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Quantum-machine-learning channel discrimination
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In the problem of quantum channel discrimination, one distinguishes between a given number of quantum
channels, which is done by sending an input state through a channel and measuring the output state. This work
studies applications of variational quantum circuits and machine-learning techniques for discriminating such
channels. In particular, we explore (i) the practical implementation of embedding this task into the framework
of variational quantum computing, (ii) training a quantum classifier based on variational quantum circuits,
and (iii) applying the quantum kernel estimation technique. For testing these three channel discrimination
approaches, we considered a pair of entanglement-breaking channels and the depolarizing channel with two
different depolarization factors. For the approach (i), we address solving the quantum channel discrimination
problem using widely discussed parallel and sequential strategies. We show the advantage of the latter in terms
of better convergence with less quantum resources. Quantum channel discrimination with a variational quantum
classifier (ii) allows one to operate even with random and mixed input states and simple variational circuits. The
kernel-based classification approach (iii) is also found effective as it allows one to discriminate depolarizing
channels associated not with just fixed values of the depolarization factor, but with ranges of it. Additionally, we
discovered that a simple modification of one of the commonly used kernels significantly increases the efficiency
of this approach. Finally, our numerical findings reveal that the performance of variational methods of channel
discrimination depends on the trace of the product of the output states. These findings demonstrate that quantum
machine learning can be used to discriminate channels, such as those representing physical noise processes.
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I. MOTIVATION

A quantum channel is a linear completely positive trace-
preserving map which transforms quantum states into quan-
tum states. The problem of quantum channel discrimination,
i.e., distinguishing between a given finite set of channels,
is ubiquitous in quantum information and quantum commu-
nication [1–4]. Solving this task forms the core of various
applications, including but not limited to photonic sensing
[5], target quantum detection via quantum illumination [6,7],
and quantum reading [8]. Within a general approach for
implementing quantum channel discrimination one sends an
input state as specified by its density operator ρ in through a
channel �y randomly selected from a collection {� j}N

j=1. The
output state ρout = �y[ρ in] may be equivalently expressed in
terms of positive-operator-valued measures (POVM) [9]. The
POVM is constituted by a set of non-negative Hermitian oper-
ators � = {� j}N

j=1 that add up to the identity. The probability
for the quantum system to be in a particular state �y[ρ] is
determined by the expectation value of the POVM operator
corresponding to this state Tr(�y�y[ρ in]) [10,11], whereas
quantum channel discrimination should return the index y
which labels the channel having been applied.

Depending on the available computational resources and
the properties of a given channel �y, one might adopt vari-
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ous strategies for discrimination [12–15]. In particular, it is
expected that quantum channels can be discriminated more ef-
ficiently if it is allowed to apply a given channel several times.
For different channels and discrimination strategies, the effi-
ciency of discrimination as well as the associated quantitative
measures have previously been considered [16–23]. Of partic-
ular interest and technological relevance [24] are the parallel
and sequential strategies [24]. Given the opportunity to apply
a channel a fixed number of times, the parallel strategy implies
that a channel is applied on distinct quantum subsystems (e.g.,
qubits) simultaneously, whereas in the sequential strategy a
channel acts on the same subsystem step by step.

The problem of quantum channel discrimination can be
seen as an optimization task in the space of parameters speci-
fied by the input state ρ in and the POVM �. This allows one
to put this task into the framework of variational quantum
computing [25–32] and quantum machine learning [33–37].
In the variational scheme, a quantum processor is used to
prepare a family of probe states with a polynomial number
of parameters, while minimizing a given loss function within
this family of states is achieved by a means of classical op-
timization algorithms. In this case, one minimizes the use of
quantum resources by delegating as much computation as pos-
sible to the classical device. Machine learning as implemented
with variational quantum circuits [38–40] allows one to solve
classification tasks for quantum-embedded classical data [41],
learn phases of quantum matter [42–46], and discriminate
quantum states [47,48]. The two latter tasks are peculiar in
a sense that they are solved for quantum data by quantum
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means, which makes them a part of the rapidly advancing
quantum-quantum machine learning [49,50], and the problem
of channel discrimination can be classified likewise.

In this paper, we highlight the use of variational quan-
tum circuits and machine-learning techniques for quantum
channel discrimination. We start our analysis with formu-
lating this task as an optimization problem, followed by a
direct application of variational quantum scheme. Then we
discuss how one can use variational circuits for binary clas-
sification of quantum channels. After that, we demonstrate
that such a binary classifier can be also based on a kernel,
a specific real-valued function of output states of channels
K(�i[ρ],� j[ρ]) for an input state ρ. We test these three
methods of channel discrimination by distinguishing between
a pair of entanglement-breaking channels [51,52], and the
qubit depolarizing channel [53,54].

II. QUANTUM CHANNEL DISCRIMINATION

The problem of binary quantum channel discrimination can
equivalently be viewed as the game of two parties, Alice and
Bob. This game is consisted of the active stage and the training
stage. At the beginning of the active stage, Alice prepares the
state ρ in and sends it to Bob. Then, Bob, in secret, randomly
and with equal probabilities chooses a channel �y ∈ {�0,�1}
and applies it to Alice’s state, so that the output state is ρout =
�y[ρ in]. Having received this state from Bob, Alice measures
the output state with the POVM elements � = {�0,�1 =
1 − �0}, and label the outcome “0” for the channel �0 and
“1” otherwise. The goal of Alice therefore is to find the input
state ρ in and the POVM elements � = {�0,�1} such that
they maximize the probability p00 of getting the measurement
outcome 0 if Bob applied the channel �0 and the probability
p11 of getting the outcome 1 if the applied channel was �1.
These probabilities are

p00 = 1
2 Tr(�0�0[ρ in]),

p11 = 1
2 Tr(�1�1[ρ in]),

where the factors 1
2 are essentially the prior probabilities of

application of the channel �0 or �1 since Bob chooses them
randomly and equiprobably. As p00 + p11 forms the total prob-
ability of successful discrimination, then the task of Alice is
to maximize it. This can formally described as the following
optimization problem:

ps ≡ max{p00 + p11}

= 1

2
max
ρin,�

{Tr(�0�0[ρ in]) + Tr(�1�1[ρ in])}. (1)

Alongside with the probability of erroneous discrimination
pe = p01 + p10, it obviously sums to unity, ps + pe = 1.

To be able to solve the problem (1) for Alice, there is
the training stage in the game. During this stage, we assume
that for each pair (ρ in,�) picked by Alice, Bob provides as
many copies of the state ρout = �y[ρ in] as needed, without
changing the label y ∈ {0, 1}. Moreover, for each output state,
Alice is informed about the channel label y. This is equivalent
to the assumption that Alice can measure the output state
ρout arbitrarily many times, i.e., it is possible to compute the
probabilities in (1) exactly. This is opposed to the situation

at the game’s active stage, when only one measurement is
allowed, and the channel label y is kept in secret. Clearly, the
described game scheme is analogous to binary classification
task as realized in the context of supervised machine learning.

