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Error of an arbitrary single-mode Gaussian transformation on a weighted
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In this paper we propose two strategies for decreasing the error of arbitrary single-mode Gaussian transfor-
mations implemented using one-way quantum computation on a four-node linear cluster state. We show that it
is possible to minimize the error of the arbitrary single-mode Gaussian transformation by a proper choice of
the weight coefficients of the cluster state. We modify the computation scheme by adding a non-Gaussian state
obtained using a cubic phase gate as one of the nodes of the cluster. This further decreases the computation
error. We evaluate the efficiencies of the proposed optimization schemes comparing the probabilities of the error
correction of the quantum computations with and without optimizations. We show that for some transformations,
the error probability can be reduced by up to 900 times.
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I. INTRODUCTION

The main goal of quantum information and quantum com-
putation is so-called universal quantum computation. This
universal quantum computation can effect any unitary trans-
formation over a finite number of variables to any degree of
precision [1] using the repeated application of local operations
(affecting only a few variables at the same time). One-way
quantum computation [2–4] is a promising model for uni-
versal quantum computation. In our work we discuss the
continuous-variable one-way quantum computation technique
[2]. Unlike discrete quantum systems, the use of continuous
variables allows one to build schemes that give a significant
measurement result each time they are addressed (determin-
istic circuits). Moreover, such systems have great potential
in terms of their scalability [5–10]. To achieve the universal-
ity of quantum computation, with continuous variables, it is
necessary to be able to implement an arbitrary single-mode
Gaussian (linear) transformation, a two-mode transformation,
and at least one non-Gaussian (nonlinear) transformation [1].

The main resources of one-way quantum computation are
cluster states. These states belong to the family of highly
entangled multipartite quantum states. Such states can be ef-
fectively parametrized by a mathematical graph [11]. There
are many ways to implement cluster states in continuous vari-
ables. It can be implemented with optomechanical systems
[12], atomic ensembles [13], hybrid variables [14], mixed
(atomic-field) systems [15,16], and light fields [17–21].

In continuous variables, cluster states are generated via a
set of squeezed oscillators. In the idealized case, when the
fluctuations in the squeezed quadrature are completely sup-
pressed, the operations in the considered model are performed
without errors. However, in reality, it is impossible to obtain
an ideal squeezed state; oscillators with finite squeezing are
used to generate a cluster. As a result, noises from nonideal

squeezed quadratures distort the result of operations and lead
to the appearance of inherent errors. The presence of these
errors is the main limiting factor for the model under consid-
eration. At the moment, the experimentally feasible squeezing
is insufficient for performing fault-tolerant universal one-way
quantum computations. The maximum achieved is −15 dB
[22], whereas the minimum required value for such com-
putations (without using surface codes and the postselection
procedure) is −20.5 dB [23].

There are various methods to get around the limitations
associated with insufficient squeezing. Such methods include
the use of postselection [24] and surface codes [24–30]. For
example, in [24] the authors proposed a computation scheme
that makes it possible to reduce the squeezing requirements to
−10.8 dB. However, the main efforts are usually directed at
error correction, while we propose to modify the computation
scheme itself. The resource state requirement can be lowered
by using computation schemes less sensitive to the inherent
error. The idea of constructing such schemes is to analyze
the computational procedure to identify the nodes giving the
noisiest result and reduce their influence. Reducing errors in
just one of the classes of operations necessary for universal
quantum computation helps to reduce the requirements for the
resource state for the entire scheme.

The main goal of our work is to reduce arbitrary single-
mode Gaussian operation errors. The first strategy is to
employ the Gaussian transformations and to vary the weight
coefficients of the cluster state used as a resource for the
quantum computation. In [31], based on the quantum tele-
portation protocol, we showed that it is possible to decrease
the quantum signal transmission error by using the weighted
controlled-Z (CZ) transformation [32–34] as an entanglement
operation. Increasing the weight coefficients made it possible
to significantly decrease the error in one of the quadratures
while the transformation remains Gaussian. Therefore, in
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Sec. II we study the impact of the cluster state weight coef-
ficients on the single-mode operation errors.

It is necessary to mention that, according to the no-go the-
orem [35], Gaussian states cannot be used to correct Gaussian
errors (determined by Gaussian transformations) in Gaussian
states. The proposed method does not contradict this theorem.
We reduce the computation error not by additional error cor-
rection, but by reducing the impact of the nodes that contribute
the most errors.

The second strategy for decreasing the error is to use the
clusters with non-Gaussian nodes. In [36] we showed that it
is possible to reduce the errors in the teleportation protocol
by using the states prepared with the cubic phase gate [37].
The teleportation protocol underlies the one-way quantum
computation. Therefore, we apply the strategy of cluster mod-
ification to perform computation with fewer errors. At the
same time, we place the emphasis on the minimum change
in the resource state (modifying only one node), which would
lead to a decrease of the maximum error. It is worth noting
that the chosen non-Gaussian operation can be performed
deterministically, when each measurement leads to the desired
result. This is important for the scalability of quantum com-
putation schemes and is advantageous for computations with
continuous variables. Probabilistic procedures (such as photon
subtraction [38,39]) would deprive the protocol of this advan-
tage.

In [36] we proposed a strategy for decreasing the quantum
teleportation protocol error by using a cubic phase gate to
prepare a non-Gaussian resource state. In Sec. III we apply
this strategy to decrease the error of arbitrary single-mode
Gaussian transformations. We note that the generation of cu-
bic phase states is also a challenging experimental problem.
The first idea of cubic phase state generation was proposed
by Gottesman et al. [37,40,41]. It turned out that this idea is
difficult to implement. It requires performing the quadrature
displacement operation by a value far from what is achiev-
able in an experiment. The cubic phase gate has long been
an abstract mathematical transformation not realizable. This
situation has changed in recent years. Many works have been
devoted to methods for cubic phase state generation [42–44]
and the implementation of the cubic phase gate [45–49] phe-
nomena. Particularly significant progress was achieved in the
microwave frequency range; it was in this range that the cubic
phase state was generated for the first time [50]. As a result,
the cubic phase gate gradually turns from a purely theoretical
transformation into a real-life device.

The paper is organized as follows. In Sec. II we describe
the transformation scheme on a weighted four-node linear
cluster state and demonstrate its arbitrariness for any values of
weight coefficients. Also in this section we estimate the errors
in the scheme considered and options proposed for optimizing
the transformation errors for experimentally achievable values
of the weight coefficients. In Sec. III we study a modified
computation scheme in which a cubic phase gate is used to
prepare the cluster state, estimate the errors in this scheme,
and perform their optimization. In Sec. IV we evaluate the
efficiency of optimization of the computation proposed in
the previous sections based on the calculation of the error
correction probability.

