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To quantify the intrinsic information content in a quantum state, Brukner and Zeilinger introduced the
concept of operationally invariant information in terms of the outcome probabilities of measuring a complete
set of mutually complementary observables [Č. Brukner and A. Zeilinger, Phys. Rev. Lett. 83, 3354 (1999)].
This information quantity has basic significance and implications, and the present work is devoted to some
further studies of it. We first introduce the Brukner-Zeilinger invariant information in the presence of conjugate
symmetry or antisymmetry, which are motivated by considerations of fundamental issues concerning conjugate
symmetry in quantum mechanics. Then we prove that both the Brukner-Zeilinger invariant information with
conjugate symmetry and that with conjugate antisymmetry are convex in the quantum state, and we show that
they constitute a natural decomposition of the Brukner-Zeilinger invariant information. We further relate them
to the imaginarity (i.e., the usage of a complex number field) of quantum mechanics and evaluate their extreme
values.
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I. INTRODUCTION

The concepts of uncertainty and information content play
a fundamental role in quantum information theory. In the
conventional quantum mechanics, uncertainty is often quan-
tified via variance and entropies, with exemplary applications
in characterizing the Heisenberg uncertainty principle and
correlations in composite systems [1–8]. Uncertainty and
information are complementary to each other and actually
constitute two sides of the same substrate.

A remarkably simple and significant measure of informa-
tion is the Brukner-Zeilinger invariant information,

I (ρ) = trρ2 − 1

d
, (1)

of a quantum state ρ in a d-dimensional system [9–13]. This
quantity has several interpretations and has found interest-
ing applications in quantum information theory [14–18]. The
purpose of this work is devoted to a further study of this fun-
damental quantity. We introduce some derived quantities of
the Brukner-Zeilinger invariant information in the presence of
conjugate symmetry and further reveal their basic properties.

As the simplest conjugation, complex conjugation is one
of the most primitive ingredients in complex analysis and the
foundations of Hilbert space formalism of quantum mechan-
ics. Indeed, the very definition of the inner product (scalar
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product) of a complex Hilbert space relies heavily on complex
conjugation, which underlines the basic notions of distance,
states, and observables in the quantum realm. Various quan-
tities in quantum theory are defined via an inner product
involving complex conjugation. In general, as a kind of Z2

symmetry, conjugation is intimately related to the transpose,
time reversal, spin flip, parity, reflection, etc.

As is well known, Wigner characterized all reversible evo-
lutions in quantum mechanics: Any symmetry transformation
in a system Hilbert space is represented by a unitary or an
antiunitary operator [19–24]. Furthermore, Wigner developed
a normal form of antiunitary operators and showed that any
antiunitary operator can be represented as a product form of
a unitary operator and a conjugation. In this context, conjuga-
tion serves as one of the most important antiunitary operators
and plays a fundamental role in quantum foundations and
quantum information theory [19–26]. In particular, since con-
jugation is intrinsically related to time reversal, it also plays
a crucial role in PT -symmetric quantum mechanics [27–32].
Conjugation enters in the explicit formula of the entanglement
of formation [33] and is also intimately related to the trans-
pose, which is indispensable in the celebrated positive partial
transpose criterion for entanglement detection [34,35]. These
connections indicate that conjugation and associated quanti-
ties may be used to characterize and quantify correlations.

Motivated by the above backgrounds, it is natural and inter-
esting to consider observables with conjugate symmetry, i.e.,
observables commuting with the complex conjugation relative
to a fixed orthonormal basis, and study the Brukner-Zeilinger
invariant information in the presence of conjugate symmetry
or antisymmetry.
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The work is structured as follows. In Sec. II, we review
briefly conjugate symmetry and its fundamental features. In
Sec. III, we study the Brukner-Zeilinger invariant information
in the presence of conjugate symmetry and its basic prop-
erties. Finally, we conclude with a summary in Sec. IV. In
the Appendix, we summarize various interpretations of the
Brukner-Zeilinger invariant information, which may be of
independent interest.

II. CONJUGATE SYMMETRY

In this section, we recall the conjugation operator and the
decomposition of any operator into the conjugate symmetric
part and the conjugate antisymmetric part, which turn out to
be the projections of the operator onto the symmetric subspace
and the antisymmetric subspace of the Hilbert space of ob-
servables, respectively.

Given any fixed orthonormal basis BC = {|μ〉 : μ =
1, . . . , d} of a d-dimensional complex Hilbert space HC with
an inner (scalar) product 〈·|·〉 conjugate linear in the first
variable and complex linear in the second variable, we may
forget the complex structure and formally regard it as a 2d-
dimensional real Hilbert space with the orthonormal basis

BR = BC ∪ iBC = {|μ〉, i|μ〉 : μ = 1, . . . , d}.
To indicate the difference, we denote the corresponding real
Hilbert space as HR. We emphasize that dim HC = d (as a
complex Hilbert space) while dim HR = 2d (as a real Hilbert
space), and as sets of vectors, HC and HR are the same, only
the number fields are different, that is, we allow multiplica-
tion of vectors by any complex number in HC , while only
multiplication by a real number is allowed in HR. The inner
product in HR is the real part of the inner product in HC. The
associated conjugation J : HR → HR is a real linear isometry
on HR defined as

J|μ〉 = |μ〉, J (i|μ〉) = −i|μ〉, μ = 1, . . . , d.

