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Machine learning via relativity-inspired quantum dynamics
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We present a machine-learning scheme based on the relativistic dynamics of a quantum system, namely a
quantum detector inside a cavity resonator. An equivalent analog model can be realized for example in a circuit
QED platform subject to properly modulated driving fields. We consider a reservoir-computing scheme where
the input data are embedded in the modulation of the system (equivalent to the acceleration of the relativistic
object) and the output data are obtained by linear combinations of measured observables. As an illustrative
example, we have simulated such a relativistic quantum machine for a challenging classification task, showing a
very large enhancement of the accuracy in the relativistic regime. Using kernel-machine theory, we show that in
the relativistic regime the task-independent expressivity is dramatically magnified with respect to the Newtonian
regime.
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I. INTRODUCTION

Among several approaches for the conception of quantum
computing devices, the field of relativistic quantum infor-
mation [1,2] has emerged. It has been demonstrated that
noninertial motion, or, via the equivalence principle, gravita-
tional fields, can be used to generate quantum gates. Recent
theoretical works have demonstrated that a nonuniformly ac-
celerated cavity can generate cluster states [3], two-mode
squeezing [4], mode mixing [5], as well as other entangling
gates [6] for continuous-variable quantum computing [7]. In
a complementary scenario, a cavity remains inertial, but hosts
accelerated detectors. Also for this configuration it has been
shown that universal single-qubit rotations can be performed
[8]. While all the existing proposals for relativistic quantum
computing require a very challenging control of mechanical
motion, the corresponding models can be however synthe-
sized in artificial platforms [9–11] such as those based on
circuit QED [12] or trapped ions [13].

In recent years, reservoir computing has emerged as an
appealing paradigm of information processing [14]. This
framework consists in approximating a target function by
feeding its arguments as an input of a reservoir, the
dynamics of which nonlinearly maps the data into a high-
dimensional space. The resulting output data are then fed into
a parametrized linear transformation to yield a trial function.
These parameters are finally optimized through supervised
learning. This architecture makes the computational resources
involved in the training process relatively modest. This has
led to proposals and realizations in diverse platforms, includ-
ing free-space optics [15–17], photonics [18,19], nonlinear
polariton lattices [20–22], memristors [23,24], and beyond
[25–28]. Very recently, such an approach has been explored
in a quantum context [29,30], with applications in quantum
metrology [31,32], quantum-state control [33–35], and im-
age recognition [36,37]. Although it was long thought that a

strong nonlinearity of the equations of motion was an essential
element of reservoir computing, recent works have shown
great performances relying on systems with almost no intrin-
sic nonlinearity, namely by exploiting the nonlinearity of the
measurement [17,38,39] or drawing links with approximate
kernel evaluation [40–42].

In this paper, we present a reservoir-computing scheme
exploiting the relativistic motion of a quantum system. We
consider a paradigmatic model describing a quantum detec-
tor (atom) moving inside a cavity resonator. The relativistic
dynamics can be simulated by an analog system such as a
circuit QED platform with a tailored modulation of driving
fields [10]. We explore the dynamics where the input data are
embedded into the system by modulating the acceleration of
the detector and measured output observables are then fed to
a trainable linear classifier. By evaluating task-independent
figures of merit, we demonstrate that the expressivity of our
machine-learning protocol is dramatically enhanced in the rel-
ativistic regime. Moreover, we provide an illustrative example
with a challenging classification task.

II. RELATIVISTIC QUANTUM MODEL

Let us consider the model describing a quantum har-
monic detector with proper frequency �, minimally coupled
to a quantum field φ̂ inside an optical cavity. In the in-
teraction picture, the corresponding Hamiltonian takes the
Unruh-DeWitt form [43,44] Ĥ (τ ) = λm̂(τ )φ̂[xμ(τ )], where τ

