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Dynamic attenuation scheme in measurement-device-independent quantum key distribution over
turbulent channels
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Measurement-device-independent quantum key distribution (MDI QKD) offers great security in practice
because it removes all detector side channels. However, conducting MDI QKD over free-space channels is
challenging. One of the largest culprits is the mismatched transmittance of the two independent turbulent
channels causing a reduced Hong-Ou-Mandel visibility and thus a lower secret key rate. Here we introduce
a dynamic attenuation scheme, where the transmittance of each of the two channels is monitored in real time
by transmitting bright light pulses from each users to the measurement device. Based on the measured channel
transmittance, a suitable amount of attenuation is introduced to the low-loss channel at the measurement device.
Our simulation results show a significant improvement of QKD performance, especially when using short raw
keys.
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I. INTRODUCTION

Ever since the Bennett-Brassard 1984 (BB84) protocol
was proposed, quantum key distribution (QKD) has enjoyed
tremendous progress. In particular, free-space experiments
have progressed from just 30-cm [1] to 7600-km satellite-
based connections [2].

Despite this progress, numerous hacking techniques have
been discovered. While in theory, QKD is secure, realistic
implementations deviate from ideal models used in the se-
curity proofs. In particular, detectors may be vulnerable to
a plethora of attacks, including the detector blinding attack
[3,4], time-shift attack [5], backflash attack [6], and many
others (see Jain et al. [7]).

Two types of countermeasures have been proposed. The
first type involves addressing new attacks as they are discov-
ered and adjusting the setup accordingly in order to thwart
them. An example of such countermeasures is adding an
optical isolator to combat the backflash attack. However,
unknown attacks cannot be anticipated. The second type in-
volves device-independent QKD (DI QKD) protocols [8–10].
In this category, a common entanglement source sends photon
pairs to Alice and Bob. Because entanglement is monoga-
mous, the protocol is provably secure with the proof relying
directly on the violation of Bell’s inequalities [11]. However,
a loophole-free Bell test is very challenging in practice [12].
For a recent experimental demonstration of DI-QKD, see
Ref. [13].
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A more practical protocol, called measurement-device-
independent QKD (MDI QKD) [14], automatically removes
all detector side-channels by employing time-reversed entan-
glement. In this protocol, Alice and Bob send light pulses to a
third party, Charlie, who possesses a Bell-state analyzer based
on linear optics and single-photon detection. Charlie projects
the input photons to Bell states and publicly announces the
measurement results, which allows Alice and Bob to gener-
ate a secret key by classical postprocessing. MDI QKD has
been widely implemented with attenuated laser sources that
incorporate the decoy-state protocol [15–17]. It has also been
implemented on chips [18] and with cost-effective setups [19].

The Bell-state analyzer in MDI QKD relies on the Hong-
Ou-Mandel (HOM) effect [20] where photons from Alice and
Bob interfere at a 50:50 beam splitter. A high HOM visibility
can usually be translated into a low quantum bit error rate
(QBER) and therefore a high secret key rate. To achieve a high
HOM visibility, photons from Alice and Bob should be in-
distinguishable in all degrees of freedom. Furthermore, when
the MDI QKD is implemented with weak coherent sources,
a high HOM visibility requires the average photon numbers
from Alice and Bob to be matched at the beam splitter [21,22].

In practice, the two quantum channels (one from Alice to
Charlie, and another from Bob to Charlie) may have different
transmittance. One could account for this mismatch by simply
adding extra fiber on the low-loss channel so that each channel
equally attenuates the light pulses [15]. While being unwieldy
in a future quantum network with many users, this approach
can improve the HOM visibility at the cost of a lower de-
tection rate. A better solution is the asymmetric MDI QKD
protocol where Alice and Bob use different intensity profiles
[23,24]. The asymmetric MDI QKD allows Alice and Bob to
send different intensities to help account for the asymmetric
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channel loss. This results in a large improvement over simply
adding fiber [24].

Unfortunately, the above asymmetric MDI QKD protocol
requires static channels (such as optical fiber) and may not
be applicable in free-space MDI QKD, where the transmit-
tance of each of the two channels fluctuates randomly and
independently of the other channel. Asymmetric protocols
could still help for compensating the mismatch of the average
channel losses. To compensate for the channel fluctuation,
Alice and Bob would have to know the instantaneous channel
transmittance and change their QKD parameters on the scale
of milliseconds [25].

In free-space BB84 setups, an adaptive postselection
scheme was proposed where a stronger probe beam would
be multiplexed with the single-photon pulses to monitor the
atmospheric transmittance at a given time [26–29]. The time
blocks with lower transmittance would correspond to a higher
QBER. Hence, discarding pulses measured in those blocks
could increase the key rate despite reducing the detection rate
[30]. Recent work, such as Refs. [31–33], has also introduced
this idea to MDI QKD.

