is
likely conducive to the successful implementation of quantum
algorithms.
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Simon’s problem is an important problem in the history of
quantum computing [10]. In Simon’s problem, quantum al-
gorithms have the advantage of exponential acceleration over
the best classical algorithms [11]. Simon’s algorithm had a
great enlightening effect on the subsequent proposal of Shor’s
algorithm, which can decompose large numbers and com-
pute discrete logarithms in polynomial time [1]. Avron et al.
proposed a distributed quantum algorithm to solve Simon’s
problem [12]. Their algorithm has the advantage of exponen-
tial acceleration compared with the classical algorithm, but in
the worst case, it needs O(n2) queries to solve Simon’s prob-
lem (here n represents the length of the string input into the
oracle in Simon’s problem). Because their algorithm directly
runs Simon’s algorithm in multiple distributed nodes without
using communication between nodes, the query complexity of
their algorithm is high.

In this paper, we study Simon’s problem in distributed sce-
narios and design a distributed quantum algorithm with query
complexity O(n) to solve Simon’s problem. We consider de-
signing distributed quantum algorithms specifically for the
particular structure of Simon’s problem. We use quantum
teleportation technology to realize quantum gates spanning
multiple computing nodes. After the oracles’ queries of mul-
tiple quantum computing nodes, we use the sorting network
to process the query results of multiple quantum computing
nodes. After performing the above operations, we find that
we can obtain a quantum state containing a structure similar
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to the original Simon’s problem. Using this structure, we
can solve Simon’s problem with O(n − t ) depth of the query
complexity.

The algorithm proposed by us has the advantage of ex-
ponential acceleration compared with classical distributed
computing and has the advantage of square acceleration com-
pared with the best distributed quantum algorithm proposed
before [12]. In particular, the previous distributed quantum
algorithm cannot be extended to the case of more than two
computing nodes (i.e., two subproblems), but our distributed
quantum algorithm can be extended to the case of multiple
computing nodes (i.e., multiple subproblems), which is a dif-
ferent technical method in distributed quantum computing.

The algorithm we design is closely related to the structure
of Simon’s problem. We have not found evidence that our
algorithm can be directly extended to some quantum query
algorithms, such as the Deutsch-Jozsa problem and Grover’s
search problem. However, we believe that the design of
distributed quantum algorithms with advantages for Deutsch-
Jozsa problem and the Grover’s search problem also needs
to explore the structure of the problem. On the other hand,
the algorithm we designed may provide some inspiration for
the distributed quantum algorithm of the hidden-subgroup
problem obtained by the generalization of Simon’s problem.

The remainder of this paper is organized as follows. In
Sec. II, we recall Simon’s problem and quantum teleportation.
Then in Sec. III, we introduce Simon’s problem in distributed
scenarios by dividing it into multiple subproblems. After that,
in Sec. IV, we describe the distributed quantum algorithm
which we have designed. The correctness of the algorithm we
have designed is proved in Sec. V. In Sec. VI, we compare the
efficiency and scalability of our algorithm with the distributed
classical algorithm and another distributed quantum algorithm
proposed in [12]. Finally, in Sec. VII, we conclude with a
summary.

II. PRELIMINARIES

In this section, we review Simon’s problem and quantum
teleportation, which are useful in this paper.

A. Simon’s problem

Simon’s problem is a special kind of hidden-subgroup
problem [13]. We can describe Simon’s problem as follows:
Consider a function f : {0, 1}n → {0, 1}m, where we have the
promise that there is a string s ∈ {0, 1}n, such that f (x) = f (y)
if and only if x = y or x ⊕ y = s. The symbol ⊕ here stands
for “binary bitwise exclusive or.” We have an oracle that can
query the value of function f . In classical computing, for any
x ∈ {0, 1}n and y ∈ {0, 1}m, if we input (x, y) into the oracle,
we will get (x, y ⊕ f (x)). In quantum computing, for any
x ∈ {0, 1}n and y ∈ {0, 1}m, if we input |x〉|y〉 into the oracle,
we will get |x〉|y ⊕ f (x)〉. Our goal is to find the hidden string
s by performing the minimum number of queries to f .