is the proper time of the detector, λ is the coupling constant,
and m̂(τ ) = b̂e−i�τ + b̂†ei�τ depends on the detector annihi-
lation (creation) operator b̂ (b̂†). Finally, xμ(τ ) = (t (τ ), x(τ ))
is the world line of the detector in the 1+1D Minkowski
spacetime. We will adopt the metric ημν = diag(+1,−1) and
natural units such that h̄ = c = 1. For a multimode cavity with
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FIG. 1. Scheme of the relativistic reservoir-computing protocol. (a) Each point x = (x1, x2) of the dataset is linearly mapped to acceleration
values (a1, a2) according to Eq. (5). (b) The acceleration values are used to construct a piecewise constant acceleration profile a(τ ). (c) The
quantum detector, initially at rest in the cavity prepared in a single-mode coherent state, undergoes noninertial motion with proper acceleration
a(τ ). (d) Analog circuit QED system where the analogous proper acceleration is controlled by modulated driving fields. (e) Observables of the
detector are measured at different times giving the feature vector X and the affine trial function f̂ = wT X + b. (f) The classification result is
predicted by sgn[ f̂ (x1, x2)].

perfectly reflecting mirrors [8,45],

Ĥ (τ ) = λ

∞∑
n=1

sin[knx(τ )]√
Lωn

× (b̂âne−i[�τ+ωnt (τ )] + b̂â†
ne−i[�τ−ωnt (τ )] ) + H.c.,

(1)

where ωn = kn = nπ/L and L is the cavity length. The
mode operators (denoting â0 ≡ b̂ for the detector) satisfy
bosonic commutation relations [ân, â†

m] = δnm. Both rotating
and counter-rotating terms are present and contribute in the
noninertial regime [8,46–48].

Let us prepare the cavity in a single-mode coherent state
|αωi〉 [49] the frequency of which is resonant with that of
the detector. Let us also consider the detector initially in its
ground state ρ̂0,(a) = |0a〉〈0a|. The density matrix then reads

ρ̂0 = ρ̂0,(a) ⊗ ∣∣αωi

〉〈
αωi

∣∣ ⊗
⊗
j �=i

∣∣0ω j

〉〈
0ω j

∣∣. (2)

For a given xμ(τ ), the time evolution of the density matrix is
given by

d ρ̂(τ )

dτ
= −i[Ĥ (τ ), ρ̂(τ )]. (3)

Since all the considered modes are bosonic and the Hamil-
tonian is quadratic, the Gaussianity of the initial state is
preserved during the evolution. The dynamics of ρ̂(τ ) can
therefore be solved exactly using the covariance-matrix for-
malism for Gaussian states [43,50–52] (see Appendix A).

III. CIRCUIT QED ANALOG IMPLEMENTATION

As shown in the literature [10], the Hamiltonian (1) can
be implemented on a circuit QED platform consisting of an

artificial Josephson atom [53] coupled to a multimode trans-
mission line resonator [see Fig. 1(d)] [10]. For a single mode,
the Hamiltonian reads

ĤQED(τ ) = ω0â†â + εb̂†b̂ + ηζ (τ )b̂†b̂ + g(b̂† + b̂)(â† + â),
(4)

where ω0 and ε are the bare frequencies of the transmission
line resonator and the artificial atom respectively, and g is
their coupling constant. ζ (τ ) is the sum of four driving fields
containing two different tones and two nonadiabatically mod-
ulated phases (see Appendix C). To get the equivalent of the
acceleration range considered in this paper, frequencies ω0

and ε can be taken in the standard GHz range while g, �,
and the phase modulation rates are in the MHz range (for
more details, see Appendix C). This driving scheme gives rise
to the same interaction-picture Hamiltonian as Eq. (1) for a
single mode [54], and can be similarly extended to multimode
circuit-QED systems [55–57]. While here we will report the
results with a harmonic detector, we have also simulated the
other extreme case where the Josephson atom is a two-level
system and found similar results (see Appendix D), showing
that the detailed atom spectrum is not crucial.