In this particular setting, the probability of successful quan-
tum channel discrimination that can be achieved is upper
bounded by [55]

p� = 1
2 − 1

4 ||�0 − �1||�, (2)

where

||�||� = max
ρ

||(� ⊗ 1)[ρ]||1

is the so-called diamond norm with � being a channel that
maps density operators on a Hilbert space H, 1 the identity
map on HE , ρ a density operator on H ⊗ HE , and ||A||1 =
Tr

√
A†A.

A. Discrimination strategies

So far we have described a channel guessing game when a
channel �y is applied only once. If, however, Alice is allowed
to pass a chosen probe state ρ in through Bob’s channel �y a
finite and fixed number of times p, provided that for each time
the channel label y remains the same, then Alice can adjust the
discrimination strategy by asking Bob to apply the channel �y

in a specific way. One of such ways is applying the channel
p times in parallel, so that the channel acts simultaneously
on the separate subsystems of a composite input state ρ in.
Another approach is to apply the channel sequentially such
that it acts on a single subsystem of a potentially composite
state ρ in. These two discrimination methods are widely dis-
cussed in literature and are called the parallel and sequential
strategies, respectively. In what follows, we formally describe
these strategies assuming that the channels �y are qubit-to-
qubit mappings.

1. Parallel strategy

Consider the previously discussed quantum channel dis-
crimination game and suppose that now Alice can ask Bob
to apply the channel �y a fixed number of times p. In gen-
eral words then, the parallel channel discrimination strategy
implies that the input state of Alice ρ in is at least p qubit, and
Bob acts by the channels �y on each of the p qubits sepa-
rately and simultaneously. Alice is also allowed to have the
input state of more than p qubits, i.e., to add r � 0 auxiliary
qubits to it, as it might potentially help in solving quantum
channel discrimination task in case of an entangled input state
[14,56,57]. The resultant (p + r)-qubit state is then measured
with a POVM �. This discrimination strategy is schematically
shown in Fig. 1.

Let us describe the parallel strategy more formally. Sup-
pose that the channel �y can be applied p times. Then, first,
Alice prepares a (p + r)-qubit state ρ in

PR, with P and R specify-
ing the registers of p and r qubits, respectively. The qubits of
P are then sent through the channels of Bob in parallel, while
the register R remains unaffected. Formally, the output state is

ρout = (
�⊗p

y ⊗ 1⊗r
)[

ρ in
PR

]
, (3)
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FIG. 1. A schematic of the parallel strategy. Provided with the
opportunity of p applications of Bob’s channel �y, Alice prepares a
composite state ρ in

PR of p qubits of the register P and r qubits of the
register R. The qubits of P are sent through the channels �y, while
the qubits of R remain untouched. In the scheme, the lines coming
from ρ in

PR indicate the subsystems of the corresponding registers. At
the end, all p + r qubits are measured with the POVM �.

where �
⊗p
y acts only on the subsystem P and 1⊗r is the iden-

tity on the subsystem R. Alice then measures the output state
ρout with � = {�0,�1}. Therefore, in the parallel strategy,
according to Eq. (1) one has to maximize

ppar
s = 1

2
max
ρin

PR,�

{
Tr

(
�0

(
�

⊗p
0 ⊗ 1⊗r

)[
ρ in

PR

])

+ Tr
(
�1

(
�

⊗p
1 ⊗ 1⊗r

)[
ρ in

PR

])}
, (4)

where the optimization over r, specifying the number of qubits
in the register R, is implicitly included. As was mentioned
earlier, introducing this auxiliary register allows to have the
entanglement between the qubits of the registers P and R,
which may lead to more efficient channel discrimination. For
the described strategy, the probability of successful channel
discrimination is yielded by

ppar
� (p) = 1

2 − 1
4

∥∥�
⊗p
0 − �

⊗p
1

∥∥
� (5)

for p parallel applications of Bob’s channel.

2. Sequential strategy

Now suppose that Alice is again allowed to apply the chan-
nel �y a fixed number of times p. This time, in the sequential
discrimination strategy, Alice’s input state ρ in can be single
qubit, and this qubit can be passed through a channel p times
in a row. But, after each application of the channel �y, Bob
sends the corresponding output state back to Alice, who is
allowed to modify it before sending back to Bob again. After
the pth-channel application, the resultant state is measured
with the POVM �. Like in the parallel strategy, Alice can add
r auxiliary qubits to have a (1 + r)-qubit entangled input state.
The sequential channel discrimination strategy is schemati-
cally shown in Fig. 2.

Formally, this strategy can be described as follows. First,
Alice prepares the input state ρ in

PR which consists of (1 + r)
qubits: the subsystem P of one qubit is acted by the channel
�y, whereas the subsystem R of r qubits remains unaffected.
Suppose Alice is allowed to apply the channel p times. Alice
then sends the input state ρ in

PR to Bob and receives back the
state ρ̃PR = (�y ⊗ 1⊗r )[ρ in

PR]. After that, Alice applies a quan-
tum channel ε1 on the state ρ̃PR which gives ρ1 = ε1[ρ̃PR].

FIG. 2. A schematic of the sequential strategy. Provided with the
opportunity of p applications of Bob’s channel �y, Alice prepares
the composite state ρ in

PR of one qubit of the register P and r qubits
of the register R. The qubit of P is sent through the channels �y,
while the qubits of R remain untouched. After the jth application
of the channel �y, Alice modifies the whole state by applying the
channel E j . In the scheme, the lines coming from ρ in

PR indicate the
subsystems of the corresponding registers. At the end, all 1 + r
qubits are measured with the POVM �.

This procedure is repeated (p − 1) times until Alice has the
state ρp−1 = εp−1[ρp−2], and at the end Alice passes the sub-
system P through the channel �y the last, pth time, and gets
ρout = (�y ⊗ 1⊗r )[ρp−1]. More formally, the whole process
can be described as

ρout = C(�y, E )
[
ρ in

PR

]
, (6)

where E = {ε j}p−1
j=1 and

C(�y, E ) = (�y ⊗ 1⊗r ) ◦ εp−1 ◦ · · · ◦ (�y ⊗ 1⊗r ) ◦ ε2

◦ (�y ⊗ 1⊗r ) ◦ ε1 ◦ (�y ⊗ 1⊗r )

with the channel composition operation (B ◦ A)[ρ] ≡
B[A[ρ]]. The output state ρout is then measured using
the POVM � = {�0,�1}. In this strategy, the optimization
problem (1) becomes

pseq
s = 1

2
max

ρin
PR,�,E

{
Tr

(
�0 C(�0, E )

[
ρ in

PR

])

+ Tr
(
�1 C(�1, E )

[
ρ in

PR

])}
, (7)

where in addition to the input state ρ in
PR and measurement �,

Alice has to optimize over the channels E as well.
As a rule, the sequential strategy, incarnating the idea of

quantum comb [5,58], provides better discrimination results
compared to the parallel strategy [22,23]. Meanwhile, it is
worth mentioning a more general discrimination strategy that
is based on the so-called indefinite casual order of channel
application [15]. It was shown that for ppar, pseq, and pico being
the upper bounds for successful discrimination probabilities
of the parallel, sequential, and indefinite casual order strate-
gies, respectively, there exists a pair of target channels �0 and
�1 satisfying

ppar < pseq < pico.