On a classical computer, the best algorithm for solving
Simon’s problem requires �(

√
2n) queries [11]. However, the

best quantum algorithm to solve Simon’s problem requires
O(n) queries [10]. In the history of quantum computing, Si-
mon’s problem is the first to show that the quantum algorithm

has exponential acceleration compared with the classical
probabilistic algorithm.

B. Quantum teleportation

Quantum teleportation is an amazing discovery [14]. By
sharing a classical information channel and a pair of entangled
states, one can teleport an unknown quantum state to another
distant location without actually transmitting physical qubits.
This process protects the qubits from being destroyed during
transport.

In distributed quantum computing, quantum gates that
cross multiple computing nodes may be used. We can teleport
a quantum state from one computing node to another [15,16]
and then apply a multiqubit gate no the combined state so that
teleportation can be carried out. In this way, we can implement
qubit gates across multiple computing nodes.

III. SIMON’S PROBLEM IN THE DISTRIBUTED
SCENARIO

In order to better compare our algorithm with the classical
distributed algorithm, we describe Simon’s problem in the
distributed scenario in this section.

In the distributed case, the original function f is divided
into two parts, which can be accessed by two subfunc-
tions of domain {0, 1}n−1: fe and fo [∀ u ∈ {0, 1}n−1, fe(u) =
f (u0), fo(u) = f (u1)]. Consider the following scenario: Al-
ice has an oracle O fe that can query all fe(u) for all u ∈
{0, 1}n−1, and Bob has an oracle O fo that can query all fo(u)
for all u ∈ {0, 1}n−1. Here u0 (or u1) represents the connection
between string u and character 0 (or 1). So Alice and Bob’s
oracles split the domain of function f into two parts at the
last bit of the domain. Alice and Bob each know half of the
information about function f , but neither knows all of the
information about f . They need to find the hidden string s
by querying their own oracles as few times as possible and
exchanging information. The method in [12] solves this prob-
lem with O(n2) queries.

In this paper, we propose a distributed quantum algorithm
to solve this problem with O(n) queries. In particular, our
method can deal with a more general case; that is, there are 2t

people, each of whom has an oracle O fw (w ∈ {0, 1}t is each
person’s unique identifier) that can query all fw(u) = f (uw)
for all u ∈ {0, 1}n−t (uw here represents the connection be-
tween string u and string w). So each person can access 2n−t

values of f . Note that there is no common element between
the values of function f that each person can access. They
need to find the hidden string s by querying their own oracle as
few times as possible and exchanging information. Actually,
this problem cannot be solved by the method in [12].

Next, we further introduce some notations that will be used
in this paper.

Definition 1. For all u ∈ {0, 1}n−t , let multiset G(u) =
{ f (uw)|w ∈ {0, 1}t }.

Notice that there could be multiple identical elements in
G(u). An example of G(u) is shown in the Appendix.

Definition 2. For all u ∈ {0, 1}n−t , let S(u) represent a string
of length 2t m by concatenating all strings f (uw)(w ∈ {0, 1}t )
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according to lexicographical order, that is,

S(u) = f (uw0) f (uw1) · · · f (uw2t −1), (1)

where f (uw0) � f (uw1) � · · · � f (uw2t −1) ∈ {0, 1}m, with
wi ∈ {0, 1}t (i = 0, 1, . . . , 2t − 1), where wi �= w j for any
i �= j.

An example of S(u) is given in the Appendix.
Definition 3. For any binary string u, v ∈ {0, 1}n, uv de-

notes (
∑n

i=1 uivi ) mod 2.
Definition 4. For any binary string u ∈ {0, 1}n, u⊥ denotes

{v ∈ {0, 1}n|uv = 0}.
Let s be the target string to be found, and denote s = s1s2,

where the length of s1 (s2) is n − t (t ). We will introduce our
algorithm in the next section. Our algorithm is divided into
two subalgorithms: Algorithms 2 and 3. We use Algorithm 2
to figure out s1 and Algorithm 3 to figure out s2.

Note that the 2t oracles are not necessarily decomposed in
the last t bits of f ’s domain but can be any t bits in the n
bits of f ’s domain. However, the problem can be equivalent
to the final t-bit decomposition in the domain of f by logical
relabeling.