II. ARBITRARY SINGLE-MODE GAUSSIAN OPERATION
ON A FOUR-NODE CLUSTER

A. Transformation scheme on a linear four-node
weighted cluster

The principle of performing an arbitrary single-mode
Gaussian operation on an unweighted linear four-node clus-
ter is well known [41,51]. In this section we repeat similar
transformations on a weighted cluster and in the next sec-
tion we will demonstrate their arbitrariness for any values of
the weight coefficients.

To get an explicit expression for the transformation error,
let us start with constructing the cluster state. The linear clus-
ter state [Fig. 1(a)] is prepared from four oscillators squeezed
in the y quadrature. The quadratures of the jth oscillator are
described as

x̂s, j = er x̂0, j, ŷs, j = e−r ŷ0, j, (1)

where r is the squeezing coefficient and x̂0, j and ŷ0, j are the
quadratures of the jth oscillator in the vacuum state. The
entanglement of cluster nodes with each other, as well as the
entanglement of an input state with the node of the cluster
state, will be carried out by using the CZ gate with the weight
coefficients g jk . This transformation acts on the oscillators j
and k as

Ĉz(g jk ) = e2ig jk x̂ j x̂k . (2)

The weight coefficient g jk of the CZ gate can take any real
value. The value of the weight coefficient determines the
strength of the entanglement, i.e., how much information
about the jth system after the entanglement procedure will
be contained in the kth and vice versa. The sign of the weight
coefficient indicates the creation of positive or negative corre-
lations (anticorrelations) between oscillators. Hereinafter, in
the paper we consider positive weight coefficients, bearing in
mind that their sign does not influence the error decrease.

All CZ transformations commute with each other. Thus, we
can consider the computation on a four-node cluster state [see
Fig. 1(b)] as a computation on a pair of two-node cluster states
[see Fig. 1(c)]. It simplifies the analysis of the scheme.

Let us consider the transformation performed on the first
pair of resource states. The first and second squeezed oscilla-
tors are entangled using the CZ gate with the weight coefficient
g1. The input state is entangled with the first resource oscilla-
tor by a similar operation with a weight coefficient g4. As the
result, the amplitudes of the oscillators take the form

â′
in = x̂in + i(ŷin + g4x̂s,1), (3)

â′
1 = x̂s,1 + i(ŷs,1 + g1x̂s,2 + g4x̂in ), (4)

â′
2 = x̂s,2 + i(ŷs,2 + g1x̂s,1). (5)

We then perform homodyne measurements with the local os-
cillator’s phases θ1 and θ2 over the input and first oscillators,
respectively. It leads to the equalities for the photocurrent
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FIG. 1. (a) Configuration of the cluster state used as a resource for computation. (b) Scheme for implementing the arbitrary single-mode
Gaussian operation on a linear weighted four-node cluster state. (c) Scheme of implementation of arbitrary single-mode Gaussian operation
on a pair of two-node cluster states. In the diagram, In is the input state, S j are squeezed states, Ĉz(gj ) is the CZ transformation with weight
coefficient gj , θ j are the phases of the local oscillators employed for a balanced homodyne detection, and X and Y are operations that displace
the corresponding quadratures of the fields in the channel, depending on the detection results.

operators

îin = β sin θ1(ŷin + g4x̂s,1) + β cos θ1x̂in, (6)

î1 = β sin θ2(ŷs,1 + g1x̂s,2 + g4x̂in ) + β cos θ2x̂s,1, (7)

where β is the amplitude of the homodyne detector’s local
oscillator. Such measurements, due to the entanglement of the
resource state, lead to a change in the quadrature components
of the second oscillator:

x̂′
2 =

(
cot θ1 cot θ2

g1g4
− g4

g1

)
x̂in + cot θ2

g1g4
ŷin − ŷs,1

g1

+ i1,m

βg1 sin θ2
− iin,m cot θ2

βg1g4 sin θ1
, (8)

ŷ′
2 = −g1 cot θ1

g4
x̂in − g1

g4
ŷin + ŷs,2 + iin,mg1

βg4 sin θ1
. (9)

Here we replaced the operators of photocurrents with
c-numbers corresponding to the results of the given measure-
ment: i1,m and iin,m. Let us rewrite this transformation in a
matrix form(

x̂′
2

ŷ′
2

)
=

( cot θ1 cot θ2
g1g4

− g4

g1

cot θ2
g1g4

− g1 cot θ1

g4
− g1

g4

)(
x̂in

ŷin

)
+

(− ŷs,1

g1

ŷs,2

)

+
(

i1,m

βg1 sin θ2
− iin,m cot θ2

βg1g2 sin θ1
iin,mg1

βg2 sin θ1

)
. (10)

It is well known that this Gaussian transformation is not arbi-
trary for the unit weight coefficients. To ensure arbitrariness,
it is necessary to perform a similar operation again on another
pair of nodes. Since our goal is to ensure arbitrariness for any
g j , and for g j = 1 it is not arbitrary, the scheme needs to be
complemented.

The operation on the second pair of nodes, up to weight
coefficients of the CZ gate, repeats the operation on the first
pair of nodes. Thus, the second part of the scheme operates
similarly to the transformation (10), where the input data
are the quadratures x′

2 and y′
2. At the output of the scheme,

the c-number components of the quadratures of the field are
compensated by displacement, depending on the values of the
measured photocurrents. We introduce new notation

cot θ ′
2 = cot θ2

g2
4

, cot θ ′
4 = cot θ4

g2
2

. (11)

Note that in the new notation, the mathematical expression for
the input-output transformation will depend not on the weight
coefficients themselves, but on their ratio. It is convenient for
further analysis. Thus, the operation carried out by our scheme
has the form(

x̂out

ŷout

)
= U (θ1, θ

′
2, θ3, θ

′
4)

(
x̂in

ŷin

)
+ δê0(θ3, θ

′
4). (12)

Here the desired transformation performed on the input state
is described by the matrix

U (θ1, θ
′
2, θ3, θ

′
4) =

(
cot θ3 cot θ ′

4−1
g3/g2

cot θ ′
4

g3/g2

− g3 cot θ3

g2
− g3

g2

)

×
(

cot θ1 cot θ ′
2−1

g1/g4

cot θ ′
2

g1/g4

− g1 cot θ1

g4
− g1

g4

)
(13)

and the transformation error associated with the finite squeez-
ing of the oscillators is described by the vector

δê0(θ3, θ
′
4) =

(
cot θ3 cot θ ′

4−1
g3/g2

cot θ ′
4

g3/g2

− g3 cot θ3

g2
− g3

g2

)(− ŷs,1

g1

ŷs,2

)
+

(− ŷs,3

g3

ŷs,4

)
.