Although the indefinite casual order strategy gives advantage
over the parallel and sequential ones, we focus on the latter
two in what follows.

B. Variational circuit formulation

Let us embed the parallel and sequential discrimination
strategies into the framework of variational quantum circuits.
That is, we replace all transformations of quantum states by
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FIG. 3. A variational quantum circuit implementing the parallel
channel discrimination strategy from Fig. 1. The initial state ρ in

PR is
prepared from |0〉⊗p

P ⊗ |0〉⊗r
R via the unitary transformation U (θ0),

while the unitary U (θ1) is used to rotate the measurement basis. If
the number of allowed applications of the channel �y is p and the
number of ancillary qubits is r, the technique requires (p + r) qubits.
Note that r could be set to zero.

parametrized unitary operators. Having done that, we accord-
ingly reformulate the optimization problems for ppar

s and pseq
s

defined in (4) and (7), respectively. For the case of a single-
channel application (p = 1), a similar approach of embedding
was applied for discriminating various qubit-to-qubit channels
[59].

1. Parallel strategy

The parallel channel discrimination strategy (4) embedded
into the framework of variational circuits is depicted in Fig. 3.
In this circuit, the probe state ρ in

PR is prepared as

ρ in
PR = U (θ0)[ρ0(p, r)],

where ρ0(p, r) = |0〉〈0|⊗p
P ⊗ |0〉〈0|⊗r

R , U (θ0)[ρ] = U (θ0)ρU †

(θ0), and U (θ0) is a unitary operator parametrized by a set of
real numbers θ0. The register P of p qubits for ρ in

PR is acted
then by the p parallel applications of the channel �y, as it is
done in (3). After that, applied is the unitary U (θ1), which can
be viewed as a rotation of the measurement basis. The output
state then becomes

ρout (θ,�y, p, r) = U (θ1) ◦ F (�y, p, r) ◦ U (θ0)[ρ0(p, r)],

(8)

where θ = θ0 ∪ θ1 and F (�y, p, r) = (�⊗p
y ⊗ 1⊗r ). Clearly,

d = 2p+r states | j〉 = {|i1i2 . . . ip+r〉} with the entries in =
{0, 1} is a span of the Hilbert space of the registers P and
R. In our numerical simulations, we split the computational
basis in two parts of d/2 basis vectors each and associate the

measurement outcomes with the projectors

�0 =
d/2∑

j=1

| j〉〈 j|, �1 =
d∑

j=d/2+1

| j〉〈 j|. (9)

As the result, we come up with the optimization problem that
can be addressed using a hybrid quantum-classical setup:

ppar
s = 1

2 max
θ,r

{Tr[�0 ρout (θ,�0, p, r)]

+ Tr[�1 ρout (θ,�1, p, r)]}. (10)

Thus, (10) together with the circuit in Fig. 3 define the
framework for numerically testing the parallel discrimination
strategy.

2. Sequential strategy

Similarly to the parallel channel discrimination strategy, in
Fig. 4 we depict the sequential strategy (7) formulated in the
framework of variational circuits. In this variational approach,
Alice’s channels E can be applied to the input state ρ in

PR via
the Stinespring representation [60]. Particularly, ε[ρPR] can be
implemented by adding an ancillary register E in the state ρE

of e qubits and performing a unitary evolution U of the joint
state ρPR ⊗ ρE , followed by tracing out the register E . That is,
we have

ε[ρPR] = TrE [U (ρPR ⊗ ρE )U †]. (11)

For this transformation to be general, the register E should
contain e qubits twice as the size of the registers P and R
together [61]. In our setting, this is equal to e = 2(1 + r) with
one qubit in P and r qubits in R.

However, in the followup analysis, we reduce the trans-
formation (11) to the one shown in Fig. 4. In this approach,
we incorporate the register E into R. Furthermore, instead
of the channels E = {ε j}p−1

j=1 we use parametrized unitaries

{U (θ j )}p−1
j=1 , alongside with the operator U (θ0) which prepares

the initial state and the operator U (θp) which rotates the mea-
surement basis, as done in (8). Analogous to (6), the output
state is

ρout (θ,�y, p, r) = C(θ,�y, p, r)[ρ0(r)], (12)

where ρ0(r) = |0〉〈0|P ⊗ |0〉〈0|⊗r
R and

C(θ,�y, p, r) = U (θp) ◦ (�y ⊗ 1⊗r ) ◦ U (θp−1)

◦ · · · ◦ (�y ⊗ 1⊗r ) ◦ U (θ1)

◦ (�y ⊗ 1⊗r ) ◦ U (θ0),

FIG. 4. A variational quantum circuit implementing the sequential channel discrimination strategy from Fig. 2. Alice’s channels E =
{ε j}p−1

j=1 are replaced by the parametrized unitaries {U (θ j )}p−1
j=1 , where p is the number of allowed applications of the channel �y. The input

state ρ in
PR is prepared from |0〉P ⊗ |0〉⊗r

R via the unitary transformation U (θ0), while U (θp) is used to rotate the measurement basis. This method
necessitates (1 + r) qubits, with one qubit in the register P and r qubits in the register R. In analogy with the parallel strategy, r might be set
to zero.
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FIG. 5. A layer of the hardware-efficient Ansatz with 4 input
qubits and 12 variational parameters. Here, Rσ (θ ) = e−ıθσ with σ ∈
{X,Y, Z} specifying the Pauli operator and θ ∈ [0, 2π ) being the
optimization parameters.

with θ = ⋃p
k=0 θk . The channels U should be interpreted as

in (8). Note that there is also U (θ0) which is used to prepare
the input state ρ in

PR = U (θ0)[ρ0(r)]. Technically, in line with
Fig. 4, this can be viewed as a channel ε0 which maps the
single-qubit state |0〉〈0|P from the Hilbert space HP to a (1 +
r)-qubit state in HP ⊗ HR as

ρ in
PR = ε0[|0〉〈0|P] = E0|0〉〈0|PE†

0 + E1|0〉〈0|PE†
1 , (13)

where the Kraus operators are Ej = U (θ0)(| j〉P ⊗ |0〉R)〈 j|P.
The rest of the transformations are unitary and performed in
the extended Hilbert space HP ⊗ HR.