It should be noted that our algorithm also works for the
original Simon’s problem. The purpose of this section is to
better compare our algorithm with other classical or quan-
tum distributed algorithms and to illustrate the cases that our
distributed quantum algorithm can handle that the original
Simon’s algorithm cannot.

The following theorem concerning S(u) is useful and im-
portant.

Theorem 1. Suppose function f : {0, 1}n → {0, 1}m, satis-
fies that there is a string s ∈ {0, 1}n with s �= 0n, such that
f (x) = f (y) if and only if x = y or x ⊕ y = s. Then ∀u, v ∈
{0, 1}n−t , S(u) = S(v) if and only if u ⊕ v = 0n−t or u ⊕ v =
s1, where s = s1s2.

Proof. Based on the properties of a multiset, ∀ u, v ∈
{0, 1}n−t , S(u) = S(v) if and only if G(u) = G(v). So our
goal is to prove ∀ u, v ∈ {0, 1}n−t , G(u) = G(v) if and only
if u ⊕ v = 0n−t or u ⊕ v = s1.

(1) ⇐�. (i) If u ⊕ v = 0n−t , we clearly have G(u) =
G(v). (ii) u ⊕ v = s1. Since for (i) we have u ⊕ v = 0n−t ,
we can now assume that s1 is not 0n−t . Then we can prove
that ∀ u ∈ {0, 1}n−t ,∀w1 �= w2 ∈ {0, 1}t , f (uw1) �= f (uw2).
We assume two t-bit strings w1 and w2 exist, with w1 �= w2

and f (uw1) = f (uw2); we have uw1 ⊕ uw2 = 0n or uw1 ⊕
uw2 = s. Since w1 �= w2, we have uw1 ⊕ uw2 = s. Then we
have s = uw1 ⊕ uw2 = 0t (w1 ⊕ w2) = s1s2. This is contrary
to s1 �= 0n−t . So there are no repeating elements in each G(u).

Then we can prove G(u) ⊆ G(v). We have ∀ z ∈
G(u), ∃w ∈ {0, 1}t such that z = f (uw). According to the def-
inition of Simon’s problem, f (uw ⊕ s) = f (uw) = z. Then
we have z = f (uw ⊕ s) = f ((u ⊕ s1)(w ⊕ s2)) = f (v(w ⊕
s2)) ∈ G(v). So we have G(u) ⊆ G(v). Similarly, we can
prove that G(v) ⊆ G(u). As a result, we have G(u) = G(v).

(2) �⇒. Since G(u) = G(v), we have ∀ z ∈ G(u), z ∈
G(v). Then we have ∃w,w′ ∈ {0, 1}t such that z = f (uw) and
z = f (vw′). As a result, we have f (uw) = f (vw′). According
to the definition of Simon’s problem, we have uw ⊕ vw′ =
0n or uw ⊕ vw′ = s. Therefore, we have u ⊕ v = 0n−t or
u ⊕ v = s1. �

FIG. 1. The circuit for the quantum part of the distributed quan-
tum algorithm for finding s1: two computing nodes.

IV. DISTRIBUTED QUANTUM ALGORITHM
FOR SIMON’S PROBLEM

We consider how to find s1. We first give the algorithm
for finding s1 with only two distributed computing nodes, i.e.,
t = 1. We use an operator USort in our algorithm. The effect of
operator USort in Fig. 1 is ∀ a, b ∈ {0, 1}m and c ∈ {0, 1}2m,

USort|a〉|b〉|c〉 = |a〉|b〉|c ⊕ [min(a, b) max(a, b)]〉 (2)

=
{|a〉|b〉|c ⊕ (ab)〉, a � b,
|a〉|b〉|c ⊕ (ba)〉, a > b.

(3)

Intuitively, the effect of USort is to sort the values in the
first two registers and XOR to the third register. USort does not
change the states of the first two registers (i.e., |a〉 and |b〉). We
call these two registers the control registers of USort. In order to
show the control registers of USort in quantum circuit diagram
clearer, we use a square to mark the control registers of USort in
Fig. 1. Similarly, we use a square to mark the control registers
of every oracle in Figs. 2–4.