IV. RESERVOIR-COMPUTING PROTOCOL

The goal of supervised machine learning is to try to best
approximate a (usually nonlinear) target function y = f (x) of
some input vector x ≡ (x1, x2, . . . , xN ) with a parametrized
trial function ŷ = f̂ (x) from a set of known example pairs.
The input data are distributed according to some probability
measure μ(dx), from which a restricted set of samples with
their corresponding target values is known, {(x(i), yi )}i. These
are split into a training set of size Ntrain, that one exploits
to optimize the trial function f̂ , and a testing set of size
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Ntest , used to asses the performance of the trained model.
In this section, we will show in detail how one can harness
the relativistic dynamics of the detector-cavity system to con-
struct an expressive trial function f̂ within the paradigm of
reservoir computing. In this framework, each input x is first
nonlinearly transformed by means of a physical system into an
associated feature vector X (x), the components of which are
then combined to yield the approximate output f̂ (x) through a
parametrized linear combination with trainable weights, to be
optimized. Here, the above nonlinear embedding is obtained
in a two-step procedure: (i) each input x determines a specific
world line of the detector, and (ii) a set of observables of the
detector is measured to yield the feature vector X (x). This is
schematically represented in Fig. 1.

Assuming that for every component xi in the input vector x
we have xi,min � xi � xi,max, we map them linearly to acceler-
ation values in a fixed range between a0 and a0 + �a, namely

xi 	→ ai = a0 + �a × xi − xi,min

xi,max − xi,min
. (5)

We then impose a piecewise-constant proper acceleration [58]
a(τ ) to the harmonic detector. The pieces have proper ac-
celeration values (a1,−a1,−a1, a1, · · · , aN ,−aN ,−aN , aN )
and each piece has a duration of T/2 in the proper frame
of the detector, and we repeat this encoding sequence
m times. Assuming the detector to be initially at rest
at xμ(τ = 0) = (t = 0, x = 0), this acceleration profile
guarantees that at each instant τ = nT , n ∈ N, the detector is
at rest, and that at τ = 2nT it comes back to its original spatial
position at x = 0. Note that for a circuit QED implementation
the modulation of the driving fields can directly control the
analog of the proper acceleration with respect to the proper
time τ (see Appendix C). The detector world line for a general
proper acceleration a(τ ) is (see Appendix B for a derivation)

x(τ ) =
∫ τ

0
dτ ′ sinh[ξ (τ ′)], t (τ ) =

∫ τ

0
dτ ′ cosh[ξ (τ ′)],

(6)
where ξ (τ ) = ∫ τ

0 dτ ′a(τ ′) is the rapidity [59]. Instead, in the
Newtonian case, the (unphysical) world line is simply

xNewt(τ ) =
∫ τ

0
dτ ′ξ (τ ′), tNewt(τ ) = τ. (7)

Each input data point x determines a single time evolution
of the system ρ̂(τ ). We can then measure the detector at
times τn = n × �T to obtain the expectation values [60] of
the quadrature operators q̂ = (b̂ + b̂†)/

√
2, p̂ = i(b̂† − b̂)/

√
2

and of the number operator n̂ = b̂†b̂. The measurements are
then collected into a feature vector X [61] [see Fig. 1(e)].
Finally, our trial function reads

f̂ (x) = wT X (x) + b, (8)

where the weight w and bias b are parameters to be optimized
in order for f̂ to approximate the target function f . To simplify
the notation, in the following we will absorb b into the vector
w by appending a constant component 1 to the vector X . Due
to the linear dependence of the trial function on the feature
vector, its optimization can be done analytically.

V. RESULTS AND DISCUSSION

As an illustrative example, we consider a nontrivial task:
the two-spiral classification problem [62]. The goal is to
distinguish two interlocking spiral planar patterns. This task
serves as a well-known benchmark for binary pattern clas-
sification that is considered hard for multilayer perceptron
models due to its complicated decision boundary [63]. The
input data are the two coordinates of each point in the two-
spiral pattern x = (x1, x2). The task function f to be learned
is such that f (x) = 1 if the point belongs to the first spiral
branch, and f (x) = −1 for the other branch [see Fig. 1(a)]. To
train the model, we draw a train dataset of Ntrain = 4000 sam-
ple points {x(1), x(2), · · · , x(Ntrain )} with labels yi = f (x(i) ) and
minimize the regularized least-square loss function. Although
most classification problems are commonly treated with other
losses [64], the training can be analytically performed under
this choice of loss over the training set:

L(w) = 1

2Ntrain

Ntrain∑
i=1

[yi − wT X (x(i) )]
2 + l

2
‖w‖2

2, (9)

where the last term is a regularization term to prevent over-
fitting. Denoting � the matrix whose jth column is X (x( j) ),
and y the column vector of the training labels yi, the optimal
weights are given by w� = (��T + lNtrain1)−1�y. The per-
formance of the model is then evaluated on a test sample with
Ntest = 1000 points. We evaluate the classification accuracy
Atest on the test set as the fraction of correctly classified
samples among Ntest . The training accuracy Atrain, which indi-
cates how well the reservoir-computing model fits the training
set, is defined analogously. The transformation of the input
x 	→ X (x) can be regarded as an embedding of the input from
input space into some higher-dimensional feature space. This
is best understood by introducing the kernel function [64]
k(x, x′) = [X (x′)]T X (x). Under quite general assumptions,
this kernel can be diagonalized into an orthonormal [65] set
of eigenfunctions {ψi}i with positive eigenvalues {γi}i [66]:

k(x, x′) =
∑

i

γiψi(x)ψi(x′). (10)

The set {ψi}i can be completed to be a basis of L2
μ [67] with

eigenfunctions associated with γi = 0. Note that the kernel
spectrum can be empirically computed [68] by calculating the
eigenvalues of the matrix ��T /Ntrain. The trial function of
Eq. (8) may be rewritten in the above kernel eigenbasis as
f̂ (x) = βT ψ(x) where β is the weight vector to be optimized.
The spectrum of the kernel contains crucial information as
eigenfunctions with vanishingly small associated eigenvalues
do not contribute to the expressivity of the reservoir [42]. In
what follows, we will use the kernel spectrum to assess the
expressivity of the model.

Throughout our simulations, we fixed the coupling con-
stant to λ = 0.1, the interval of measurement to �T = T/2,
and �a/a0 = 0.1. The detector’s proper frequency is set to
be resonant with the third cavity mode [69] � = ω3, the latter
being initially in a coherent state |α〉 with α = 10i. We express
all quantities in natural units with the scale fixed by �. The
regularization is set to l = 10−6; this is equivalent to having
a measurement noise of variance l in the observables [70].
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FIG. 2. Figures of merit of the relativistic reservoir-computing protocol. (a) Light and dark histograms correspond to testing samples
belonging to different spirals of the dataset. Parameters: a0 = 3, T = 2, and m = 4. (b) Same quantity plotted for the Newtonian model with
same parameters. (c) The empirical kernel spectrum computed for the relativistic (solid line) and Newtonian (dashed line) models with same
parameters. The first 40 nonzero eigenvalues γl are plotted in descending order. (d) Inaccuracy of the relativistic (triangles) and Newtonian
(squares) models evaluated on both the training (solid lines) and testing (dashed lines) set, as a function of the acceleration time T . Parameters:
a0 = 1 and m = 4. (e) Same quantities plotted as a function of the base acceleration a0, for T = 2 and m = 4. (f) Same quantities plotted as a
function of the number of repetitions m, for a0 = 2 and T = 2. Quantities are expressed in natural units, where the scale is fixed by the proper
frequency of the atom �.

Figure 2(a) shows the distribution of testing samples in feature
space, represented by f̂ (x). The same quantities are plotted in
Fig. 2(b) in a nonrelativistic setting, that is, considering New-
tonian world lines [Eq. (7)]. As appears from Figs. 2(a) and
2(b), the relativistic model correctly separates the two classes
with high accuracy. By contrast, the system undergoing New-
tonian dynamics exhibits a poor performance. The empirical
kernel spectra of the two models are plotted in Fig. 2(c), where
we show the first 40 nonzero eigenvalues in descending order.
The flatter distribution of the relativistic kernel spectrum im-
plies that for a fixed cutoff threshold on the eigenvalues (or
a fixed regularization [42]), it has more eigenfunctions with
nonzero eigenvalues that can contribute to the expressivity of
the trial function f̂ in comparison with the Newtonian model.
Importantly, this relativistically enhanced kernel expressivity
associated to the dynamics is task independent and explains
the much higher accuracy achieved by the relativistic model
for the specific two-spiral classification task.