(14)

It should be noted that in the scheme under consideration,
the transformation error δê0 depends only on the angles θ3

and θ ′
4. This is because measuring the second pair of resource

oscillators transforms the error from the first pair of resource
oscillators.

B. Arbitrariness of the transformation with arbitrary
weight coefficients

First, we need to find out if the single-mode Gaussian
transformation U is arbitrary. It was shown in [51] that the
U will be arbitrary when weight coefficients of the CZ gate
are unity. However, we need to check whether arbitrariness
is preserved for arbitrary nonunity weight coefficients. To do
this, we will show that it is possible to choose the phases of
local oscillators of homodyne detectors in such a way that
the matrix U (θ1, θ

′
2, θ3, θ

′
4) is equal to any given arbitrary

symplectic matrix, i.e.,

U (θ1, θ
′
2, θ3, θ

′
4) =

(
a b
c d

)
, (15)
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where the coefficients of the matrix satisfy the condition

ad − bc = 1. (16)

Taking into account the explicit form (13) of the matrix U ,
Eq. (15) is equivalent to the system of equations

g2g4

g1g3
(cot θ1 cot θ ′

2 − 1)(cot θ3 cot θ ′
4 − 1)

− g1g2

g3g4
cot θ1 cot θ ′

4 = a, (17)

g2g4

g1g3
cot θ ′

2(cot θ3 cot θ ′
4 − 1) − g1g2

g3g4
cot θ ′

4 = b, (18)

− g3g4

g1g2
(cot θ1 cot θ ′

2 − 1) cot θ3 + g1g3

g2g4
cot θ1 = c, (19)

− g3g4

g1g2
cot θ ′

2 cot θ3 + g1g3

g2g4
= d. (20)

Due to the condition (16) on the matrix coefficients, any one
of these equations can be derived from the three remaining
ones. Thus, there are only three independent equations in four
variables. The system of equations (17)–(20) is not uniquely
solved and one of the phases can be chosen as a free param-
eter, which we can change. We can see that for θ ′

2 = π/2
or θ3 = π/2 Eq. (20) turns into equality so that we lose the
ability to solve the system for an arbitrary matrix. Therefore,
the phases θ ′

2 and θ3 cannot be chosen as free parameters. Of
the remaining two phases, the phase θ ′

4 is the best candidate to
be a free parameter, since the transformation error depends on
it. In the future, with the right choice of the phase θ ′

4, we will
be able to minimize the transformation error.

For some arbitrary fixed value of the phase θ ′
4, the solution

of the system (17)–(20) exists for the remaining phases and
has the form

cot θ1 = c

d
+

( g1g3

g2g4
− d

) g3

g2( g2
3

g2
2
b + d cot θ ′

4

) g1

g4
d

, (21)

cot θ ′
2 = −g1g2

g3g4

(
g2

3

g2
2

b + d cot θ ′
4

)
, (22)

cot θ3 =
d − g1g3

g2g4

g2
3

g2
2
b + d cot θ ′

4

. (23)

Thus, for any arbitrary fixed value θ ′
4, we can choose the

phases of the local oscillators θ1, θ ′
2, and θ3 in such a way that

the matrix (13) is equal to any given arbitrary symplectic ma-
trix. This means that the single-mode Gaussian transformation
given by the matrix (13) is arbitrary.

C. Single-mode transformation error on a weighted cluster

1. Optimization for arbitrary values of weight coefficients

Let us estimate the errors in the scheme of one-way compu-
tations considered. To do this, we pass from the error vector to
one consisting of variances 〈δê2

0〉. We assume resource oscilla-
tors to be statistically independent and squeezed equally, i.e.,
〈ŷ2

s, j〉 ≡ 〈δŷ2
s 〉 for j ∈ 1, 2, 3, 4. Then the vector of variances

has the form

〈
δê2

0

〉 =
(

1
g2

1

( cot θ3 cot θ ′
4−1

g3/g2

)2 + ( cot θ ′
4

g3/g2

)2 + 1
g2

3

1
g2

1

( g3 cot θ3

g2

)2 + g2
3

g2
2
+ 1

)〈
δŷ2

s

〉
. (24)

Note that the transformation errors directly depend on the
weight coefficients g1 and g3. On the other hand, the ratio
between weight coefficients g3/g2 determines which type of
operation at certain phase values is performed. Therefore, it
makes sense to compare the transformation errors only for a
fixed ratio g3/g2, i.e., to compare the errors of the same oper-
ations. To achieve it, let us substitute the solutions (21)–(23)
into Eq. (24). As a result, we get the error variance vector

〈
δê2

0

〉 =

⎛
⎜⎜⎜⎝

1
g2

3
+ ( g2

g3

)2
cot2 θ ′

4 + g2
2
(

b g4
g1

+ g2
g3

cot θ ′
4

)2

g2
3g2

4[b+d
(

g2
g3

)2
cot θ ′

4]2

1 + 1(
g2
g3

)2 + (d g2
g3

g4
g1

−1)2

g2
4[b+d

(
g2
g3

)2
cot θ ′

4]2

⎞
⎟⎟⎟⎠

× 〈
δŷ2

s

〉
. (25)

This vector depends on the operation implemented (on the
values of d and b), on the phase θ ′

4, and on the value of the
weight coefficients of the cluster state g1, g2, g3, and g4.

The dependence of the error on the weight coefficients of
the cluster state means that for each transformation (for each
b and d) there is a cluster state configuration that yields the
minimal error. One can use this feature to construct nonuni-
versal quantum calculators capable of solving specific tasks.
Here and below we will be interested in the errors of universal
quantum computation. Therefore, we omit from consideration
calculators for local problems (which are usually called quan-
tum simulators). Unfortunately, in practice, when building a
universal computer, we cannot choose weight coefficients for
each transformation, since this would require us to rebuild
the cluster generation scheme each time. In reality, we have a
cluster state with fixed weight coefficients. We need to choose
the weight coefficients so that any transformation has a small
error. Our goal is to identify such weight coefficients.

From Eq. (25) we can see that if we impose the condi-
tions on the weight coefficients g1 � g4, g2 � g3, g3 � 1,
and g4 � 1 and set θ ′

4 equal to π/2, then the error will be
proportional to the vector

〈
δê2

0

〉 ≈
(

0
1

)〈
δŷ2

s

〉
, (26)

that is, we get the minimum computation error, which does
not depend on the implemented operations (on b and d).
Unfortunately, in experiments, we cannot make the weight
coefficients infinitely large, since that would require infinite
squeezed resource states. Let us see how large we can make
them in practice.