We give a quantum circuit diagram corresponding to
Algorithm 1 in Fig. 1, where we can implement controlled
quantum gates spanning two computing nodes by using the
quantum teleportation described in Sec. II B.

The first, second, and fourth wires in Fig. 1 are at the first
computing node, and the third wire is at the second computing

Algorithm 1. Distributed quantum algorithm for finding s1 (two
distributed computing nodes).

1: |ψ0〉 = |0n−1〉|0m〉|0m〉|02m〉;
2: |ψ1〉 = (H⊗n−1 ⊗ I⊗4m )|ψ0〉 = (H⊗n−1|0n−1〉)|0m〉|0m〉|02m〉 =

1√
2n−1

∑
u∈{0,1}n−1 |u〉|0m〉|0m〉|02m〉;

3: Each computing node queries its own oracle under the control
of the first quantum register:
|ψ2〉 = 1√

2n−1

∑
u∈{0,1}n−1 |u〉| fe(u)〉| fo(u)〉|02m〉 =

1√
2n−1

∑
u∈{0,1}n−1 |u〉| f (u0)〉| f (u1)〉|02m〉;

4: The fourth quantum register performs its own USort under the
control of the second and third quantum registers:
|ψ3〉 = 1√

2n−1

∑
u∈{0,1}n−1 |u〉| f (u0)〉| f (u1)〉|{min[ f (u0), f (u1)]

max[ f (u0), f (u1)]}〉;
5: Each computing node queries its own oracle under the control

of the first quantum register:
|ψ4〉 = 1√

2n−1

∑
u∈{0,1}n−1 |u〉|0m〉|0m〉|{min[ f (u0), f (u1)]

max[ f (u0), f (u1)]}〉;
6: |ψ5〉 = (H⊗n−1 ⊗ I⊗4m )|ψ4〉;
7: Measure the first quantum register, and get an element in s⊥

1 .
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FIG. 2. The circuit for the quantum part of the distributed quantum algorithm for finding s1: four computing nodes.

node. Using the quantum teleportation described in Sec. II B,
we can implement controlled quantum gates spanning two
computing nodes.

Our algorithm can be further extended to the case of 2t

computing nodes. The second and third registers in Algorithm
1 will be replaced by 2t registers. The 2t registers in the
middle will correspond to 2t distributed computing nodes. The
extended algorithm is shown in Algorithm 2.

Similarly, each computing node uses its oracle twice. For
t = 2 (t = 3), the circuit diagram of the extended algorithm is
shown in Fig. 2 (Fig. 3). More generally, when 2t computing
nodes are used, the quantum circuit diagram of the extended
algorithm is as in Fig. 4.

The effect of USort in Algorithm 2 is to sort the values in
the 2t control registers by lexicographical order and XOR to
the target register. It is not difficult to implement for sorting
multiple elements. By virtue of using the sorting network
in [17,18], 2t elements can be sorted in O(t ) depth of com-
parators. Here the comparator is a basic circuit module which
is easy to realize.

Note that the oracle query of each quantum computing
node in Algorithms 1 and 2 can actually be completed in
parallel. With the help of auxiliary (2t − 1)(n − t ) qubits,
we can change the state of the control register after
the first Hadamard transformation 1√

2n−t

∑
u∈{0,1}n−t |u〉 to

1√
2n−t

∑
u∈{0,1}n−t |u〉|u〉 · · · |u〉︸ ︷︷ ︸

2t

. That is, we changed the control

register from one group to the same 2t groups. In fact, after the
first Hadamard transformation, we can teleport each group of
n − t control bits to every quantum computing node and use
this to control the oracle of the computing node.

After finding s1, we use Algorithm 3 to find s2. Algorithm
3 needs to query each oracle at most twice. Finally, we can
obtain s = s1s2.