In this work, we propose a dynamic attenuation scheme
to improve the key rate of free-space MDI QKD. Similar to
the adaptive postselection scheme in BB84 QKD, both Alice
and Bob transmit strong probe beams with known intensities
to Charlie, who determines the channel transmittances in real
time by measuring probe beams with classical photodetectors
and then applies an appropriate amount of attenuation on
one of the paths to compensate for the mismatch of channel
transmittance. The effect is similar to the case of adding extra
fiber in asymmetric channels. Our simulations show that using
dynamic attenuation makes MDI QKD considerably more ro-
bust in turbulence. In the high-turbulence region, our scheme
still shows improvement even when we consider a nonzero
minimum loss for Charlie’s variable attenuators.

Our discussion is organized as follows. Section II contains
pertinent background for MDI QKD, discusses how turbu-
lence affects transmission, and details our proposed scheme.
Section III outlines our simulation model and presents our
results. Lastly, Sec. V contains a brief discussion of our ap-
proach and suggests future work. Details of the noise model
we used and the secure key calculation are provided in the
Appendix.

II. THEORY

A. Polarization encoding MDI QKD

Inspired by time-reversed entanglement [34,35], MDI
QKD was proposed as a solution to detector side-channel
attacks. In this protocol, Alice and Bob generate a key by
sending laser pulses to a potentially untrusted third party,
Charlie, who projects them onto Bell states and publicly an-
nounces his results. In general, they may choose time-bin
encoding [36–38], phase encoding [39], or polarization en-
coding [16,40]. Here, we work with polarization encoding.

Phase-randomized weak coherent pulses remain common
in QKD implementations. To improve the performance of
QKD, decoy-state protocols are employed [41–43]. The orig-
inal MDI QKD protocol used three different intensities

FIG. 1. Basic measurement setup for Charlie in a polarization
encoding MDI QKD experiment. Alice and Bob send pulsed laser
beams to Charlie whose experimental setup consists of a beam
splitter (BS), two polarization beam splitters (PBS), and four single-
photon detectors (D). Charlie publicly announces his measurement
results and one of Alice and Bob may apply bit-flip depending on the
Bell state detected and the encoding basis.

[14,44]. Zhou et al. then showed a sizable improvement with a
four-intensity method [45]. A seven-intensity method was also
suggested to account for asymmetric channels in Ref. [24]
where Alice and Bob could choose their signal and decoy
parameters independently to account for asymmetric loss. In
this work, we only consider channels with identical statistical
distribution, so the four-intensity protocol is adopted.

In MDI QKD with polarization encoding, Alice and Bob
encode their random bits on the polarization of weak coherent
states, using one of the two bases, rectilinear (Z) or diagonal
(X ), and Charlie performs Bell-state measurements using a
setup depicted in Fig. 1.

A bit of raw key is generated whenever Charlie measures
a coincidence of photons with orthogonal polarizations (V
and H , respectively) using a set of four single-photon de-
tectors, {D1H , D1V , D2H , D2V }, and Alice and Bob use the
same encoding basis. Charlie announces the outcome |ψ−〉
whenever coincidences occur on D1V D2H or D1H D2V , and he
announces |ψ+〉 if coincidences occur on D1H D1V or D2H D2V ,
instead. Other detection patterns are simply discarded. In the
rectilinear basis, errors occur whenever Alice and Bob send
the same polarization, and Charlie announces |ψ−〉 or |ψ+〉.
In the diagonal basis, errors occur whenever Alice and Bob
send the same polarization and Charlie announces |ψ−〉 or
Alice and Bob send orthogonal polarization states and Charlie
announces |ψ+〉.

Notice in Fig. 1 that Charlie only measures in the rectilin-
ear basis. To ensure a low error rate when Alice and Bob use
the diagonal basis, Charlie relies on the HOM effect to bunch
identical photons from Alice and Bob at the beam splitter.
High HOM visibility requires Alice’s and Bob’s photons to be
identical in every degree of freedom at the beam splitter. In the
case of phase-randomized weak coherent sources, the average
photon numbers from Alice and Bob should be matched at
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the beam splitter [21,22]. Consequently, it can be difficult
to consistently achieve high HOM visibility in a turbulent
atmosphere with fluctuating transmittance. The central idea
of our dynamic attenuation scheme is to compensate the trans-
mittance mismatch by dynamically controlling the amount of
attenuation introduced.

B. Atmospheric effects

The transmittance coefficient of light η follows a lognormal
distribution through a weak to moderate turbulent channel
[46–48]. In this regime, we can express the effect of tur-
bulence using two parameters, the average transmittance η0

and the log irradiance variance σ 2 which characterizes the
severity of the turbulence. The probability distribution of the
transmittance coefficient (PDTC) is given by

P(η) = 1√
2πση

e
−

[
ln( η

η0 )+ σ2
2

]2

2σ2 . (1)

Very weak to moderately strong turbulence for a 3-km chan-
nel has σ 2 ranging from 10−3 to about 1.2 at 1550-nm
wavelength. After this point, the lognormal distribution for
transmittance loses validity [46].

The average loss η0 can be determined from atmospheric
visibility and channel length. Due to the complexity of dif-
ferent atmospheric and aerosol models, software such as
MODTRAN [49,50] and FASCODE [51] is often required to find
transmittance for an arbitrary wavelength.