The output state (12) is then measured using the POVM
elements (9) which leads to the optimization problem

pseq
s = 1

2
max
θ,r

{Tr[�0 ρout (θ,�0, p, r)]

+ Tr[�1 ρout (θ,�1, p, r)]}. (14)

As one can notice, the expressions for ppar
s in (10) and pseq

s in
(14) do not differ much except for the structure and the genesis
of the output state ρout. In variational quantum computing,
one may consider these expressions as objective functions,
maximization of which leads to training of the corresponding
circuits.

C. Numerical experiments

We herein describe the results of our numerical simulations
demonstrating the capability of variational quantum channel
discrimination. Although the number of repetitions p and the
number of qubits r in the register R enter Eqs. (10) and (14),
we do not optimize with respect to these parameters. Instead,
we fix p = 1, 2 and vary the amount of ancillary qubits r upon
optimizing the Ansatz parameters θ. The parametrized unitary
operators U (θk ) are implemented in terms of the hardware-
efficient Ansatz [62] whose four-qubit structure is shown in
Fig. 5. This circuit is composed of several layers constituted
by the universal single-qubit rotations and an entanglement
block. In this Ansatz, the number of variational parameters s
is polynomial in the total number of qubits q = p + r and the
number of layers l , s = 3ql for q > 2. In what follows, we
test the variational approach to discriminate the depolarizing
channels and entanglement-breaking channels, mapping two-
qubit states into one-qubit states.

1. Entanglement-breaking channel discrimination

We start our numerical analysis with the variational circuit
approach to discriminating the entanglement-breaking chan-
nels

�0[ρ] =
5∑

j=1

AjρA†
j , �1[ρ] =

5∑

j=1

BjρB†
j , (15)

described by the Kraus operators

A1 = |0〉〈00|, A2 = |0〉〈01|, A3 = |0〉〈10|,

A4 = 1√
2
|0〉〈11|, A5 = 1√

2
|1〉〈11|, (16)

B1 = |+〉〈00|, B2 = |+〉〈01|, B3 = |1〉〈1+|,

B4 = 1√
2
|0〉〈1−|, B5 = 1√

2
|1〉〈1−| (17)

with |±〉 = (|0〉 ± |1〉)/
√

2. In this particular scenario, the
parallel discrimination strategy was demonstrated to never
reach unity of the successful discrimination probability (5),
i.e., ppar

� (p) < 1 for any finite number of channel applications
p [12]. At the same time, the sequential strategy with only p =
2 repetitions allows one to distinguish the channels perfectly,
and the input state does not need to be entangled. To estimate
ppar

� defined in (5), one needs to calculate the diamond norm
which can be done via semidefinite programming [63]. Using
the CVXPY package [64,65], we calculated the probability
ppar

� (p) for p = 1, 2; our results reveal that ppar
� ≈ 0.9268 for

p = 1 and ppar
� ≈ 0.9771 for p = 2.

We proceed by training the variational circuits depicted
in Figs. 3 and 4. Recall that the circuits are trained by
maximizing (10) and (14), respectively. For this task, we
made use of the L-BFGS-B [66] optimization method.
The explicit quantum circuits to be trained to discriminate
the entanglement-breaking channels with p = 2 repetitions
are shown in Fig. 6 for both the parallel and sequential
strategies. In the parallel strategy, for p = 2 the success prob-
ability ppar

s ≈ ppar
� ≈ 0.9771 was achieved with the use of the

hardware-efficient Ansatz of l = 5 layers representing U (θ0)
and U (θ1). Note that to get this probability no ancillary qubits
are needed, i.e., r = 0. In the sequential strategy, even a
one-layer, l = 1, hardware-efficient Ansatz parametrizing the
operators U (θ0), U (θ1), and U (θ2) provides the success prob-
ability pseq

s ≈ 1 for p = 2. Note that for p = 1, the circuits
for both parallel and sequential discrimination look alike, and
using a one-layer hardware-efficient Ansatz results in ps ≈
p� ≈ 0.9268.

It, however, might be excessive to use circuits with that
many parameters, especially in the case of the sequential
strategy. A successful discrimination, as implemented in the
seminal work [12], did not use anything but the channels �y

and a single measurement at all. Meanwhile, even with these
(over)parametrized circuits one is capable of identifying op-
timal input states and measurement bases such that pseq

s ≈ 1.
It is thus reasonable to expect that the variational approach
could be useful for channels �y without any prior knowledge
of them.
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FIG. 6. The explicit variational quantum circuits trained for discriminating the entanglement-breaking channels (15) with p = 2 channel
applications. On the left shown is the circuit for the parallel strategy and on the right is for the sequential strategy. Note that the channels to
be discriminated map two-qubit states into one-qubit states. Therefore, for the sequential strategy, after the first application of the channel �y,
one has to add an extra qubit in some state (in our case, |0〉).

2. Depolarizing channel discrimination

Our study is continued with training the variational quan-
tum circuits for discriminating depolarizing channels as given
by

�(α)[ρ] = (1 − α)ρ + α

3
(σxρσx + σyρσy + σzρσz ), (18)

where the coefficient α determines the depolarization factor,
while σi with i = x, y, z stands for the Pauli operators. We
consider a pair of channels with 0 � α0 �= α1 � 1. In our
numerical simulations, we fixed the number of channel appli-
cations to p = 2; the number of qubits in the ancillary register
R is set to r = 3 for the parallel strategy and r = 4 for the
sequential strategy, so that the total number of qubits was
q = 5 for both cases (see Figs. 3 and 4).

In Fig. 7 shown are the probabilities (10) and (14) for both
parallel and sequential strategy, respectively, as evaluated for
a pair (α0, α1 = α0 + 0.1) starting from α0 = 0. To speed up
the calculations, one might use random Ansatz parameters for
the initial guess at (α0 = 0.0, α1 = 0.1); whereas for each
next pair up to (α0 = 0.4, α1 = 0.5) the optimal parameters
are taken as obtained at an earlier step. The same strategy
can be successfully adopted for a set of parameters starting
from (α0 = 0.9, α1 = 1.0) with random initialization θ down
to (α0 = 0.5, α1 = 0.6).

We have also explored how the achieved probabilities ps

depend on l , the number of layers of hardware-efficient Ansatz
in variational circuits. Clearly, the sequential strategy gives
better results and smaller variance with fewer number of lay-
ers. In this strategy, l = 14 layers turns out to be enough for
achieving the success probability ppar

� for all pairs (α0, α1).
In the parallel strategy, this result cannot be reproduced no
matter how big the value l is (we tested for up to l = 30
layers). One may also notice that despite the same diamond
distances (5), it is harder to achieve higher ppar

� for depolar-
ization factor pairs on the right to α = 0.5. As an instance,
for the pairs (α0 = 0.0, α1 = 0.1) and (α0 = 0.9, α1 = 1.0)
the theoretical probabilities are ppar

� = 0.595, but the obtained
probabilities ps are lower for the second pair of depolarization
factors. We conclude that there might be some dependence
on the trace product between the states passed through the
channels, Tr(ρ0ρ1) with ρy ≡ �(αy)[ρ] (see Appendix A for
details).