V. CORRECTNESS ANALYSIS OF ALGORITHMS

In this section, we prove the correctness of our algorithm.
First, we write out the state after the first step of the algorithm
in Fig. 4:

|φ1〉 = 1√
2n−t

∑
u∈{0,1}n−t

|u〉(
⊗

w∈{0,1}t

|0m〉)|02t m〉 (4)

= 1√
2n−t

∑
u∈{0,1}n−t

|u〉 |0m〉 · · · |0m〉︸ ︷︷ ︸
2t

|02t m〉. (5)

The second step of the algorithm queries the oracle O f0t ,
resulting in the following state:

|φ2〉 =
⎛
⎝O f0t

1√
2n−t

∑
u∈{0,1}n−t

|u〉|0m〉
⎞
⎠ |0m〉 · · · |0m〉︸ ︷︷ ︸

2t −1

|02t m〉

(6)

= 1√
2n−t

∑
u∈{0,1}n−t

|u〉| f0t (u)〉 |0m〉 · · · |0m〉︸ ︷︷ ︸
2t −1

|02t m〉 (7)

= 1√
2n−t

∑
u∈{0,1}n−t

|u〉| f (u0t )〉 |0m〉 · · · |0m〉︸ ︷︷ ︸
2t −1

|02t m〉. (8)

The algorithm then queries each of the other oracles based
on the circuit diagram in Fig. 4 to get the following states:

|φ3〉 = 1√
2n−t

∑
u∈{0,1}n−t

|u〉 | f (u0t )〉 · · · | f (u1t )〉︸ ︷︷ ︸
2t

|02t m〉. (9)

After sorting by using USort, we have the following state:

|φ4〉 = 1√
2n−t

∑
u∈{0,1}n−t

|u〉 | f (u0t )〉 · · · | f (u1t )〉︸ ︷︷ ︸
2t

|S(u)〉. (10)

FIG. 3. The circuit for the quantum part of the distributed quantum algorithm for finding s1: eight computing nodes.
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FIG. 4. The circuit for the quantum part of the distributed quantum algorithm for finding s1: 2t computing nodes.

After that, we query each oracle again and restore the status
of the 2t m-bit registers to |0m〉. Then we obtain the following
state:

|φ6〉 = 1√
2n−t

∑
u∈{0,1}n−t

|u〉 |0m〉 · · · |0m〉︸ ︷︷ ︸
2t

|S(u)〉. (11)

By tracing out the states of the 2t m-bit registers in the
middle, we get the state

|φ′
6〉 = 1√

2n−t

∑
u∈{0,1}n−t

|u〉|S(u)〉. (12)

From Theorem 1, we know that the structure of the original
Simon’s problem exists in function S.

After Hadamard transformation on the first register, we get
the following state:

|φ′
7〉 = (H⊗n−t ⊗ I⊗2t m)|φ′

6〉

= 1√
2n−t

∑
u∈{0,1}n−t

(H⊗n−t |u〉)|S(u)〉

= 1√
2n−t+2

⎛
⎝ ∑

u∈{0,1}n−t

(H⊗n−t |u〉)|S(u)〉

Algorithm 2. Distributed quantum algorithm for finding s1 (2t

distributed computing nodes).

1: |φ0〉 = |0n−t 〉(⊗w∈{0,1}t |0m〉)|02t m〉;
2: |φ1〉 = (H⊗n−t ⊗ I⊗2t+1m )|φ0〉 =

(H⊗n−t |0n−t 〉)(
⊗

w∈{0,1}t |0m〉)|02t m〉 =
1√

2n−t

∑
u∈{0,1}n−t |u〉(⊗w∈{0,1}t |0m〉)|02t m〉;

3: Each computing node queries its own oracle under the control
of the first quantum register: |φ3〉 =

1√
2n−t

∑
u∈{0,1}n−t |u〉(⊗w∈{0,1}t | fw (u)〉)|02t m〉 =

1√
2n−t

∑
u∈{0,1}n−t |u〉(⊗w∈{0,1}t | f (uw)〉)|02t m〉;

4: The fourth quantum register performs its own USort under the
control of the middle 2t quantum registers:
|φ4〉 = 1√

2n−t

∑
u∈{0,1}n−t |u〉(⊗w∈{0,1}t | f (uw)〉)|S(u)〉;

5: Each computing node queries its own oracle under the control
of the first quantum register:
|φ6〉 = 1√

2n−t

∑
u∈{0,1}n−t |u〉(⊗w∈{0,1}t |0m〉)|S(u)〉;

6: |φ7〉 = (H⊗n−t ⊗ I⊗2t+1m )|φ6〉;
7: Measure the first quantum register and get an element in s⊥

1 .