In Fig. 2(d), we examine the impact of the acceleration
time T on the performance of the model. As T increases,
the inaccuracy (1 − A) of the relativistic model decreases
to around zero, whereas the performance of the Newtonian
model remains poor. This is consistent with the results of
Fig. 2(e), where we vary the base acceleration a0 for fixed T .
Therein, we also found the inaccuracy of the relativistic model

to be decreasing as a function of a0 as the motion enters the
relativistic regime, and a poor performance of the Newtonian
model, which remains insensitive to a0.

In Fig. 2(f) we study the effect of the number of repeti-
tions m of the encoding sequence on the performance. As
we are taking measurements at a constant interval �T , a
larger value of m allows for more features to be collected
in the feature vector X , improving the efficiency. By con-
trast, in the Newtonian setting, the supplementary features are
close-to-linearly related to the previous ones, thus yielding
a negligible improvement. The induced nonlinearity of the
feature map associated to the dynamics of the relativistic
reservoir ensures that the generated features remain nontriv-
ial after many repetitions. The advantage of the relativistic
model can be understood from Eq. (1). Indeed, as discussed
in [8], the phases e−i[�τ±ωnt (τ )] depend nontrivially on τ

due to the relativistic (time-dilation) effects, which yields an
input-dependent modulation of the cavity-detector resonance
condition, absent in the Newtonian model, where one always
has tNewt(τ ) = τ .

VI. CONCLUSIONS

We have shown how relativistic quantum dynamics can
provide a dramatic enhancement of the expressive power for
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reservoir computing. Given that analogs of the considered
relativistic quantum model can be implemented in state-of-
the-art quantum platforms, such as superconducting circuits
and trapped ions, our theoretical findings pave the way to
relativity-inspired machine-learning protocols with enhanced
capabilities.
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APPENDIX A: GAUSSIAN FORMALISM FOR THE MODEL
WITH A HARMONIC DETECTOR

We briefly summarize the Gaussian formalism adopted
for calculating the time evolution of the relativistic quantum
system. We denote the vector of bosonic mode operators by

�̂ = (â0, â1, â2, · · · , âN , â†
0, â†

1, â†
2, · · · , â†

N )T , (A1)

that satisfies the commutation relation[
�̂i, �̂ j

] = �i j, (A2)

where

� =
[

0 1
−1 0

]
= −�T (A3)

is the symplectic form. If the Hamiltonian can be written in
the form of

Ĥ = �̂
T

F(t )�̂, (A4)

it then preserves the Gaussianity of states [50]. The Heisen-
berg equations of motion can be written as

d

dt
�̂ = −i�Fsym(t )�̂, (A5)

where Fsym = F + FT .
If we define the propagator S(t ) via the relation

�̂(t ) = S(t )�̂(0), (A6)

it then satisfies the first-order linear differential equation

d

dt
S(t ) = −i�Fsym(t )S(t ) (A7)

with the initial condition S(0) = 1. The evolution of the co-
variance matrix

σi j = 〈�̂i�̂ j〉 − 〈�̂i〉〈�̂ j〉 (A8)

is given by

σ(t ) = S(t )σ(0)ST . (A9)

σ together with 〈�̂〉 will completely specify a Gaussian state.

APPENDIX B: DERIVATION OF THE WORLD LINE

We derive here the world line for an observer with time-
dependent proper acceleration a(τ ) in 1 + 1D Minkowski
spacetime with metric ημν = diag(+1,−1).

We parametrize the world line by the proper time xμ(τ ) =
(t (τ ), x(τ )) and denote

uμ(τ ) = d

dτ
xμ(τ ) = (ut (τ ), ux(τ )),

aμ(τ ) = d

dτ
uμ(τ ) = (at (τ ), ax(τ )). (B1)

From the definition of these quantities, we get

uμuμ = 1 = (ut )2 − (ux )2,

aμuμ = 0 = at ut − axux,

aμaμ = − a(τ )2 = (at )2 − (ax )2. (B2)

It follows that

ax = dux

dτ
= a(τ )

√
1 + (ux )2. (B3)

Integrating from τ ′ = 0 to τ ′ = τ gives

ux(τ ) = sinh[ξ (τ )],

ξ (τ ) = sinh−1[ux(τ = 0)] +
∫ τ

0
dτ ′a(τ ′). (B4)

Integrating again gives the position. For the time, a similar
treatment applies. We finally obtain

x(τ ) = x0 +
∫ τ

0
dτ ′ sinh[ξ (τ ′)],

t (τ ) = t0 +
∫ τ

0
dτ ′ cosh[ξ (τ ′)], (B5)

which reduces to the world line equations in the main text for
an observer initially at rest. Note that for a constant accelera-
tion, this gives the well-known Rindler observer’s world line.