In this work, we consider average losses of η0 = 17, 14,
11, and 8 dB in each channel (excluding the efficiency of
detector), and we choose QKD parameters based on a recent
free-space MDI-QKD demonstration [31]. We then simulate
the secret key rate using a range of values for σ 2 and show
that dynamic attenuation makes MDI QKD more tolerant of
channel fluctuation.

C. Dynamic attenuation scheme

We propose a scheme where high-speed, low-loss variable
optical attenuators (VOAs) are placed before Charlie’s beam
splitter (see Fig. 2) to balance the transmittance fluctuations
between the two channels. Both Alice and Bob transmit strong
probe beams with known intensities along the same paths
as the QKD signals, but slightly separated in wavelength.
Charlie can separate the probe beams from the QKD signals
using dense wavelength-division multiplexing (DWDM) tech-
nology and determine the channel transmittance in real time
by measuring probe beams with classical photodetectors. He
further applies an appropriate amount of attenuation on the
high-transmittance path.

The goal of adding additional attenuation is to balance
the loss between the two channels and improve the HOM
visibility. However, because additional loss could negatively
impact the raw key rate, an optimal balance must be found to
maximize the final secret key rate, as we discuss below.

If we assume Alice’s and Bob’s channels are independent,
the joint probability distribution is simply

P(ηA, ηB) = P(ηA)P(ηB), (2)

where P(η) is defined in Eq. (1).

FIG. 2. Charlie’s measurement setup with dynamic attenuation
using probe beams sent by Alice and Bob. The multiplexed probes
are separated by DWDMs and their intensities are measured using
classical light detectors. Charlie, based on the measurement results
of the probe beams, applies a proper amount of attenuation to the
channel with lower loss using variable optical attenuators.

Since the secret key rate is a function of transmittance, one
can compute the average key rate using the following integral,
given an infinite key length:

Rave =
∫ 1

0

∫ 1

0
R(ηA, ηB)P(ηA)P(ηB)dηAdηB, (3)

where we used Eq. (2) for the joint probability distribution.
R(ηA, ηB) is the key rate bounded by [14]

R � P1,1
Z Y 1,1

Z

[
1 − H2

(
e1,1

X

)] − QZ fEC(EZ )H2(EZ ), (4)

where P1,1
Z is the probability of sending a single-photon pair

in the Z basis, Y 1,1
Z is the yield of a single-photon pair in the Z

basis, and QZ and EZ are the gain and error rates, respectively.
e1,1

X is the error rate of a single photon in the X basis, fEC is the
error-correcting efficiency, and H2(x) is the Shannon binary
entropy function.

When using dynamic attenuation, the joint PDTC is trans-
formed according to

P(ηA′, ηB′) =
∫∫

K (ηA′, ηB′, ηA, ηB)P(ηA, ηB)dηAdηB,

(5)
where K (ηA′, ηB′, ηA, ηB) represents the kernel relating the
new joint PDTC with the original one. Because we cannot
achieve infinite resolution, a lookup table is used instead of
the kernel.

If we use the lookup table to transform the joint probability
distribution, the asymptotic key rate after dynamic attenuation
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TABLE I. ηD is the detector efficiency, edZ and edX are misalign-
ments in their respective bases, Y0 is the dark count probability, and
fEC is the error-correction efficiency.

ηD edZ edX fEC Y0

0.5 0.003 0.03 1.1 7 × 10−7

is found from Eq. (3). We deduce

R′
ave =

∫ 1

0

∫ 1

0
R(ηA′, ηB′)P(ηA′, ηB′)dηA′dηB′, (6)

where the integral is evaluated numerically.
Furthermore, Eq. (6) must be modified in the case of finite

key size, because when additional loss is introduced, the finite
size effect is exacerbated. Consequently, rather than integrate
the PDTC against the secure key rate, we integrate to find new
sifted key and error sizes {nZ , nX , mZ , mX } and use a bounded
version of Eq. (4) afterward. Thus, we separately compute the
following:

ni, j
X,Z =

∫ 1

0

∫ 1

0
ni, j

X,Z (ηA, ηB)P(ηA′, ηB′)dηA′dηB′, (7)

mi, j
X,Z =

∫ 1

0

∫ 1

0
mi, j

X,Z (ηA, ηB)P(ηA′, ηB′)dηA′dηB′, (8)

where ni, j
X,Z and mi, j

X,Z represent the number of sifted bits and
errors, respectively, in the X and Z bases and for i and j states
(signal, or one of the decoy states) from Alice and Bob. Once
the sifted bits and errors have been found, we compute the
full secure key length using our sifted bits and errors and
QKD system parameters. A detailed description of the key
calculation can be found in the Appendix.

III. PARAMETER OPTIMIZATION AND KERNEL
GENERATION

In QKD using decoy states [41–43], it is essential to opti-
mize the intensity of each state and the probability of sending
it. Here, we employ the four-intensity protocol; therefore, six
parameters must be optimized. In particular, Alice and Bob
use the set of intensities {s, μ, ν, ω}, where s is the signal state
intensity, μ and ν are the decoy state intensities, and ω = 0 is
the vacuum state.