+
∑

u∈{0,1}n−t

(H⊗n−t |u〉)|S(u)〉
⎞
⎠

= 1√
2n−t+2

⎛
⎝ ∑

u∈{0,1}n−t

(H⊗n−t |u〉)|S(u)〉

+
∑

u∈{0,1}n−t

(H⊗n−t |u ⊕ s1〉)|S(u ⊕ s1)〉
⎞
⎠

= 1√
2n−t+2

⎛
⎝ ∑

u∈{0,1}n−t

(H⊗n−t |u〉)|S(u)〉

+
∑

u∈{0,1}n−t

(H⊗n−t |u ⊕ s1〉)|S(u)〉
⎞
⎠

= 1√
2n−t+2

∑
u∈{0,1}n−t

[H⊗n−t (|u〉 + |u ⊕ s1〉)]|S(u)〉

= 1√
2n−t+2

∑
u∈{0,1}n−t

⎛
⎝ 1√

2n−t

∑
z∈{0,1}n−t

×[(−1)uz + (−1)(u⊕s1 )z]|z〉
⎞
⎠|S(u)〉

= 1√
2n−t+2

∑
u∈{0,1}n−t

⎛
⎝ 1√

2n−t

∑
z∈{0,1}n−t

×(−1)uz[1 + (−1)s1z]|z〉
⎞
⎠|S(u)〉.

Note that if s1z = 1, we have 1 + (−1)s1z = 0, and the
basis state |z〉 vanishes in the above state. If s1z = 0, we have
1 + (−1)s1z = 2, so we have

|φ′
7〉 = 1√

2n−t+2

∑
u∈{0,1}n−t

⎛
⎝ 1√

2n−t

∑
z∈{0,1}n−t

×(−1)uz[1 + (−1)s1z]|z〉
⎞
⎠|S(u)〉

= 1√
2n−t

∑
u∈{0,1}n−t

⎛
⎝ 1√

2n−t

∑
z∈s⊥

1

(−1)uz|z〉
⎞
⎠|S(u)〉
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Algorithm 3. Distributed quantum algorithm for finding
s2 (2t distributed computing nodes).

1: Query each oracle Ofw once in parallel to get
f (0n−tw)(w ∈ {0, 1}t );

2: Query oracle Of0t once to get f (s10t );

3: Find a v ∈ {0, 1}t such that f (0n−tv) = f (s10t );

4: Obtain s2 = v.

= 1

2n−t

∑
u∈{0,1}n−t

∑
z∈s⊥

1

(−1)uz|z〉|S(u)〉

= 1

2n−t

∑
z∈s⊥

1

|z〉
∑

u∈{0,1}n−t

(−1)uz|S(u)〉.

After measurement on the first register, we can get a string
that is in s⊥

1 . After O(n − t ) repetitions of the above algorithm,
we can obtain O(n − t ) elements in s⊥

1 . Then, using the clas-
sical Gaussian elimination method, we can obtain s1.

If we have already found s1, we can use Algorithm 3 to
find s2. Since f (s10t ) = f ((s10t ) ⊕ s), we have f (s10t ) =
f (0n−t s2). So we can find a v such that f (s10t ) = f (0n−tv).
Then we can obtain s2 = v. Finally, we can obtain s = s1s2.

VI. COMPARISONS WITH OTHER ALGORITHMS

First, we compare our results with other distributed al-
gorithms. Based on the previous analysis, our distributed
quantum algorithm needs O(n − t ) queries for each oracle O fu

to solve Simon’s problem. However, in order to find s1, dis-
tributed classical algorithms need to query oracles O(

√
2n−t )

times. Our algorithm has the advantage of exponential accel-
eration compared with the classical distributed algorithm.