III. BINARY QUANTUM CLASSIFIER

Previously, we discussed how one can use variational
quantum computing framework to reformulate and solve the
problem of channel discrimination. With a proper postpro-
cessing of measurements, variational quantum circuits can
also serve as a means to solve classification tasks. For

FIG. 7. Probability of successful discrimination ps between a pair of depolarizing channels with α0 and α1 achieved with the parallel
(left panel) and sequential (right panel) strategies. With different colors shown are the results for specific number of Ansatz layers l . Marks
connected by solid lines stand for the average probabilities obtained after 10 independent runs, and shaded areas are to show the standard
deviation. The black solid line indicates the maximum achievable probability for the parallel strategy ppar

� for p = 2 channel evaluations; for
the sequential strategy, this line overlaps with the purple curve corresponding to l = 14.
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FIG. 8. A schematic of the variational classifier of quantum
channels. Bob prepares the states �y[ρ] ⊗ ρ for Alice who then
applies the unitary U (θ) and measures the resultant state in the
computational basis. The measurement results are further used to
compute the prediction value p as yielded by Eq. (20). To train
the circuit, Alice minimizes the square distances (21) between the
predictions p and the true labels y.

example, one might think of classifying phases of matter
[42,67,68]. That is, having a variational classifier trained on
labeled data points (quantum states of different phases), one
may predict unknown labels of given states. In this section,
we solve a similar problem, limiting ourselves to binary clas-
sification of the depolarizing channel (18) with two different
depolarization factors α0 and α1.

Similarly to the variational channel discrimination dis-
cussed in Sec. II, the problem of building a variational
classifier of quantum channels can be described in the form of
a game between Alice and Bob. In this game, Alice wants to
train a variational circuit U (θ) such that given an output state
of a channel �y from Bob, after postprocessing the results of
measurements, this circuit allows to predict the label y of the
channel applied. There are several peculiarities in the game
we consider. First, Bob sends to Alice not only the output
state ρy = �y[ρ], but the original state ρ as well, i.e., from
Bob Alice receives the states ρy ⊗ ρ. Second, Alice does not
control the original state ρ: it is prepared by Bob, and it is
random and mixed. Third, the postprocessing of measurement
results assumes that Alice is allowed to perform arbitrarily
many measurements or, equivalently, Bob is assumed to give
an arbitrary number of copies of the channel’s output state and
the corresponding original states. This game is schematically
shown in Fig. 8.

Let us describe the game more formally. At the beginning,
Bob picks two values 0 � α0 �= α1 � 1. Bob then selects a
label y ∈ {0, 1}, creates two copies of a randomly generated
(in general, mixed) qubit state ρ, and passes one of these states
through a quantum channel giving ρy = �(αy)[ρ]. The other
copy of the state remains unaffected. Bob sends the state ρy ⊗
ρ to Alice who feeds this as an input for the variational circuit
U (θ), and the resultant state is determined by

ρ(αy, θ) = U (θ)(ρy ⊗ ρ)U †(θ). (19)

Alice measures the observable σz ⊗ σz for calculating

p(θ) = 1
2 (1 + Tr[ρ(αy, θ) (σz ⊗ σz )]), (20)

that is used to quantify the prediction of the label y. The task of
Alice is to train the circuit U (θ) such that given a pair ρy ⊗ ρ

one is able to predict the label y of the depolarizing channel
based on (20), i.e., for some 0 < b < 1 Alice returns y = 0 if
p � b, and y = 1 otherwise.

To train the circuit, Bob provides Alice with the training
set {ρ j

y j ⊗ ρ j, y j}Ntrain
j=1 where y j ∈ {0, 1} are true labels and the

superscript in ρ j indicates that each state is different since
generated randomly. Then, Alice feeds each pair into the
circuit U (θ) and calculates the predictions p j (θ) as defined
by (20). Having obtained {p j (θ), y j}Ntrain

j=1 , Alice makes use of
the least-squares loss function to determine the optimal circuit
parameters θ:

f (θ) =
Ntrain∑

j=1

[y j − p j (θ)]2. (21)

Knowing the true labels y j and having sorted predictions
p j , Alice can determine the parameter b that separates two
classes. Calculating can be based on maximizing the accuracy
during training. The search of b is carried out iteratively.
At each step t , Alice takes the prediction pt and groups
all the elements that are less than or equal to b to belong
to the first class (p1, p2, . . . , pt ) ∈ {“0”} and to the second
class (pt+1, pt+2, . . . , pNtrain ) ∈ {“1”} otherwise. As a result, b
equals to the prediction value pt , the division by which gives
the best accuracy during the training.

Having found the optimal circuit parameters θopt and the
border value b, Alice must test the obtained classifier. To
do that, Alice receives from Bob a set {ρ j

y j ⊗ ρ j}Ntest
j=1, which

does not contain the true labels y j . As during the training,
Alice feeds each state ρ

j
y j ⊗ ρ j from the test set to the cir-

cuit U (θopt ), computes the corresponding prediction values p j

in (20), and assigns the label y j = 0 if p j � b or y j = 1 if
p j � b.

To test the described approach of building a variational
channel classifier, we performed numerical experiments of
distinguishing the depolarizing channels (18) with different
depolarization factors α0 and α1. To represent the variational
circuit U (θ), we considered the three Ansätze:

U1(θ) =CR12
y (θ7)[Rx(θ3)Rz(θ2)Rx(θ1)]

⊗ [Rx(θ6)Rz(θ5)Rx(θ4)], (22)

U2(θ) = [Rz(θ2)Rx(θ1)] ⊗ [Rz(θ4)Rx(θ3)], (23)

U3(θ) = Rz(θ2)Rx(θ1). (24)

The first Ansatz U1(θ), where CR12
y (θ ) represents a controlled

Y rotation with the first control and the second target qubit,
is up to the two-qubit gate essentially a hardware-efficient
Ansatz of a single layer shown in Fig. 5. The second Ansatz
U2(θ) is a truncated realization of U1(θ) with no entangling
gate present. The classifiers built on the Ansätze U1(θ) and
U2(θ) are two qubit, and they are trained on the pairs ρy j ⊗ ρ j ,
as described in the beginning of the section. The third Ansatz
U3(θ) is of single-qubit structure, and in this case the classifier
is trained on the states ρy j that passed through a channel,
without feeding in the original states ρ j .