We optimize decoy parameters stochastically using MAT-
LAB’s built-in genetic algorithm. This is a preferred technique
because it requires neither differentiability nor any initial
data points. It also runs reasonably quickly on an ultrabook’s
Ryzen 5 processor.

Prior to optimization, we choose the total number of pulses
N , Z-basis misalignment edZ , X -basis misalignment edX , dark
counts Y0, detector efficiencies ηD, and an estimated channel
transmittance η0. Our choices are taken from a recent free-
space MDI-QKD experiment in Ref. [31] and are listed in
Table I.

Because the lognormal distribution’s median is consider-
ably less than the mean for higher turbulence, about 3–6 dB
of extra loss in each arm must be budgeted into η0 at the
optimization and lookup stages, compared to the simula-

tion step. We, therefore, optimize channels assuming η0 ∈
{0.01, 0.02, 0.04}.

In the optimization and lookup table generation, we com-
pute the finite secure key rate using

R = P2
s

{
s2e−2sY 1,1

X,min

[
1 − H2

(
e1,1,max

X

)] − QZ fEC(EZ )H2(EZ )
}
,

(9)

where Ps is the probability of sending a signal state, s is the
average photon number of the signal state, Y 1,1

X,min is the lower
bound of a single-photon pair yield in the X basis, and QZ and
EZ are the Z-basis (signal) gain and error rates, respectively.
e1,1

X,max is the upper bound of the single-photon pair error rate
in the X basis, fEC is the error-correcting efficiency, and H2(x)
is the Shannon binary entropy function. A detailed calculation
can be found in the Appendix.

Once decoy parameters are obtained, the lookup table is
generated where the transmittance of Alice’s and Bob’s chan-
nels are varied in the range 0.001 � η0 � 1 in increments of
about 0.001. For each pair of transmittances, we compute the
key rate using Eq. (9) assuming a static channel. Specifically,
we evaluate the key rate after applying an additional 0.1 dB to
the stronger channel until we find the maximum.

The case in Fig. 3 represents the procedure needed to pro-
duce a single point in the final lookup table. In this example,
we select transmittances of ηA = 0.15 and ηB = 0.04 and we
apply an incremental attenuation of 0.1 dB to Alice’s side to
bring hers closer to Bob’s. Each point represents 0.1 dB of
additional attenuation for Alice since her channel has higher
transmittance. Figure 3(a) shows the improvement in secure
key rate as we attenuate Alice’s (stronger) side. Notice in
Fig. 3(b), as we attenuate Alice, we see improved HOM visi-
bility at the expense of single-photon yield. We balance these
two effects by evaluating Eq. (9) for each point, where we
assume an entire experiment with data size N was conducted
with new transmittance, tA. We observe the maximum im-
provement to the key rate at about 2 dB of attenuation, which
we record in the lookup table for these two transmittances.

A plot of the optimal attenuation as a function of transmit-
tance of Alice’s and Bob’s channels is shown in Fig. 4. Here,
we observe that the optimum is zero additional attenuation
for many combinations of transmittances, except when their
imbalance is large. However, the channels will most likely
be highly imbalanced when the atmospheric turbulence is
strong. If we apply the optimal attenuation, the impact on the
secret key rate, as shown in Fig. 5, increases precipitously as
the imbalance goes up. The reason is because for much of
the yellow region the key rate without dynamic attenuation
vanishes rapidly for higher mismatch.

Computing time determines the fineness of the lookup
table. The finer the resolution, the more accurately the table
will approximate the ideal kernel K [Eq. (5)]. Improvements
can still be seen when the resolution is more coarse than about
0.001, but the effects are less pronounced.

IV. RESULTS

Once the lookup table is produced for a given set of param-
eters, we produce PDTCs for different atmospheric conditions
using Eq. (1). We start with very weak turbulence of σ 2 =
0.001 and go up to σ 2 = 1.2, after which we would need to
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FIG. 3. Results using a lookup table for ηA = 0.15, ηB = 0.04, and N = 1013 pulses. (a) Improvement in secure key rate when we attenuate
the stronger channel (Alice). (b) Improvement of the HOM visibility, thereby our estimate of e1,1

X , and the decrease in yield as Alice’s channel
is attenuated.

move beyond the lognormal model of turbulence [46]. Our
choices of η0 assume losses of 17, 14, 11, and 8 dB in each
channel.

To produce each PDTC, we numerically integrate to deter-
mine the number of sifted bits for each pair of transmittances,
as in Eq. (8). The integral is computed by evaluating the
PDTCs in 0.001 increments in the range 0 � η � 1, for both
Alice’s and Bob’s channels, and finding the number of sifted
bits contributing to the final key. We evaluate the noise model
using each pair of transmittances, additionally attenuate the
stronger transmittance using the lookup table, and separately
determine the number of sifted bits and errors for both cases.

FIG. 4. Plot of the optimal amount of attenuation needed to pro-
duce the highest key rate for different combinations of Alice’s and
Bob’s transmittances when N = 1014. The middle of the plot requires
no additional attenuation because the transmittances are already
close. In high turbulence, Alice’s and Bob’s channels will likely have
very different transmittances and hence dynamic attenuation is useful
to enhance the key rate.