2. Experimental implementation of the CZ transformation

To understand what restrictions are imposed on the weight
coefficients of the cluster state, let us consider the structure
of the CZ transformation. As is known, the CZ gate with the
weight coefficient g transforms the vector of input quadratures
into the vector of output quadratures according to the rule⎛

⎜⎜⎝
X̂out,1

X̂out,2

Ŷout,1

Ŷout,2

⎞
⎟⎟⎠ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

⎞
⎟⎠

⎛
⎜⎝

x̂in,1

x̂in,2

ŷin,1

ŷin,2

⎞
⎟⎠. (27)
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FIG. 2. Implementation of in-line squeezing.

To understand how this transformation can be implemented
experimentally, we need to use the Bloch-Messiah decompo-
sition for the CZ matrix, which has the form

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

⎞
⎟⎠=

⎛
⎜⎝

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

⎞
⎟⎠

⎛
⎜⎝

t r 0 0
r −t 0 0
0 0 t r
0 0 r −t

⎞
⎟⎠

×

⎛
⎜⎜⎝

√
s 0 0 0

0 1√
s

0 0

0 0 1√
s

0
0 0 0

√
s

⎞
⎟⎟⎠

×

⎛
⎜⎝

r t 0 0
t −r 0 0
0 0 r t
0 0 t −r

⎞
⎟⎠

×

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

⎞
⎟⎠, (28)

where

r =
√

s√
1 + s

, t = 1√
1 + s

,

s = 1

2

(
2 + g2 − g

√
4 + g2

)
. (29)

Here the first and last matrices describe the phase shifters,
the second and fourth matrices describe the beam splitter
transformation, and the third matrix describes the squeezing.
Since we consider the case of non-negative weight coefficients
g, s ∈ [0, 1].

The main difficulty in the practical implementation of the
CZ gate is the in-line squeezing. The in-line squeezing is the
squeezing transformation performed on the oscillator inside
the computation scheme. For in-line squeezing of the oscilla-
tor in one of the quadratures, the scheme shown in Fig. 2 is
usually applied. In this scheme, the squeezed state S is entan-
gling with the input state (In) (the state we are transforming)
on the beam splitter with a reflection coefficient R. Next the x
quadrature of the state in the lower channel is measured using
the homodyne detector. After that, the measurement result is
sent to a device that displaces the quadratures of the state in
the upper channel (the device is indicated by X in the diagram)
depending on the measurement result. The quadratures of the

output state (Out) can be represented as

(
X̂out

Ŷout

)
=

( 1√
R

0

0
√

R

)(
x̂in

ŷin

)
+

(
0√

1 − Rŷs

)
. (30)

It can be seen from this expression that the quadrature
√

Rŷin

is squeezed, since the reflection coefficient is in the range
R ∈ [0, 1]. Since the squeezing coefficient s in Eq. (29) is
in the range s ∈ [0, 1], we can set s = R, implying that the
reflection coefficient is responsible for the squeezing. As we
can see, the main bottleneck of this implementation of the
squeezing transformation is that there is an error that is added
to the computation results. This error is proportional to the
squeezed quadrature of the auxiliary oscillator S. The more
the quadrature is squeezed, the better the gate is realized.

We use the considered scheme as part of the CZ transforma-
tion. Let us estimate the squeezing of the auxiliary quantum
oscillators required for this. For the error to remain small
compared to the main transformation, the requirement

(1 − R)
〈
δŷ2

s

〉 
 R
〈
δŷ2

in

〉
(31)

must be met or

10 log10

[
4〈δŷ2

s 〉
] 
 10 log10

[
4R

1 − R

〈
δŷ2

in

〉]
. (32)

In this section, for simplicity, we consider fluctuations of the
coherent state (〈δŷ2

in〉 = 1
4 ) as a variance of the input state.

To understand what kind of squeezing we can implement
experimentally, we write the expression in a general form for
an arbitrary g. To do this, we take into account the equality s =
R and substitute the relationship (29) between the values of the
squeezing ratio s and the weight coefficient g into Eq. (32). As
a result, the final dependence of the weight coefficient on the
squeezing of the auxiliary oscillator can be estimated by the
inequality

g <
10−x/20

√
1 + 10x/10

, (33)

where x = 10 log10(4〈δŷ2
s 〉). For greater clarity, Eq. (33) is

shown in Fig. 3. At the moment, the squeezing that has been
experimentally demonstrated is −15 dB [22]. Given the fact
that the error should be small compared to the main trans-
formation, we can say that the weight coefficient g can be no
more than 5. We use this value further for numerical estimates,
as corresponding to the maximum experimentally realized
squeezing.

3. Optimization of errors of one-way transformations
for bounded values of g

Let us compare the computation errors with differ-
ent weight coefficients. We consider the ‖ · ‖∞-norm as a
measure of errors. This norm has the form ‖〈δê2

0〉‖∞ =
max[〈δê2

0〉1, 〈δê2
0〉2].

As we have discussed, to minimize the error, we require the
conditions g1 � g4, g2 � g3, g3 � 1, g4 � 1, and θ ′

4 = π/2.
From the first two inequalities, we can conclude that g1 and

032414-5



E. R. ZINATULLIN et al. PHYSICAL REVIEW A 106, 032414 (2022)

FIG. 3. Graph of the dependence of the value of the CZ gate
weight coefficient on the variance of the squeezed oscillator used
to implement this transformation. On the graph, the blue solid line
indicates the dependence of the weight coefficient on the variance
of the squeezed state and the red dotted line indicates the squeezing
limit experimentally implemented to date.

g2 should be chosen as maxima, i.e., g1 = g2 = 5. It follows
from the remaining conditions that g3 and g4 should be large
enough (compared to unity), so we choose g3 = g4 = 4. As
before, we investigate the effect of weight coefficients on
transformation errors for θ ′

4 = π/2.
It should be noted that one can carry out a multi-

dimensional optimization to find the global minimum of
computation errors. However, this is a computationally diffi-
cult problem. In addition, the global minimum may lie outside
the admissible weight coefficients. In this regard, we limit
ourselves to the selection of weight coefficients of the cluster
state, which provides a smaller error for a larger number of
operations.