APPENDIX C: IMPLEMENTATION WITH CIRCUIT QED

We present a potential implementation of the proposed
relativistic model on circuit QED platforms inspired by [10],
which consists of a Josephson artificial atom with bosonic
mode operator b̂ (simulating the harmonic oscillator described
in the main text) coupled to a microwave cavity in the
strong-coupling regime. Denoting the microwave cavity mode
operator by â, the noninteracting Hamiltonian of the system is

Ĥ0(τ ) = ω0â†â + εb̂†b̂ + ηζ (τ )b̂†b̂, (C1)

where ω0 is the cavity bare frequency, ε is the energy of the
artificial atom, and we assumed that the Josephson junction
has negligible nonlinearity. This can be achieved for example
by replacing a single Josephson junction with a sufficiently
long chain of junctions. The opposite extreme case, where the
Josephson atom is a two-level system (qubit), yields similar
results, as revealed by corresponding simulations reported in
Appendix D. ζ (τ ) is a driving function that takes the follow-
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ing form [71]:

ζ (τ ) = d

dτ
F (τ ), F (τ ) = F+(τ ) + F−(τ ), (C2)

where

F± = cos[ω±τ ∓ θ∓(τ )] − cos[ω±τ ∓ θ±(τ )]. (C3)

Assuming that the phases θ±(τ ) are modulated slowly com-
pared to the driving frequencies ω±, as will indeed be the
case in what follows, the driving function ζ (τ ) can be well
approximated by

ζ (τ ) � − ω+ sin[ω+τ − θ−(τ )]

+ ω+ sin[ω+τ − θ+(τ )]

− ω− sin[ω−τ + θ+(τ )]

+ ω− sin[ω−τ + θ−(τ )]. (C4)

The interaction Hamiltonian in the Schrödinger picture is
ĤI = g(b̂† + b̂)(â + â†). Passing to the interaction picture
with respect to Ĥ0(τ ) and assuming η � 1 in the driving term,
we get

ĤI (τ ) = g[b̂†eiετG(τ ) + H.c.](âe−iω0τ + H.c.),

G(τ ) = eiηF (τ ) � 1 + iηF (τ ). (C5)

To simulate a harmonic oscillator with proper frequency �

and world line xμ(τ ) = (t (τ ), x(τ )) coupled to the nth mode
of a massless scalar field of frequency ωn = kn as consid-
ered in the main text, we now choose ω± = ε ± ω0 − � as
the driving frequencies and θ±(τ ) = ωnt (τ ) ± knx(τ ) as the
phase modulations. In the regime where ε, ω0, |ε ± ω0| � g,
the interaction Hamiltonian becomes (keeping only slowly
rotating terms)

ĤI (τ ) � gη sin[knx(τ )]

× b̂(âe−i[�τ+ωnt (τ )] + â†e−i[�τ−ωnt (τ )] ) + H.c.,
(C6)

which takes the form of the interaction Hamiltonian in the
main text for a single mode of the quantum field. Note that
since we always consider a single-mode coherent state as the
field initial state in the main text, the main contribution to the
dynamics of the harmonic oscillator comes uniquely from this
mode, as one can verify using perturbation theory [8]. We
also checked numerically that a single-mode approximation
for the quantum field is enough for obtaining accurate results
for the simulations presented in the main text. Nonetheless,
it is possible to simulate the full many-mode Hamiltonian
by using multiple modes in the circuit QED microwave
cavity.