Afterward, we evaluate the secure key rate corresponding
to the sifted bit and error sizes for the original PDTC and the
transformed PDTC. Results are shown in Fig. 6, and decoy
parameters for each run are given in Table II.

In Fig. 6 we see the greatest impact when working at the
strongest amounts of turbulence (indicated by increasing σ )
and thus channel imbalance. In particular, for many of the
plots shown, we see that dynamic attenuation gives the ability
to generate a secure key when the atmospheric conditions
would not otherwise allow it.

Results show that dynamic attenuation gives a higher
secure key rate when the turbulence-induced transmittance
fluctuation is more severe, as manifested by a higher σ 2. The

FIG. 5. Improvement in the secure key rate when the optimal
attenuation is applied, where R2 and R1 are the key rates with and
without dynamic attenuation. Under turbulent conditions, when Al-
ice’s and Bob’s transmittances fluctuate the most, and transmittances
are likely very different, Alice and Bob see the greatest benefit of
dynamic attenuation. In the white region near the axes, no secure key
can be generated, even with dynamic attenuation.
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FIG. 6. Key rate using dynamic attenuation (red dotted curves) compared with key rate without dynamic attenuation (blue dashed curves)
vs severity of turbulence for various pulse sizes and average losses. Notice the improvement in key rate is better for higher turbulence.

largest benefit can be seen in shorter keys, though there is
still an advantage in large ones. Furthermore, if we vary loss
and keep σ 2

A = σ 2
B = 1.0, we can see an improvement in loss

tolerance as shown in Fig. 7.
In the above simulations, we have assumed the mini-

mum loss of the VOA can be set to 0 dB. However, if one
considers implementing the high-speed VOA using a commer-
cial LiNbO3amplitude modulator, the minimum insertion loss
could be about 2–3 dB. There will be a penalty on secret key
rate associated with the minimum insertion loss. Nevertheless,
the advantage of the dynamic attenuation scheme at high
turbulence remains, as shown in Fig. 8.

Figure 8 shows that dynamic attenuation with nonzero
insertion loss is only beneficial beyond a certain level of
turbulence. Thus, one should only use dynamic attenuation
when the turbulence is high. At low data rates, this could be
problematic, but for 1-GHz pulse rates [52], it takes about 15–
20 min to send N = 1012. In this time frame, it is unlikely that
turbulence will change drastically, as shown in Refs. [53–55],

TABLE II. Decoy parameters for each of our simulations.

N dB s μ ν Ps Pμ Pν

1012 28 0.353 0.229 0.051 0.527 0.055 0.285
1013 34 0.450 0.200 0.037 0.573 0.066 0.219
1014 40 0.499 0.198 0.026 0.466 0.123 0.295

so an entire experiment could be completed when turbulence
is high and dynamic attenuation is most useful.

FIG. 7. Dynamic attenuation compared to conventional key rate
in a turbulent channel and a static channel for various average losses.
The lookup table and decoy parameters for 20-dB loss in each arm
were used so a positive key could be achieved for a larger range of
losses.
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FIG. 8. The impact of the minimum loss of VOA. Secret key
rates with dynamic attenuation and minimum loss of 0 dB (red dotted
curve) and 2 dB (green dash-dotted curve), and secret key rates
without dynamic attenuation (blue dashed curve).

V. CONCLUSION

We introduced the seemingly paradoxical idea that one
could enhance the secure key rate of an MDI QKD setup in
turbulence by adding loss in one of the channels. We improved
the HOM visibility by dynamically adding loss to balance the
constantly fluctuating channel transmittances. This dynamic
attenuation modified the original joint PDTC to one which
was more favorable to MDI QKD.

We remark that classical beacon laser beams are commonly
used in free-space QKD for synchronization, polarization
alignment, beam tracking, wave-front correction, etc. The
same beacon laser beams could also be used as the probe
beams to implement our protocol. In this regard, it could
be beneficial to first perform the other corrections men-
tioned above to maximize the transmittance of each individual
channel and then apply the dynamic attenuation scheme.1 Fur-
thermore, dynamic attenuation could be piggybacked off such
systems, eliminating the need for additional probe beams.

It should be pointed out that in order to use fiber-based
VOAs, one needs VOAs with extremely low loss, because
much of the plot area in Fig. 4 shows an optimal attenuation of
0 dB whenever the channels’ transmittances are close. Adding
too much loss under these conditions could spoil advantages
gained through dynamically attenuating less balanced chan-
nels. Nevertheless, as shown in Fig. 8, a strong advantage still
remains for higher turbulence.

Our results show that secure keys can be obtained for
much higher turbulence when one applies dynamic attenua-
tion, especially when using short raw key lengths. We have
shown that automated channel transmittance balancing is very
helpful in extending MDI QKD’s use in a highly turbulent
environment.

1We thank the anonymous reviewer for the comment.