We first compare the errors for computation on a cluster
state with the optimized weight coefficients (g1 = g2 = 5 and
g3 = g4 = 4) with the case when an unweighted cluster state
is used, i.e., a cluster state with unit weight coefficients (g1 =
g2 = g3 = g4 = 1). It is this state that is often considered by
researchers as a universal state for implementing quantum
Gaussian transformations [41,51]. Computation errors when
using these two cluster states are shown in Fig. 4. We can see
that errors of computation on the weighted cluster state with
optimized weight coefficients are always lower than on the
unweighted cluster state. In other words, we have found that
a weighted cluster state with optimized weight coefficients is
better suited for the computation.

After we make the optimization of errors due to the weight
coefficients, we can proceed to optimization due to the phase
θ ′

4 of the homodyne detector. Until now, we have considered
only the simplest case, when θ ′

4 = π/2. As follows from
Eq. (26), this case is optimal if the weight coefficients obey
the conditions g1 � g4, g2 � g3, g3 � 1, and g4 � 1. As we
find out, in reality, the weight coefficients are very limited in
value. This limitation means that we cannot achieve the min-
imum error limit (26). This means that the value of the phase
θ ′

4 = π/2 is not necessarily optimal. It follows from Eq. (25)
that by selecting the phase θ ′

4 for each specific transformation

FIG. 4. Distribution of errors ‖〈δê2
0〉‖∞/〈δŷ2

s 〉 depending on the
implemented single-mode transformation, i.e., depending on b and d
[see Eq. (15)]. The graph shows two error surfaces corresponding to
computations on two cluster states. The lower surface corresponds
to the case of computations on a weighted optimized cluster state
(g1 = g2 = 5 and g3 = g4 = 4). The upper surface corresponds to
the computational errors on the unweighted cluster state (g1 = g2 =
g3 = g4 = 1).

(for specific b and d), we can minimize the errors. It is this
optimization that we carry out below.

The optimization process consists in finding the minimum
value of the function ‖〈δê2

0〉‖∞ = h(θ ′
4, b, d ) by the parameter

θ ′
4 depending on b and d . As a result of the optimization, we

obtain the dependence of the optimal phase on the operation,
i.e., θ ′

4,min = f (b, d ). Figure 5(a) shows the error surfaces
of computations on the cluster state with weight coefficients
g1 = g2 = 5 and g3 = g4 = 4 when the phase θ ′

4 = π/2 and
when the phase is optimized depending on the operation [θ ′

4 =
θ ′

4,min = f (b, d )]. It can be seen from the figure that the errors
of single-mode transformation at the optimized phase θ ′

4 are
always smaller than the errors at θ ′

4 = π/2. In other words, the
error of any single-mode operation can be further decreased
by optimizing the phase of the homodyne detector.

To demonstrate the superiority of our optimized scheme
(with optimized weight coefficients and optimized phase θ ′

4),
let us compare it with the case of computations on a cluster
state with the maximum weight coefficients (g1 = g2 = g3 =
g4 = 5) at θ ′

4 = π/2. Figure 5(b) shows the errors ‖〈δê2
0〉‖∞

obtained by transformations in these two schemes. It can be
seen from the graph that the error in the optimized case of
computations is less than the error obtained when using the
cluster with maximum weight coefficients. It is important to
note that to create a cluster with large weight coefficients, we
need to implement a squeezing transformation with a large
coefficient s [see Eq. (29)]. To perform such a transformation,
we need an additional resource. Without loss of generality,
we can say that additional energy is required. The larger
the squeezing coefficient s, the more energy needed. All this
means that it takes more energy to create a cluster with max-
imum weight coefficients than to create an optimized cluster
state. Thus, we can conclude that the smart use of the available
physical resource (proper distribution of weight coefficients
and smart choice of phases of the homodyne measurement)
helps to reduce the quantum computation error.
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FIG. 5. Distribution of single-mode transformation errors ‖〈δê2
0〉‖∞/〈δŷ2

s 〉 depending on b and d [see Eq. (15)]. (a) Transformations
performed on the cluster state with optimized weight coefficients. In the diagram, the upper surface corresponds to the case when the phase of
the homodyne detector is kept constant θ ′

4 = π/2. The lower surface corresponds to the case when the phase is optimized for the performed
transformation (for b and d). (b) In the diagram, the upper surface corresponds to computations on the cluster state with weight coefficients
g1 = g2 = g3 = g4 = 5 and the phase θ ′

4 = π/2. The lower surface corresponds to computations on the cluster state with optimized weight
coefficients g1 = g2 = 5 and g3 = g4 = 4 and optimized homodyne detector phase θ ′

4 = f (b, d ).

III. SINGLE-MODE OPERATION USING A CUBIC
PHASE GATE

A. Transformation scheme with a cubic phase gate

As we have shown in the preceding section, the single-
mode Gaussian transformation on a linear four-node weighted
cluster state is arbitrary. Also, it is possible to reduce the error
of this transformation by optimizing the weight coefficients
of the cluster state. However, part of the operations still has
significant errors.

In Ref. [36] we showed that it is possible to reduce the
teleportation error by using the cubic phase gate to prepare
a non-Gaussian resource state. In this section we apply this
technique to decrease the error of the arbitrary single-mode
Gaussian transformation scheme on a four-node cluster state.
To do it, we include the non-Gaussian state as the second node
of the cluster [Fig. 6(a)]. It can be seen from Eq. (24) that the
expression for the x-quadrature error has a term depending
on the phase θ4. We cannot suppress this term by the CZ gate
weight coefficients. It arises as a consequence of the finite
squeezing of the second resource oscillator, which is why we
replace the second node with a non-Gaussian resource.

As in the previous scheme, we use oscillators squeezed in
the y quadrature as a resource for cluster state preparation. A
non-Gaussian resource is prepared by sequentially applying
the phase shift on π/2,

R̂2(π/2) = ei(π/2)â†
2 â2 , (34)

y-quadrature displacement on α > 0,

Ŷ2(α) = e2iαx̂2 , (35)

and a cubic phase gate

Q̂2(γ ) = e−2iγ ŷ3
2 , (36)

where γ is the coefficient of nonlinearity [see Fig. 6(b)].
Thus, the second recourse oscillator will proceed to the non-
Gaussian state, which is described by the following equation:

â2 = −ŷs,2 + 3γ (α + x̂s,2)2 + i(α + x̂s,2). (37)

The cubic phase gate (36) deforms the uncertainty region of
the squeezed in the x-quadrature state in such a way that a
parabola is formed on the phase plane. However, when we
displace the y quadrature by a positive value α that satisfies
the condition α2 � 〈x̂2

s,2〉, the quadrature values of the second
oscillator will lie in the first quadrant of the phase plane. In
other words, only one of the branches of the parabola will
remain on the phase plane.