For t = 1, the algorithm in paper [12] requires O(n2)
queries to solve Simon’s problem. However, our algorithm
needs only O(n) queries and has the advantage of square ac-
celeration. In addition, the method in [12] cannot deal with the
case of t > 1. Therefore, our distributed quantum algorithm
has higher scalability.

Simon’s problem is based on the quantum query model.
In the quantum query model, we are mainly concerned with
reducing the number of oracle queries. In the distributed sce-
nario, we want to minimize the depth of oracle queries. The
original Simon’s algorithm [10] needs O(n) queries to solve
Simon’s problem, and our algorithm needs O(n − t ) queries
for each oracle. Our algorithm can reduce the depth of oracle
queries compared to the original algorithm.

Although the number of qubits used may be increased in
our algorithm, the query depth of our algorithm is decreased.
This is advantageous when the implementation of the oracle
is the main overhead. On the other hand, after the original
function is decomposed into subfunctions, the depth of the
implemented oracle of the subfunctions may be smaller than
the original function because the subfunctions are simpler
than the original function. So the circuit depth may be further
reduced. In addition, in Simon’s problem for the distributed
scenario we described in Sec. III, the original Simon’s algo-

rithm will no longer be applicable, but our algorithm is still
applicable.

VII. CONCLUSION

In this paper, we have designed a distributed quantum
algorithm to solve Simon’s problem. With multiple quantum
computing nodes processing in parallel, each node needs to
query its own oracle fewer times. This reduces the depth of
the query complexity for each node. This helps to reduce cir-
cuit noise and makes it easier to implement with exponential
acceleration advantages in the current NISQ era.

Our distributed quantum algorithm has the advantage
of exponential acceleration compared with the classical
distributed algorithm. Compared with previous distributed
quantum algorithms, our algorithm has the advantage of
square acceleration and has higher scalability.
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APPENDIX: AN EXAMPLE OF G(u) AND S(u)

We now give a specific function f in Simon’s problem and
discuss G(u) and S(u) for t = 2 (see Tables I–III).

Consider s = 1001 (s1 = 10 and s2 = 01) and the func-
tion f : {0, 1}4 → {0, 1}6 as follows: We can see that ∀ x, y ∈
{0, 1}4, f (x) = f (y) if and only if x ⊕ y = 0000 or x ⊕ y =
1001 (i.e., x ⊕ y = s).

Under the above conditions, we have

G(00) = { f (0000), f (0001), f (0010), f (0011)} (A1)

= {100101, 101100, 000100, 110101}, (A2)

G(01) = { f (0100), f (0101), f (0110), f (0111)} (A3)

= {101010, 011001, 001101, 111100}, (A4)

G(10) = { f (1000), f (1001), f (1010), f (1011)} (A5)

= {101100, 100101, 110101, 000100}, (A6)

G(11) = { f (1100), f (1101), f (1110), f (1111)} (A7)

= {011001, 101010, 111100, 001101}. (A8)

TABLE I. An example of function f .

x f (x) x f (x) x f (x) x f (x)

0000 100101 1000 101100 0100 101010 1100 011001
0001 101100 1001 100101 0101 011001 1101 101010
0010 000100 1010 110101 0110 001101 1110 111100
0011 110101 1011 000100 0111 111100 1111 001101
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TABLE III. An example of function S.

u S(u)

00 000100100101101100110101
01 001101011001101010111100
10 000100100101101100110101
11 001101011001101010111100

So the function G is as follows: We can see that ∀ u, v ∈
{0, 1}2, G(u) = G(v) if and only if u ⊕ v = 00 or u ⊕ v = 10
(i.e., u ⊕ v = s1).

For each G(u) (u ∈ {0, 1}2), we can obtain S(u) by concate-
nating all strings in G(u) according to lexicographical order.

The function S is as follows: We can see that ∀ u, v ∈ {0, 1}2,
S(u) = S(v) if and only if u ⊕ v = 00 or u ⊕ v = 10 (i.e.,
u ⊕ v = s1).

TABLE II. An example of function G.

u G(u)

00 {100101,101100,000100,110101}
01 {101010,011001,001101,111100}
10 {101100,100101,110101,000100}
11 {011001,101010,111100,001101}
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