It would be interesting to derive the kernel K used in our
calculations [Eq. (5)] rigorously and apply our method in
conjunction with a postselection process [31].
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APPENDIX: NOISE MODEL AND FINITE KEY
CALCULATION

Here we describe the model needed to predict the sifted key
and error quantities, and then we proceed to compute the finite
secure key length using a method described in the Appendix of
Ref. [24]. We consider intensities of Alice’s and Bob’s beams
in the set {sA,B, μA,B, νA,B, ω}, where s is the signal, μ and
ν are decoy states, and ω = 0 is the vacuum state, assuming
perfect intensity modulators. ηD is the detector efficiency for
all detectors and ηA,B are the channel transmittances excluding
the detector.

1. Noise model

a. Z basis

The probability of coincidence when Alice and Bob send
opposite polarizations is

nz1 = 1
2 (1 − 2ed,Z )(1 − e−ηAηDsA )(1 − e−ηBηDsB ), (A1)

where dark counts are neglected, as well as cases of Alice and
Bob both being misaligned. PsA,B and N are suppressed in this
step, because they are canceled in the secure key calculation.

Whenever Alice and Bob send the same polarization, the
coincident probability is

nz2 = 1
2

(
1 − e−(1−ed,Z )ηAηDsA e−(1−ed,Z )ηBηDsB

)
× (ed,ZηAηDsA + ed,ZηBηDsB + 2Y0). (A2)

We have nZ = nz1 + nz2 and mX = nz2.

b. X basis

We refer to each intensity as ki, where i = 2 and 3 are the
decoy states, and i = 4 is the vacuum. The only coincidences
that survive sifting have the same intensity state.

First, consider when Alice and Bob send opposite polar-
izations. Whenever a single photon is incident at the beam
splitter, the only coincidences that are possible are due to dark
counts. We have

Pcoin = ηAηDki,Ae−ηAηDki,AY0 + ηBηDk j,Be−ηBηDk j,BY0. (A3)

When Alice and Bob each send one photon, we have

Pcoin = ηAηBη2
Dki,Ak j,Be−ηAηDki,A−ηBηDk j,B . (A4)

In the case where Alice or Bob sends two photons and the
other sends no photons, we have

ηAηBη2
De−ηAηDki,A−ηBηDk j,B

k2
i,A + k2

j,B

2
. (A5)

032405-7



ROLLICK, SIOPSIS, AND QI PHYSICAL REVIEW A 106, 032405 (2022)

Three-photon events are not considered, and so the model
loses accuracy at lower losses and high photon numbers.

The number of |ψ−〉 events is

nc1 = 1

2

[(
ηAηDki,Ae−ηAηDki,AY0 + ηBηDk j,Be−ηBηDk j,BY0

)
+ 0.5

(
ηAηBη2

Dki,Ak j,Be−ηAηDki,A−ηBηDk j,B
)
(1 − 2ed,X )

+ 0.25

(
ηAηBη2

De−ηAηDki,A−ηBηDk j,B
k2

i,A + k2
j,B

2

)]
, (A6)

and the number of |ψ+〉 events is

nw1 = 1

2

(
(ηAηDki,Ae−ηAηDki,AY0 + ηBηDk j,Be−ηBηDk j,BY0)

+ (ηAηBη2
Dki,Ak j,Be−ηAηDki,A−ηBηDk j,B )ed,X

+ 0.25ηAηBη2
De−ηAηDki,A−ηBηDk j,B

k2
i,A + k2

j,B

2

)
. (A7)

When Alice and Bob send the same polarization state, the
analysis is similar, except with the roles of |ψ+〉 and |ψ−〉
exchanged. Therefore, nc2 = nc1 and nw2 = nw1. Finally, we
have

ni, j
X = 2(nc1 + nw1),

mi, j
X = 2nw1. (A8)

2. Secure key calculation

The set of probabilities {nZ , nX , mZ , mX } derived above can
be used to calculate the secure key rate, by mostly following
the steps in the Appendix of Ref. [24]. Having suppressed N
and Pki, j , the gains are given by

Qi, j
X = ni, j

X ,

T i, j
X = mi, j

X , (A9)

where ni, j
X applies to all decoy intensities i ∈ {2, 3, 4}. Next,

we apply bounds according to γ = 5.3, the number of stan-

dard deviations of an observed value from the expected. This
value of γ corresponds to a failure probability of less than
10−7. We have

Qi, j
X = Qi, j

X + γ

√
Qi, j

X

NPki Pkj

,

Qi, j
X = Qi, j

X − γ

√
Qi, j

X

NPki Pkj

,

T i, j
X = T i, j

X + γ

√
T i, j

X

NPki Pkj

,

T i, j
X = T i, j

X − γ

√
T i, j

X

NPki Pkj

.

Then, we define

Qνν
M1 = eνA+νB Qνν

X − eνA Qνω
X − eνB Qων

X + Qωω
X ,

Qμμ
M2 = eμA+μB Qμμ

X − eμA Qμω
X − eμB Qωμ

X + Qωω
X .

We place lower and upper bounds on yield,

Y 1,1
X,min = 1

μA − νA

(
μA

νAνB
Qνν

M1 − νA

μAμB
Qμμ

M2

)
, (A10)

and error,

e1,1
X,max = 1

νAνBY 1,1
X,min

(eνA+νB Tνν − eνA Tνω − eνB Tων + Tωω ).