As in the preceding section, let us start with the analysis
of the transformation performed on the first pair of resource
states. The first Gaussian and second non-Gaussian resource
oscillators are entangled using the CZ transformation with the
weight coefficient g1 and the input state is entangled with
the first resource oscillator by the CZ gate with a weight
coefficient g4. After the entanglement, the amplitudes of the
oscillators are described by the following equations:

â′
in = x̂in + i(ŷin + g4x̂s,1), (38)

â′
1 = x̂s,1 + i[ŷs,1 − g1ŷs,2 + 3g1γ (α + x̂s,2)2 + g4x̂in], (39)

â′
2 = −ŷs,2 + 3γ (α + x̂s,2)2 + i(α + x̂s,2 + g1x̂s,1). (40)

We can see that the first resource oscillator is now containing
the nonlinearity from the non-Gaussian oscillator due to en-
tanglement. We then perform homodyne measurements with
the local oscillator’s phases θ1 and θ2 over the input and first
resource oscillators, respectively. Thus, for the operators of
the photocurrent we get

îin = β sin θ1(ŷin + g4x̂s,1) + β cos θ1x̂in, (41)

î1 = β cos θ2x̂s,1 + β sin θ2[ŷs,1 − g1ŷs,2

+ 3g1γ (α + x̂s,2)2 + g4x̂in], (42)

where β is the amplitude of the homodyne detector’s local os-
cillator. Due to the entanglement of the resource state, such a
measurement leads to a change in the quadrature components
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FIG. 6. (a) Configuration of the cluster state used as a resource for computation: Gaussian nodes are shown in green and non-Gaussian
nodes are shown in blue. (b) Scheme of non-Gaussian resource state preparation. (c) Scheme for implementing the arbitrary single-mode
Gaussian operation on a linear weighted four-node cluster state using a cubic phase gate. (d) Scheme of implementation of arbitrary single-
mode Gaussian operation on a pair of two-node cluster states using a cubic phase gate. In the diagram Y (α) is the operation that displaces y
quadrature on a real value α and Q̂(γ ) is the cubic phase gate with nonlinearity γ .

of the field in the second channel:

x̂′
2 =

(
cot θ1 cot θ2

g1g4
− g4

g1

)
x̂in + cot θ2

g1g4
ŷin − ŷs,1

g1
+ i1,m

βg1 sin θ2
− iin,m cot θ2

βg1g4 sin θ1
, (43)

ŷ′
2 = −g1 cot θ1

g4
x̂in − g1

g4
ŷin + iin,mg1

βg4 sin θ1

+ 1√
3γ

√
i1,m

βg1 sin θ2
− iin,m cot θ2

βg1g4 sin θ1
+

(
cot θ1 cot θ2

g1g4
− g4

g1

)
x̂in + cot θ2

g1g4
ŷin − ŷs,1

g1
+ ŷs,2. (44)

Here, as in the preceding section, we replaced the operators of
photocurrents with c-numbers corresponding to the results of
the given measurement: i1,m and iin,m. In contrast to Eqs. (8)
and (9) for a Gaussian cluster, due to a non-Gaussian re-
source, a square root in Eq. (44) for the y quadrature arises
that determines the transformation error. Note that, as for the
teleportation [36], due to the large displacement α > 0, it is
necessary to take into account only positive values of the
square root. To simplify further equations, we introduce new
notation

Im = i1,m

βg1 sin θ2
− iin,m cot θ2

βg1g4 sin θ1
. (45)

We can decompose the square root in Eq. (44) in a series
in terms of

1

Im

[(
cot θ1 cot θ2

g1g4
− g4

g1

)
x̂in + cot θ2

g1g4
ŷin − ŷs,1

g1
+ ŷs,2

]
,

keeping only the first term in the expansion

ŷ′
2 = −g1 cot θ1

g4
x̂in − g1

g4
ŷin + iin,mg1

βg4 sin θ1
+

√
Im

3γ

+ 1√
12γ Im

[(
cot θ1 cot θ2

g1g4
− g4

g1

)
x̂in + cot θ2

g1g4
ŷin

− ŷs,1

g1
+ ŷs,2

]
. (46)

The termination of the series is correct under the assumption
that all moments of the expansion parameter are small. For
Gaussian input states, it suffices to satisfy the inequalities

3γα2 �
(

cot θ1 cot θ2

g1g4
− g4

g1

)
〈x̂in〉 +

(
cot θ2

g1g4

)
〈ŷin〉, (47)

(3γα2)2 �
(

cot θ1 cot θ2

g1g4
− g4

g1

)2〈
x̂2

in

〉

+ 2

(
cot θ1 cot θ2

g1g4
− g4

g1

)(
cot θ2

g1g4

)
〈x̂in〉〈ŷin〉

+
(

cot θ2

g1g4

)2〈
ŷ2

in

〉 + 〈ŷ2
s,1〉
g2

1

+ 〈
ŷ2

s,2

〉
. (48)
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Note that this requirement limits the protocol’s applicability.
Below we will discuss in detail how significant this limitation
is.

Thus, after measurements over the oscillators in the input
and first channels, the quadratures of the second oscillator take
the form(

x̂′
2

ŷ′
2

)
=

(
1 0
1√

12γ Im
1

)[( cot θ1 cot θ2
g1g4

− g4

g1

cot θ2
g1g4

− g1 cot θ1

g4
− g1

g4

)(
x̂in

ŷin

)

+
(

− ŷs,1

g1
ŷs,2√
12γ Im

)]
+

(
Im

iin,m

βg2 sin θ1
+

√
Im
3γ

)
. (49)

Let us compare the resulting expression with Eq. (10) for the
transformation on a pair of Gaussian resource oscillators. One
can see that the nonlinearity of the cubic phase gate leads
to the appearance of an additional deformation [the matrix
before the square brackets on the right-hand side of Eq. (49)].
At the same time, the deformation coefficient depends on
the measured values of the photocurrents, which is why we
cannot control it. Therefore, we need to compensate for this
deformation. Otherwise, it will distort the result and we can
significantly increase the error.