The results of our numerical experiments with the clas-
sifiers based on the Ansätze (22)–(24) are shown in Fig. 9.
These results are obtained after training the classifiers on sets
of the size Ntrain = 1000 and tested on sets of the same size,
Ntest = 1000. A close inspection of the plots suggests that
even the U3-based classifier that takes only the states ρy j for
training is capable of discriminating the quantum channels
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FIG. 9. The accuracy of quantum channel discrimination as obtained on the test set for depolarizing channels with α0 and α1. The left,
center, and right panels show the accuracy of U1-, U2-, and U3-based classifiers defined in (22)–(24), respectively. The training and test sizes
are Ntrain = Ntest = 1000.

with some accuracy. Among U1 and U2 classifiers which are
trained on pairs ρy j ⊗ ρ j , the better accuracy is achieved by
the one that uses a simpler though less expressive Ansatz with
no two-qubit gates. In our numerical simulations, as shown
in Fig. 9 this U2-based classifier unveils excellent accuracy
in discriminating the channels with α0 � 0.75 � α1. Inter-
estingly, the U3-based classifier yields the highest degree of
discrimination accuracy for the depolarization factors α = 0.7
or 0.8, i.e., near 0.75. This agrees with the fact that extremum
of the function

K(ρα, ρα+ε ) = Tr(ραρα+ε )

is reached at α = 0.75 − ε/2 for any ρ �= 1/2, provided 0 �
(α + ε) � 1. This can be established by solving the equa-
tion ∂αTr(ραρα+ε ) = 0 for α.

IV. KERNEL-BASED CLASSIFIER

An alternative way for discriminating quantum channels
using a quantum processor can be traced back to the kernel
methods which can be formulated as follows. Suppose we
have a set of states X = {ρi}. The kernel is essentially a
function K : X × X → R that guarantees the Gram matrix
Ki j = K(ρi, ρ j ) to be positive semidefinite [37]. In particular,
the trace of the product of density operators,

K(ρi, ρ j ) = Tr(ρiρ j ), (25)

mentioned in previous sections, does possess such proper-
ties. The kernel-based classification methods are built on the
so-called representer theorem [69]. One can think of super-
vised machine learning based on the support vector machine
where the so-called kernel trick is widely utilized [70,71].
In this method, given a training set {ρ j, y j}Ntrain

j=1 with labels
y j ∈ {−1,+1}, the cost function for maximization is

f (θ) =
Ntrain∑

i=1

θi − 1

2

Ntrain∑

i, j=1

θiθ j K(ρi, ρ j ) yiy j (26)

with respect to θ = {θ j}Ntrain
j=1 , on condition that

∑Ntrain
i=1 θiyi = 0

and θi � 0 [72]. Having found the optimal parameters θopt =
arg maxθ f (θ), one returns the labels based on the prediction

function

p(ρ) =
Ntrain∑

i=1

θ
opt
i yi K(ρi, ρ) + b, (27)

where the bias b is defined by

b =
Ntrain∑

i=1

θ
opt
i yi K(ρi, ρm) − ym

for any m such that θ
opt
m > 0. In binary classification, the class

ones assigns to a given ρ is determined by y = sgn[p(ρ)].
To formulate the problem of channel discrimination based

on quantum kernel estimation, we again consider the game
between Alice and Bob. Again, in this game Alice tries
to discriminate two depolarizing channels of the form (18).
However, this time the problem for Alice is harder: the
channels will be associated not with fixed values of the de-
polarizing factors, but with ranges of it.

Let us formalize the game. First, Alice chooses an input
state ρ in and sends Ntrain copies of it to Bob. Then, Bob
selects two intervals α−1 and α+1 such that αy ⊂ [0, 1]. After
that, Bob tosses a fair coin and attributes heads to y = −1
and tails to y = +1. Finally, Bob picks up a random αy ∈ αy

and applies the depolarizing channel to one of Alice’s states,
ρy = �(αy)[ρ in]. As was mentioned, the class labels y = ±1
are attributed not to the specific values of the depolarization
factor α, but to the fixed intervals of it. Having done that
for all the states, Bob sends the training set {ρ j

y j , y j}Ntrain
j=1 to

Alice who trains the classifier by maximizing the function
(26). Here in ρ

j
y j , the subscript y j ∈ {±1} tells the interval the

depolarization factor α is taken from, while the superscript j
highlights that this factor is in general different for different
input states ρ in (recall that Bob picks αy ∈ αy randomly).
Note that Bob does not tell Alice the intervals αy or the
depolarizing factors αy that were chosen, Alice knows only
their true labels y ∈ {−1,+1}. To test the classifier, Alice
sends Ntest copies of the state ρ in to Bob, who sends back
the test set {ρ j

y j = �(α j
y j )[ρ

in]}Ntest
j=1 prepared similarly to the

training one. For each state ρ j ≡ ρ
j
y j of the test set, Alice

calculates the prediction p(ρ j ) as specified by (27) and assigns
to this prediction the class label y j = sgn[p(ρ j )]. In practice,
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FIG. 10. The accuracy of quantum classifiers trained to discriminate depolarizing channels corresponding to the intervals of the depolariza-
tion factor I1, I2, I3, and I4 and defined by Eqs. (28)–(31), respectively. The corresponding classification accuracies are A1 = 0.999, A2 = 1.0,
A3 = 0.67, and A4 = 0.519. The input state is ρ in = |+〉〈+|, and the sizes of the training and test sets are Ntrain = 100 and Ntest = 1000. The
vertical axis shows the normalized prediction value determined by (27). The color intensity features the density of data points.

Alice could estimate the kernel K(ρi, ρ j ) = Tr(ρiρ j ) via the
so-called controlled-SWAP test routine [73].

To test the kernel-based approach of classification, we per-
formed numerical experiments by training such a classifier
on sets of the size Ntrain = 100 and testing it on sets of the
size Ntest = 1000. In what follows, we consider four classi-
fier instances trained for discriminating the channels with the
following pairs of intervals of the depolarization factors α:

I1 = {α−1 = [0.0, 0.5), α+1 = [0.5, 1.0]}, (28)

I2 = {α−1 = [0.1, 0.2], α+1 = [0.7, 0.9]}, (29)

I3 = {α−1 = [0.0, 0.75], α+1 = [0.25, 1.0]}, (30)

I4 = {α−1 = [0.0, 0.25) ∪ [0.5, 0.75),

α+1 = [0.25, 0.5) ∪ [0.75, 1.0]}. (31)

In I1, the classifier is trained to recognize if a given state ρα is
taken from α < 0.5 or α � 0.5. In I2, the classes are chosen to
comprise subsets of [0, 1] which do not overlap. The intervals
I3 are selected to test the performance of the classifier for
intersecting regions. I4 divides [0,1] into four parts such that
the first and the third parts belong to the class y = −1 and the
second and the fourth parts are marked by y = +1. The input
state was set to ρ in = |+〉〈+|, and the cost function (26) was
maximized using the SLSQP method which supports bounds
and constraints [74].