(A11)

Finally, we define Ez as the error rate in the Z basis. The secure
key rate is

R = PsA PsB

{
sAsBe−(sA+sB )Y 1,1

X,min

[
1 − h2

(
e1,1

X,max

)]
− fECQ1,1

Z H2(Ez )
}
, (A12)

where fEC is the error-correcting efficiency which we set to
1.10, and H2 is the binary Shannon entropy.

[1] C. H. Bennett and G. Brassard, SIGACT News 20, 78 (1989).
[2] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren,

J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H.
Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang,
Q. Wang, Y.-L. Zhou et al., Nature (London) 549, 43 (2017).

[3] V. Makarov, New J. Phys. 11, 065003 (2009).
[4] L. Lydersen, M. Akhlaghi, A. Majedi, J. Skaar, and V. Makarov,

New J. Phys. 13, 113042 (2011).
[5] B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, Quantum Inf.

Comput. 7, 73 (2007).
[6] P. Pinheiro, P. Pereira, S. Chaiwongkhot, R. Sajeed, J.-P. Horn,

T. Bourgoin, N. Jennewein, V. Lütkenhaus, and Makarov,
Opt. Express 26, 21020 (2018).

[7] N. Jain, B. Stiller, I. Khan, D. Elser, C. Marquardt, and G.
Leuchs, Contemp. Phys. 57, 366 (2016).

[8] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V.
Scarani, Phys. Rev. Lett. 98, 230501 (2007).

[9] J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett. 95, 010503
(2005).

[10] D. Mayers and A. Yao, in Proceedings 39th Annual Symposium
on Foundations of Computer Science (Cat. No. 98CB36280)
(IEEE, New York, 1998), pp. 503–509.

[11] J. S. Bell, Phys. Phys. Fiz. 1, 195 (1964).
[12] A. Garg and N. D. Mermin, Phys. Rev. D 35, 3831 (1987).
[13] W. Zhang, T. van Leent, K. Redeker, R. Garthoff, R.

Schwonnek, F. Fertig, S. Eppelt, W. Rosenfeld, V. Scarani,
C. C.-W. Lim, and H. Weinfurter, Nature (London) 609, 687
(2022).

[14] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503
(2012).

032405-8

https://doi.org/10.1145/74074.74087
https://doi.org/10.1038/nature23655
https://doi.org/10.1088/1367-2630/11/6/065003
https://doi.org/10.1088/1367-2630/13/11/113042
https://doi.org/10.1364/OE.26.021020
https://doi.org/10.1080/00107514.2016.1148333
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevD.35.3831
https://doi.org/10.1038/s41586-022-04891-y
https://doi.org/10.1103/PhysRevLett.108.130503


DYNAMIC ATTENUATION SCHEME IN … PHYSICAL REVIEW A 106, 032405 (2022)

[15] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W.
Tittel, Phys. Rev. Lett. 111, 130501 (2013).

[16] Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, Phys.
Rev. Lett. 112, 190503 (2014).

[17] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou,
S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang et al., Phys. Rev.
Lett. 117, 190501 (2016).

[18] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L.
You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F.
Xu, and J.-W. Pan, Phys. Rev. X 10, 031030 (2020).

[19] R. Valivarthi, Q. Zhou, C. John, F. Marsili, V. B. Verma, M. D.
Shaw, S. W. Nam, D. Oblak, and W. Tittel, Quantum Sci.
Technol. 2, 04LT01 (2017).

[20] C.-K. Hong, Z.-Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044
(1987).

[21] C. Wang, F. Wang, H. Chen, S. Wang, W. Chen, Z. Yin, D. He,
G. Guo, and Z. Han, J. Lightwave Technol. 35, 4996 (2017).

[22] E. Moschandreou, J. I. Garcia, B. J. Rollick, B. Qi, R. Pooser,
and G. Siopsis, J. Lightwave Technol. 36, 3752 (2018).

[23] F. Xu, M. Curty, B. Qi, and H.-K. Lo, New J. Phys. 15, 113007
(2013).

[24] W. Wang, F. Xu, and H. K. Lo, Phys. Rev. X 9, 041012 (2019).
[25] G. R. Osche, Optical Detection Theory for Laser Applications

(Wiley & Sons, New York, 2002).
[26] C. Erven, B. Heim, E. Meyer-Scott, J. P. Bourgoin, R.

Laflamme, G. Weihs, and T. Jennewein, New J. Phys. 14,
123018 (2012).

[27] I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G.
Vallone, and P. Villoresi, Phys. Rev. Lett. 109, 200502 (2012).

[28] G. Vallone, D. G. Marangon, M. Canale, I. Savorgnan, D.
Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and
P. Villoresi, Phys. Rev. A 91, 042320 (2015).

[29] W. Wang, F. Xu, and H.-K. Lo, Phys. Rev. A 97, 032337 (2018).
[30] E. Moschandreou, B. J. Rollick, B. Qi, and G. Siopsis, Phys.