The operation on the second pair of nodes does not contain
nonlinearity, so it is similar to the transformation (10) up to
weight coefficients. At the output of the scheme, the c-number
components of the quadratures of the field are compensated
by displacement, depending on the values of the measured
photocurrents. In addition, we explore the notation in (11), as
in the preceding section. Then the transformation performed
on the input oscillator has the form

(
x̂out

ŷout

)
=

(
cot θ3 cot θ ′

4−1
g3/g2

cot θ ′
4

g3/g2

− g3 cot θ3

g2
− g3

g2

)(
1 0
1√

12γ Im
1

)

×
[(

cot θ1 cot θ ′
2−1

g1/g4

cot θ ′
2

g1/g4

− g1 cot θ1

g4
− g1

g4

)(
x̂in

ŷin

)
+

(
− ŷs,1

g1
ŷs,2√
12γ Im

)]

+
(− ŷs,3

g3

ŷs,4

)
. (50)

Now let us find if it is possible to compensate for the deforma-
tion that occurs due to the presence of the cubic phase state.
This deformation leads to a distortion of the oscillator basis at
the output of the first part of the scheme. Therefore, knowing
the measurement results in the first part of the scheme, we
have the opportunity to remove this deformation by correcting
the measurement basis in the second part of the scheme. To
do so, we rewrite Eq. (50), including the deformation in the
matrix of the second part of the protocol:

(
x̂out

ŷout

)
=

(
g2

g3

[(
cot θ3 + 1√

12γ Im

)
cot θ4 − 1

] g2

g3
cot θ4

− g3

g2

(
cot θ3 + 1√

12γ Im

) − g3

g2

)

×
[( cot θ1 cot θ2−1

g1/g4

cot θ2
g1/g4

− g1 cot θ1

g4
− g1

g4

)(
x̂in

ŷin

)
+

(
− ŷs,1

g1
ŷs,2√
12γ Im

)]

+
(− ŷs,3

g3

ŷs,4

)
. (51)

If we introduce the new phase

cot θ ′
3 = cot θ3 + 1√

12γ Im
, (52)

then the transformation over the input oscillator will be de-
termined by the matrix (13) depending on θ ′

3. In other words,
according to the measurements results on the input and the
first resource oscillators, we can adjust the phase θ3 to com-
pensate for the additional deformation. Thus, we can perform
the given operation without additional distortion. As a result,
in the modified scheme, the transformation performed on the
input state is the same as the transformation to Eq. (12), but it
has a different error:(

x̂out

ŷout

)
=U (θ1, θ

′
2, θ

′
3, θ

′
4)

(
x̂in

ŷin

)
+ δê(θ ′

3, θ
′
4). (53)

Here the matrix U is defined by Eq. (13) and the error is
given by

δê0(θ ′
3, θ

′
4) =

(
cot θ ′

3 cot θ ′
4−1

g3/g2

cot θ ′
4

g3/g2

− g3 cot θ ′
3

g2
− g3

g2

)(
− ŷs,1

g1
ŷs,2√
12γ Im

)

+
(− ŷs,3

g3

ŷs,4

)
. (54)

Thus, the conversion error depends not only on the phases θ ′
3

and θ ′
4, but also on the measured value Im.

We have found that the considered scheme with a cubic
phase gate implements the same transformation as the scheme
with a Gaussian cluster considered in the preceding section.
Thus, we do not need to justify the arbitrariness of this trans-
formation. However, the errors of these two operations differ
significantly from each other. Next we compare the computa-
tion errors of the two schemes and evaluate the limitations of
the scheme with a cubic phase gate.

B. Error of transformation with the cubic phase gate

Let us now investigate how the error of computation in the
modified scheme has changed. As in the preceding section, we
assume the Gaussian resource states to be squeezed equally
(〈ŷ2

s, j〉 ≡ 〈δŷ2
s 〉 for j ∈ 1, 2, 3, 4). Then the variances of the

error vector are

〈δê2
0〉 =

(
1
g2

1

( cot θ ′
3 cot θ ′

4−1
g3/g2

)2 + 1
12γ Im

( cot θ ′
4

g3/g2

)2 + 1
g2

3

1
g2

1

( g3 cot θ ′
3

g2

)2 + 1
12γ Im

g2
3

g2
2
+ 1

)

× 〈
δŷ2

s

〉
. (55)

Comparing Eqs. (24) and (55), we can see that the second term
in the expressions for quadrature errors is smaller in 12γ Im.
The average value of Im is proportional to the displacement
α of the resource state quadrature; therefore, with a sufficient
displacement α, we can significantly decrease the contribution
to the error from these terms.

As in the preceding section, we consider the norm ‖ ·
‖∞ as a measure of errors. We estimate the value of Im

as its average value, i.e., 〈Im〉 ≈ 3γα2. We use a relatively
small cubic phase gate coefficient γ = 0.1 [42,46] and the

032414-9



E. R. ZINATULLIN et al. PHYSICAL REVIEW A 106, 032414 (2022)

FIG. 7. Distribution of single-mode transformation errors
‖〈δê2

0〉‖∞/〈δŷ2
s 〉. The graph demonstrates three error distributions

depending on the implemented operation, i.e., depending on b and d
[see Eq. (15)]. All three distributions are calculated for optimized
weight coefficients (g1 = g2 = 5 and g3 = g4 = 4). The orange
(upper) and blue (middle) surfaces correspond to errors for the
scheme without a cubic phase gate (γ = 0): The orange (upper)
surface corresponds to the case of a fixed phase value θ ′

4 = π/2 and
the blue (middle) surface corresponds to the case when the angle θ ′

4

optimization is performed (θ ′
4 = f̃ (b, d )). The green (lower) surface

corresponds to the error of the scheme using the cubic phase gate
(γ 
= 0) with θ ′

4 being optimized.

displacement α = 5
√

5 (i.e., 12γ Im = 45) in the calculations.
This displacement satisfies the condition α2 � 〈x̂2

s,2〉 required
for the correct operation of the protocol and is implemented in
practice. Figure 7 demonstrates a comparison of error surfaces
for a scheme without and with a cubic phase gate. One can
see that the error of the scheme with a cubic phase gate turns
out to be smaller for the entire range of transformations. In
addition, it suppresses the increase of the error in the vicinity
of b = 0. Thus, the inclusion in the cluster of a non-Gaussian
resource obtained using a cubic phase gate further reduces the
computation error.

Let us recall that the proposed protocol can operate under
the condition of low nonlinearity of the cubic phase gate. We
can compensate for a small value of γ by a large value of dis-
placement α. This is an important advantage, since increasing
the transformation coefficient γ of the cubic phase gate is a
difficult experimental problem.

IV. EVALUATION OF THE OPTIMIZATION EFFICIENCY
OF ONE-WAY QUANTUM COMPUTATION

In the previous sections, we have shown that one-way
computations on a four-node cluster state can be opti-
mized by choosing weight coefficients as well as the use of
non-Gaussian transformations. The optimization leads to a
decrease of the computation errors. Now we need to discuss
how effective these optimizations are. What is the gain in
decreasing errors if we apply all the proposed optimizations?