As considered in [10], the energy scales ε and ω0 for circuit
QED are in the GHz regime, while g, �, and ωn can be on
much slower timescales, such as in the MHz regime. The
modulation rate of the phases θ̇±(τ ) can be expressed in terms
of the simulated time-dependent acceleration a(τ ) as [using

0 10
τ (units of Ω−1)

0

10

20

30

θ ±
(τ

)

θ+

θ−

0 10
τ (units of Ω−1)

0.0

2.5

5.0

7.5

θ̇ ±
(τ

)
(u

n
it

s
of

Ω
)

FIG. 3. The phase modulations θ±(τ ) (left panel) and the cor-
responding rates θ̇±(τ ) that provide the desired simulation of the
accelerated motion, where � = 1 MHz. Note that modulation rates
are in the regime of θ̇±(τ ) � 10� = 10 MHz.

the world line in Eq. (B5)]

θ̇±(τ ) = d

dτ
[ωnt (τ ) ± knx(τ )]

= ωn cosh[ξ (τ )] ± kn sinh[ξ (τ )]

= ωn cosh

[∫ τ

0
dτ ′a(τ ′)

]
± kn sinh

[∫ τ

0
dτ ′a(τ ′)

]
.

(C7)

Let us consider a typical world line studied in the main
text, for example with a0 = 2, �a/a0 = 0.1, T = 2, and ωn =
� [the values used in Fig. 2(f) of the main text] in the units
fixed by �. Then, we have θ̇±(τ ) � 10�, meaning that the
phases in the driving (C3) need to be modulated at roughly the
same timescale as �, in the MHz band, which is much slower
than the circuit QED timescales and should be experimentally
feasible.

Finally, let us consider a concrete example of typical
parameter values of the analog circuit QED system. Let
the parameters of the system be ω0 = 1 GHz, ε = 1.1 GHz,
� = 1 MHz, g = 10/

√
3π MHz � 3.3 MHz, η = 0.01. The

driving frequencies are then ω+ = 2.099 GHz and ω− =
0.099 GHz. This simulates the harmonic detector coupled to
the n = 3 mode of the quantum field (with � = ωn = kn and

1 2 3 4
T (units of Ω−1)

0.0

0.1

0.2

0.3

0.4

In
ac

cu
ra

cy

(a)

1 2 3
a0 (units of cΩ)

0.0

0.1

0.2

0.3

0.4
(b)

Relativistic train

Relativistic test

Newtonian train

Newtonian test

FIG. 4. Performances of the reservoir-computing model consid-
ered in the main text, but with a qubit replacing the harmonic
oscillator. Same parameters as Figs. 2(d) and 2(e) in the main text,
respectively, showing very similar results.

032413-6



MACHINE LEARNING VIA RELATIVITY-INSPIRED … PHYSICAL REVIEW A 106, 032413 (2022)

λ = 0.1) as considered in the main text. To simulate the ac-
celeration sequence described in the main text in the case of
a0 = 2, �a/a0 = 0.1, and T = 2, the required phase modula-
tions θ±(τ ) as well as their rates θ̇ (τ ), given by Eq. (C7), are
plotted in Fig. 3.

APPENDIX D: RESULTS WITH A QUBIT INSTEAD
OF A HARMONIC OSCILLATOR

We report here the simulation results when we replace the
harmonic detector with a qubit (a two-level atom initially in its
ground state) for the same parameters considered in the main
text. To model the configuration with the qubit, we have to
replace the bosonic mode operator b̂ with the Pauli operator
σ̂− in the Hamiltonian. Since the Gaussian formalism can
no longer be applied, we assumed a single-mode approxima-
tion for the quantum field (considering only the mode that is

initially in the coherent state and in resonance with the proper
frequency of the qubit), which matches the exact form of
the single-mode circuit-QED Hamiltonian in Eq. (C6). The
feature vector now contains the expectation values of the
operators that are respectively analogous to the bosonic oc-
cupation number and the quadratures, namely σ̂+σ̂−, (σ̂− +
σ̂+)/

√
2, and i(σ̂+ − σ̂−)/

√
2. This is equivalent to mea-

suring the Pauli operators σ̂ z, σ̂ x, and σ̂ y respectively. The
equivalent of Figs. 2(d) and 2(e) in the main text are pre-
sented in Figs. 4(a) and 4(b) for the qubit model. We recover
results similar to the case of the harmonic detector. Note
that the Newtonian model has a slightly improved yet still
very poor performance, which can be ascribed to the addi-
tional nonlinearity provided by the qubit. These results clearly
show that the details of the spectrum of the detector are not
crucial for the expressive power of the relativistic quantum
dynamics.
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