The results of our numerical simulations as presented in
Fig. 10 reveal that the classifier trained to discriminate the
channels from I1 and I2 provides excellent accuracy. More-
over, the higher accuracy is achieved in case the regions
α−1, α+1 are separated. In contrast, we expect a priori low ac-
curacy for I3. For example, the states ρα j from [0.25, 0.75] =
α−1 ∩ α+1 could happen to have different labels y for the
same depolarization factor α. In this case, it turns out that the

training performance is substantially dependent on the initial
assignments of the parameters θ. Remarkably, in case of I4 the
regions α−1 and α+1 do not intersect which translates to the
fact that the states ρ j are expected to be classifiable, and yet
the classifier fails. To remedy this issue, Alice could train the
classifier on n copies of the output states ρ⊗n

j . This allows one
to modify the kernel accordingly:

K(ρi, ρ j ) = Tr
(
ρ⊗n

i ρ⊗n
j

) = [Tr(ρiρ j )]
n. (32)

The numerical results with this kernel are elaborated on in
Appendix B.

V. DISCUSSION

To summarize, we discuss the approaches we used to solve
the quantum channel discrimination problem. First, we did put
the task into the framework of variational quantum computing
paradigm. Namely, we stated the optimization problem of
Eq. (1) in terms of optimizing the parameters of an Ansatz cir-
cuit [see (10) and (14)]. Potentially, this gives an opportunity
for discriminating channels using noisy intermediate-scale
quantum (NISQ) multiqubit systems [75]. In the context of
variational quantum computing, we stressed out that the se-
quential strategy (7) is superior to the parallel strategy (4)
which is in line with the previous studies. The sequential
strategy with p = 2 channel applications allows one to per-
fectly discriminate the entanglement-breaking channels (15).
In case of depolarizing channel (18), the sequential strategy
still performs better (see Fig. 7), although the the total number
of qubits to be used is the same for both methods.

Being reformulated in terms of the variational quantum
computing, the parallel strategy with p-channel applications
requires a quantum computer of p primary and r ancillary
qubits, so that the total amount of qubits is Qpar = p + r.
On the other hand, in the sequential strategy, Qseq = 1 + r
qubits have to be provided, revealing thus no dependence on p.
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Despite the advantage in the number of qubits, with growing
p and r, the sequential strategy might be worse in terms of
the number of optimization parameters C = |θ|. Indeed, if
every unitary U (θk ) is a hardware-efficient Ansatz of l layers,
it necessitates Cseq = 3l (1 + r)(p + 1) ∼ O(pr) parameters
to optimize over. In contrast, in the parallel strategy, Cpar =
2 × 3l (p + r) ∼ O(p + r). That is, by choosing a strategy one
trades quantum resources Q for classical resources C, and
vice versa. Recall that for p = 2 our observation suggests that
for the same total amount of qubits, the sequential strategy
outperforms the parallel strategy.

In this work, we also addressed the quantum channel dis-
crimination problem solved using a variational-circuit-based
quantum classifier. It was mentioned that the best performance
is achieved when the classifier is trained on the pairs of the
original state ρ and its copy �[ρ] which passed through a
channel. Inspired by the approach to quantum channel dis-
crimination as realized with the use of parallel and sequential
strategies, we attempted to train the classifier on the pairs
of the state �[ρ] and the state |0〉〈0|⊗r , so that the varia-
tional circuit is a (r + 1)-layered hardware-efficient Ansatz.
Furthermore, we performed the training on the r copies of
the state �[ρ]⊗r . However, none of these two training ways
results in a good performance. Remarkably, training such a
quantum classifier with a simpler and less expressive Ansatz
is advantageous. In principle, the circuit of seven parameters
U1 defined in (22) is capable of preparing any pure two-qubit
state, showing yet worse performance compared to the one
trained with the Ansatz U2 in (23) containing no entangling
gates. We tried to add a CX gate to this circuit, which increases
its expressive power without introducing any optimization
parameters. Still, the Ansatz gives a lower performance, which
suggests that this fact cannot be attributed to overparametriza-
tion. Despite the assumption that we are given a pair of ρ

and �[ρ] states, and we may, in principle, perform arbitrary
number of measurements, this quantum-machine-learning ap-
proach is very powerful. First, the original input states may
be random and even mixed. Second, one needs a circuit-based
quantum computer of two qubits only and no entangling gates.

Kernel-based methods for quantum channel discrimination
were also studied in this work. We deliberately considered
a more complex task with the channels being specified by
the intervals αy of the depolarization factor α and not of its
fixed values αy. The reason for this is that with fixed input
states ρ in and the two depolarizing channels with α±1, it
would be enough to have a training set of only Ntrain = 2
states, {�(α−1)[ρ in],�(α+1)[ρ in]}. Special attention should
be paid to the case of discriminating the depolarizing channels
corresponding to the intervals I4 in (31), which divides the line
[0, 1] into four parts with assigning the class y = −1 to the
first and third parts and the class y = +1 to the second and
fourth parts. In principle, these classes are expected to be sep-
arable, and yet our classifier fails to do that. In Appendix B,
we show this issue can be relaxed by modifying the kernel
as K(ρi, ρ j ) = Tr(ρ⊗n

i ρ⊗n
j ) = [Tr(ρiρ j )]n for n ∈ N, which

is similar to the classical kernel K(xi, x j ) = (|xi · x j |2)n for
x ∈ Rd [76]. Moreover, this simple modification of the kernel
allows one to use random and mixed input states ρ in instead
of the fixed ρ in = |+〉〈+|.

It should be stressed that machine-learning tasks based
on quantum kernel estimation are classical quantum. That is,
one first maps classical data points x ∈ Rd into pure quantum
states |x〉 of a Hilbert space, for which the density operators
are ρ = |x〉〈x| and the kernel reduces to K(xi, x j ) = |〈xi|x j〉|2.
Such transformation is called a feature map, and in its simplest
form it is specified by

x = {xi}d
i=1 −→ |x〉 =

d⊗

i=1

[cos(xi/2)|0〉 + sin(xi/2)|1〉].

In principle, one can suggest more efficient mapping scheme,
meanwhile the necessity of encoding x → |x〉 is considered
as an important shortcoming of classical-quantum machine
learning. However, in the task of quantum channel discrim-
ination, the data points ρ are quantum and do not need to be
encoded, although these quantum states are in general mixed.