Rev. A 103, 032614 (2021).
[31] Y. Cao, Phys. Rev. Lett. 125, 260503 (2020).
[32] W. Wang, F. Xu, and H.-K. Lo, arXiv:1910.10137.
[33] Z.-D. Zhu, D. Chen, S.-H. Zhao, Q.-H. Zhang, and J.-H. Xi,

Quantum Inf. Process. 18, 33 (2019).
[34] E. Biham, B. Huttner, and T. Mor, Phys. Rev. A 54, 2651

(1996).
[35] H. Inamori, Algorithmica 34, 340 (2002).
[36] X. Ma, C.-H. F. Fung, and M. Razavi, Phys. Rev. A 86, 052305

(2012).
[37] F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, Optica 4, 1034

(2017).
[38] Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang,

K. Cui, H.-L. Yin, N.-L. Liu, L. Li et al., Phys. Rev. Lett. 111,
130502 (2013).

[39] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L.
Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L.
Andersen, Nat. Photonics 9, 397 (2015).

[40] T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral,
G. P. Temporão, and J. P. von der Weid, Phys. Rev. A 88, 052303
(2013).

[41] W. Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
[42] H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[43] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
[44] Z.-W. Yu, Y.-H. Zhou, and X.-B. Wang, Phys. Rev. A 91,

032318 (2015).
[45] Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, Phys. Rev. A 93,

042324 (2016).
[46] Z. Ghassemlooy, W. Popoola, and S. Rajbhandari,

Optical Wireless Communications: System and Channel
Modelling with Matlab® (CRC, Boca Raton, FL,
2012).

[47] J. W. Goodman, Statistical Optics (Wiley & Sons, New York,
1985).

[48] S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical
Channels: Fibers, Clouds, Water, and the Atmosphere (Springer,
Berlin, 2013).

[49] A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN:
A Moderate Resolution Model for LOWTRAN, Technical Re-
port SSI-TR-124 (Spectral Sciences, Inc., Burlington, MA,
1987).

[50] A. Berk, J. van den Bosch, F. Hawes, T. Perkins, P. F. Conforti,
G. P. Anderson, R. G. Kennett, and P. K. Acharya, MOD-
TRAN®6.0.0 (Revision 5) User’s Manual (Spectral Sciences
Inc., Burlington, MA, 2016).

[51] H. Smith, D. Dube, M. Gardner, S. Clough, and F. Kneizys,
FASCODE-Fast Atmospheric Signature Code (Spectral Trans-
mittance and Radiance), Technical Report No. 2 (VISIDYNE,
INC., Burlington, MA, 1978).

[52] L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W.
Sharpe, S. W.-B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields,
Nat. Photonics 10, 312 (2016).

[53] B. Li, H. Wang, X. Wu, J. Li, and X. Zhang, Optik (Munich,
Ger.) 126, 2726 (2015).

[54] D. Sprung, E. Sucher, A. Ramkilowan, and D. J. Griffith, in
Remote Sensing of Clouds and the Atmosphere XIX; and Optics
in Atmospheric Propagation and Adaptive Systems XVII, Society
of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, Vol. 9242, edited by A. Comern, K. Stein, E. I.
Kassianov, J. D. Gonglewski, and K. Schfer (SPIE, Bellingham,
WA, 2014), p. 92421I.

[55] C. Qing, X. Wu, X. Li, Q. Tian, D. Liu, R. Rao, and W. Zhu,
Astron. J. 155, 37 (2018).

032405-9

https://doi.org/10.1103/PhysRevLett.111.130501
https://doi.org/10.1103/PhysRevLett.112.190503
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevX.10.031030
https://doi.org/10.1088/2058-9565/aa8790
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1109/JLT.2017.2764140
https://doi.org/10.1109/JLT.2018.2850282
https://doi.org/10.1088/1367-2630/15/11/113007
https://doi.org/10.1103/PhysRevX.9.041012
https://doi.org/10.1088/1367-2630/14/12/123018
https://doi.org/10.1103/PhysRevLett.109.200502
https://doi.org/10.1103/PhysRevA.91.042320
https://doi.org/10.1103/PhysRevA.97.032337
https://doi.org/10.1103/PhysRevA.103.032614
https://doi.org/10.1103/PhysRevLett.125.260503
http://arxiv.org/abs/arXiv:1910.10137
https://doi.org/10.1007/s11128-018-2146-9
https://doi.org/10.1103/PhysRevA.54.2651
https://doi.org/10.1007/s00453-002-0983-4
https://doi.org/10.1103/PhysRevA.86.052305
https://doi.org/10.1364/OPTICA.4.001034
https://doi.org/10.1103/PhysRevLett.111.130502
https://doi.org/10.1038/nphoton.2015.83
https://doi.org/10.1103/PhysRevA.88.052303
https://doi.org/10.1103/PhysRevLett.91.057901
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevA.91.032318
https://doi.org/10.1103/PhysRevA.93.042324
https://doi.org/10.1038/nphoton.2016.50
https://doi.org/10.1016/j.ijleo.2015.06.074
https://doi.org/10.3847/1538-3881/aa9e8f