To answer these questions, we first need to understand how
the resulting errors can be compared with each other and what
advantages we can expect from the proposed optimization.
To do this, we recall the quantum error correction proce-

dure. In one-way quantum computations, the error displaces
the quadrature of the state under computation by a small
value proportional to the squeezed quadrature variance of the
resource oscillator. In [37] the authors proposed a method
for correcting errors of small quadrature displacements using
the so-called Gottesman-Kitaev-Preskill (GKP) states. In [23]
this method was applied theoretically to the problem of error
correction of one-way computation. In [52] we refined the
error correction method for one-way computations taking into
account the noise inherent in the error correction procedure
itself, i.e., nonideal GKP states. Omitting all the theoretical
details, we can conclude the probability that the error has not
been corrected is [52]

Perr(xerr, yerr ) = 1 − erf

⎛
⎝ √

π

2
√

2
√

〈δŷ2
s 〉

(
xerr +

√
5+1
2

)
⎞
⎠

× erf

⎛
⎝ √

π

2
√

2
√〈

δŷ2
s

〉
(yerr + √

5 + 1)

⎞
⎠, (56)

where xerr〈δŷ2
s 〉 is the error variance of the x quadrature of the

output target oscillator and yerr〈δŷ2
s 〉 is the error variance of

the y quadrature. The arguments of the functions erf are de-
termined by two factors: The variances of the transformation
errors of each quadrature (the first terms in the denominators
of the arguments) and the error added when performing error
correction. The latter factor is also the sum of two contri-
butions: The error from the performing of operation sum(1)
and the error from the broadening of the GKP state peaks.
Note that the order of the correction procedure determines the
distinction of x- and y-quadrature errors. The error function
erf (1/z) is monotonically decreasing, so the greater the value
is of error variance of quadratures, the more likely the errors
have not been corrected.

As can be seen from the definition of the function
Perr(xerr, yerr ), it reveals the quality of computation and char-
acterizes its scale. Accordingly, it is convenient to utilize
this function as a measure for comparing optimized and
nonoptimized computations and for evaluating the efficiency
of the optimization procedure. Figure 8 demonstrates the
ratios of the error probabilities Perr(xerr, yerr )/Perr(x

opt
err , yopt

err ),
where Perr(xerr, yerr ) is the error probability of nonoptimized
computation and Perr(x

opt
err , yopt

err ) is the error probability of opti-
mized computation. Nonoptimized computations correspond
to ones on the unweighted cluster state with θ ′

4 = π/2. Op-
timized computations correspond to the ones discussed in
Fig. 7: (i) optimization by weight coefficients (g4 = g3 = 4
and g2 = g1 = 5) and θ ′

4 = π/2, (ii) optimization by weight
coefficients and by the phase of the homodyne measurement
[θ ′

4 = f (b, d )], and (iii) optimization by weight coefficients,
by the phase of homodyne detector, and using a cubic phase
gate. All graphs are calculated for squeezing of −15 dB. When
we perform the optimization only by weight coefficients, the
error probability for some transformations becomes 45 times
lower. If in addition we perform optimization via the phases
of the homodyne detector, the gain for some operations is 400
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FIG. 8. Ratios of the error probabilities Perr(xerr, yerr )/Perr(x
opt
err , yopt

err ), depending on b and d [see Eq. (15)]. Here Perr(xerr, yerr ) is the error
probability of nonoptimized computations and Perr(x

opt
err , yopt

err ) is the error probability of optimize computations. In the diagram, (a) optimization
is performed by weight coefficients (g4 = g3 = 4, g2 = g1 = 5, and θ ′

4 = π/2), (b) optimization is performed by weight coefficients and the
phase of the homodyne detector, and (c) full optimization is performed and the cubic phase gate is used.

times higher. When we use a cubic phase gate and perform full
optimization, the error probability for some transformations is
900 times smaller. Note that for resource oscillators with less
squeezing, the benefit from the optimization procedure is even
more significant.

Thus, the proposed optimization works very effectively.
We can decrease the error probability in the results of com-
putations after the correction procedure by several orders
of magnitude. This means that the optimized computation
scheme is more fault tolerant. The fault-tolerant universal
quantum computation in the proposed scheme requires less
squeezing than has been suggested earlier [23].

V. CONCLUSION

In the work presented, we have shown that by varying
the weight coefficients of the cluster state, which were used
as a resource for computations, we could decrease the error
of arbitrary single-mode Gaussian transformations. In real
experiments, the squeezing resource is not infinite. Its proper
distribution in the cluster is required. We estimated the upper
value of the weight coefficients that could be obtained with the
current experimental capabilities. We have shown that the ra-
tios of weight coefficients play a significant role in decreasing
the error. Proper distribution of weight coefficients allowed us
to decrease the error for most of the single-mode Gaussian
operations while spending less energy.

For nonuniversal operations, it is possible to select the
cluster state configuration that provides minimal computation
error. Generally, the problem of multidimensional optimiza-
tion is extremely complex. Its complexity is determined both
by the dimension of the cluster and by the infinite dimensions
of the transformation space. Nevertheless, it is possible to
select a weight coefficient which provides a minimal error for
most of the operations.

Another useful tool is optimization by phases of homodyne
measurements. Unlike the weight coefficients, we can choose
the optimal phases for each specific operation. This strategy
allows us to decrease the computation error without using any
additional resources.

We have shown that the inclusion of non-Gaussian nodes
prepared by cubic phase gates in the resource cluster state
can further decrease the transformation error. For the pro-
tocol to work properly, we need to make relatively small
displacements of the squeezed state before applying the cubic
phase gate. These displacements can be easily implemented in
practice. It should be noted that the practical implementation
of cubic phase gate is still a challenge for experimen-
talists. However, the generation of the cubic phase states
has recently been demonstrated in the microwave frequency
range [50]. There is also an active search for suitable sys-
tems for the implementation of non-Gaussian gates in optics
[42,44–47,49].

We have demonstrated the effectiveness of our optimiza-
tion methods. We have shown that it is possible to significantly
decrease the probability of wrong error correction using the
proposed optimization methods. This makes our scheme more
fault tolerant. Thus, the methods considered can provide a
significant benefit for arbitrary single-mode Gaussian trans-
formations.

It is important to note that the optimization procedure we
proposed does not depend on the way the cluster state was
generated or on the encoding of the input states. Regard-
less of the available experimental resources, it is possible
to optimize the scheme to minimize the quantum computation
error.

We leave for future work the generalization of our pro-
posed optimization method to reduce errors in two-mode
Gaussian and non-Gaussian transformations. Since all these
transformations are needed to implement a universal quan-
tum computer [1], their optimization will help make quantum
computation more tolerant to errors. It will help reduce the
requirements on squeezing for the resources used.
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