Interestingly, the function K(ρi, ρ j ) = Tr(ρiρ j ) seems to
play an important role in the other considered approaches of
channel discrimination. That is, for the approach of variational
computing embedding, we found that the less expressive the
Ansatz is (i.e., the fewer layers l it has) the more it cor-
relates with the trace of the product (see Appendix A). In
addition, for the variational quantum classifier, we observed
that with a proper Ansatz the classification is perfect for the
depolarization factors (α0, α1) such that α0 � 0.75 � α1. For
the output states of the depolarizing channel ρα = �(α)[ρ],
the point α = 0.75 is the extremum of the function K(ρα ) =
Trρ2

α with ∀ ρ �= 1/2 [or, more generally, the minimum of
K(ρα, ρα+ε ) = Tr(ραρα+ε ) is at α = 0.75 − ε/2] (see Ap-
pendix A for details). By this we suggest that while solving
the quantum channel discrimination problem, one must pay
attention not only to the diamond-norm distance between the
target channels, but also to the trace of the product of their
output states.

All the approaches considered in our study have their pros
and cons, as well as different assumptions. The first approach,
variational circuit embedding assumes that we are given a
number of channel applications p and an arbitrary number of
measurements in the training stage, but in the active stage only
one measurement is allowed. On the other hand, the second
approach, the variational quantum classifier assumes only a
single-channel application, but requires to be trained on the
pairs of the output and original states ρα ⊗ ρ, and also needs
many measurements for estimating expectation values. But, at
the same time the states ρ can be random and even mixed. The
third approach which is based on quantum kernel estimation
also requires many measurements for computing the kernel,
but allows to discriminate parameter-dependent channels for
different ranges of parameters that belong to different classes.
As pointed out in Appendix B, this technique of quantum
channel discrimination could be improved by training on n
copies of input states, which is equivalent to raising the kernel
to the power of n.

The data and code that support the findings of this study
are available from A.S.K. upon reasonable request.
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FIG. 11. Trace of the product (left) and the diamond distance (right) for the parallel discrimination strategy versus depolarization factors
(α0, α1) for p = 2 channel applications. Herein, �y ≡ �(αy ) is the depolarizing channel (18), and ρy = �(αy )[ρ].
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APPENDIX A: DEPENDENCE ON THE TRACE
OF THE PRODUCT

While solving the quantum channel discrimination prob-
lem in the variational quantum computing framework [see
(10) and (14) in the main text], one may expect that the
performance significantly depends on the number of Ansatz
layers l and on the diamond-norm distance between the chan-
nels which determines ppar

� as given in (5). Considering the
depolarizing channels �0 and �1 in the form of (18) with
the depolarization factors α0 and α1, it can be seen that the
diamond distance ||�⊗p

0 − �
⊗p
1 ||� for p = 2 channel appli-

cations is symmetric (see Fig. 11). At the same time, in our
numerical simulations, we observe that it is harder to achieve
theoretical success probability ppar

� for the pairs of factors
(α0, α1) which are on the right side to α = 0.5 (see Fig. 7).
Interestingly, this seems to correlate with the trace of the
product of density operators Tr(ρ0ρ1), where ρy = �(αy)[ρ],
∀ ρ �= 1/2 (see Fig. 11). Moreover, it appears that the more

Ansatz layers l one uses to maximize the success probability
ps, the less the convergence properties depend on the trace
of the product. In Fig. 12, this can be observed upon close
inspection of the Pearson’s coefficients.

APPENDIX B: MODIFIED KERNEL

In machine learning, the kernel is a complex- or real-valued
function K(ρi, ρ j ) that produces a positive-semidefinite ma-
trix Ki j = K(ρi, ρ j ). Among various kernels considered in
the domain of classical machine learning, the simplest one is
K(xi, x j ) = (|xi · x j |2)n for some n ∈ N and classical data x ∈
Rd . When the data are quantum, i.e., ρ is a density operator on
Cd , a similar kernel is K(ρi, ρ j ) = Tr(ρ⊗n

i ρ⊗n
j ) = [Tr(ρiρ j )]n

given in (32) in the main text.
In our numerical simulations, we can see that the perfor-

mance of the kernel-based classifier may depend on n, the
number of copies of the channel output states used to train
the classifier. That is, in Fig. 10 one can notice that for the
intervals

I4 = {α−1 = [0.0, 0.25) ∪ [0.5, 0.75),

α+1 = [0.25, 0.5) ∪ [0.75, 1.0]}
mentioned in (31), the classifier trained on the single-copy
states (n = 1) fails to separate the classes. In Fig. 13, we

FIG. 12. The Pearson correlation coefficients between the trace of the product, diamond distance, and the average successful discrimination
probabilities. On the left are the results for the parallel strategy, and on the right are for the sequential strategy. Each data point is obtained by
averaging out five independent runs. By solid lines, data points are fitted by the functions of l , the number of layers of the hardware-efficient
Ansatz. We used f (l ) = l−1/a for fitting the trace of the product, and g(l ) = 1 − e−bl for the diamond distance.
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FIG. 13. The accuracy of the kernel-based classifier obtained on the test set for the intervals I4 defined in (31). From left to right given
are the accuracy for the classifiers based on the kernel (32) for different n ∈ {1, 2, 3, 4}. The corresponding classification accuracies are
A1 = 0.522, A2 = 0.708, A3 = 0.941, and A4 = 0.981. The input state is ρ in = |+〉〈+|, and the sizes of the training and test sets are Ntrain = 100
and Ntest = 1000. The vertical axis shows the normalized prediction value defined in (27). The color intensity features the density of data
points.

show the results of classification for I4 obtained with differ-
ent numbers of state copies n. Apparently, for achieving the
best classification accuracy in this case one should use n = 4
copies of the channel output states for training. In this case,
one modifies the kernel K(ρi, ρ j ) = Tr(ρiρ j ) such that it is
just raised to the power of n = 4.

As mentioned in the main text, we also discovered that
this modification of the kernel makes the classifier more pow-
erful in terms of the allowed input states. That is, instead
of ρ in = |+〉〈+|, the input state can be random and mixed,
as for the variational quantum classifier we tested in our

study. In Fig. 14, we show classification accuracy for the
intervals

I1 = {α−1 = [0.0, 0.5), α+1 = [0.5, 1.0]}

and random mixed input states (ρ in )⊗n with n ∈ {1, 2, 3, 4}.
As can be seen, with n = 1 the classifier fails to predict the
labels when the input states are random, compared to the case
when they are fixed [recall that the intervals I1 are discussed in
(28) and tested for the classifier with fixed input ρ in = |+〉〈+|,
see Fig. 10].

FIG. 14. The accuracy of the kernel-based classifier obtained on the test set for the intervals I1 defined in (28). From left to right given
are the accuracy for the classifiers based on the kernel (32) for different n ∈ {1, 2, 3, 4}. The corresponding classification accuracies are
A1 = 0.595, A2 = 0.847, A3 = 0.869, and A4 = 0.858. The input states ρ in are random and mixed, and the sizes of the training and test sets are
Ntrain = 100 and Ntest = 1000. The vertical axis shows the normalized prediction value defined in (27). The color intensity features the density
of data points.
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