Therefore, the matrix representation of the conjugation
operator J on HR relative to the (ordered) basis BR =
{|1〉, . . . , |d〉, i|1〉, . . . , i|d〉} is JHR

= diag(1d ,−1d ), where
1d denotes the d × d identity matrix. We remark that in this
work the capital letters such as J refer to operators and those
with the subscript such as JHR

and JHC
refer to their corre-

sponding matrix representations relative to the bases BR and
BC , respectively. Clearly, when regarded as an operator on
HC, J is conjugate linear (also called antilinear) in the sense
that J (c|ψ〉) = c∗J (|ψ〉) for any |ψ〉 ∈ HC and c ∈ C. Here
c∗ denotes the complex conjugation of c ∈ C. In general,

J

(
d∑

μ=1

cμ|μ〉
)

=
d∑

μ=1

c∗
μ|μ〉, cμ ∈ C. (2)

It is clear that J2 = 1 and J = J−1, where 1 denotes the
identity operator on the space HC .

Given the representation of the conjugation operator J , we
come to the decomposition of any observable A,

A = A+ + A−, (3)

on the system Hilbert space HC , with

A+ = 1
2 (A + JAJ ), A− = 1

2 (A − JAJ ),

satisfying

A+J = JA+ = 1
2 {A, J}, A−J = −JA− = 1

2 [A, J].

Here {X,Y } = XY + Y X and [X,Y ] = XY − Y X denote the
anticommutator (symmetric Jordan product) and the commu-
tator (antisymmetric Lie product) of operators, respectively.
We emphasize that both A+ and A− are observables on HC ,
while J , A+J , and A−J are not (since they are not complex
linear operators on HC). However, they are real linear opera-
tors on the real Hilbert space HR.

To establish Eq. (3), in view of the orthogonal resolution of
the identity

∑
μ |μ〉〈μ| = 1 on HC , any linear operator A on

HC can be represented as

A =
d∑

μ,ν=1

〈μ|A|ν〉|μ〉〈ν|,

which induces the matrix representation of A relative to the
basis BC as AHC

= (aμν ), with aμν = 〈μ|A|ν〉. Combined
with Eq. (2), one has

〈μ|JAJ|ν〉 = a∗
μν.

Consequently, JAJ = ∑
μν a∗

μν |μ〉〈ν|, and

A+ =
d∑

μ,ν=1

aμν + a∗
μν

2
|μ〉〈ν| =

d∑
μ,ν=1

Re(aμν )|μ〉〈ν|,

A− =
d∑

μ,ν=1

aμν − a∗
μν

2
|μ〉〈ν| =

d∑
μ,ν=1

iIm(aμν )|μ〉〈ν|,

where Rez = (z + z∗)/2 and Imz = (z − z∗)/(2i) for z ∈ C.

Similarly,

A+ = A+J = JA+ = 1
2 {A+, J},

A− = A−J = −JA− = 1
2 [A−, J],

which implies that [A+, J] = 0 and {A−, J} = 0. Hence A+
is the conjugate symmetric part of A in the sense that it com-
mutes with the conjugation operator J , and A− is the conjugate
antisymmetric part of A in the sense that it anticommutes
with J . We emphasize that A+ and A− are different from
the conventional real part (A + A†)/2 and the imaginary part
(A − A†)/2 of A.

From a geometrical point of view, consider the d2-
dimensional Hilbert space L(HC ) of observables on the
d-dimensional system Hilbert space HC with the Hilbert-
Schmidt inner product 〈A|B〉 = trAB for observables A and B
on HC . Noticing that for any observable A, A+ and A− are also
observables, i.e., A†

+ = A+, A†
− = A−, and that 〈A+|A−〉 =

tr(A+A−) = 0, we conclude that L(HC ) can be decomposed
as

L(HC ) = L+(HC ) ⊕ L−(HC ),

with L+(HC ) being the d+ = (d2 + d )/2-dimensional real
subspace of observables with the vanishing conjugate
antisymmetric part (A− = 0) and L−(HC ) being the d− =
(d2 − d )/2-dimensional real subspace of observables with the
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vanishing conjugate symmetric part (A+ = 0). Thus, A+ and
A− are just the projections of the operator A onto the real
subspaces L+(HC ) and L−(HC ), respectively.

III. BRUKNER-ZEILINGER INVARIANT INFORMATION
IN THE PRESENCE OF CONJUGATE SYMMETRY OR

ANTISYMMETRY

In this section, we investigate the Brukner-Zeilinger in-
variant information in the presence of conjugate symmetry or
antisymmetry. For this aim, we first recall the interpretation of
the Brukner-Zeilinger invariant information as the difference
between the total variance of the maximally mixed state and
that of the state ρ [14].

Let X = {Xj : j = 1, . . . , d2} be an orthonormal basis for
the real Hilbert space L(HC ). The total variance of the set X
in a state ρ is defined as [14]

V (ρ, X ) =
d2∑
j=1

V (ρ, Xj ),

which is actually independent of the choice of the orthonormal
basis X and turns out to be equal to d − trρ2. For this reason,
we denote by

V (ρ) = V (ρ, X ) = d − trρ2 (4)

the total variance of ρ. On the other hand, the total variance
is just the shifted Tsallis-2 entropy in the sense that V (ρ) =
S2(ρ) + (d − 1), where S2(ρ) = 1 − trρ2 is the Tsallis-2 en-
tropy (linear entropy) of the state ρ [36]. Thus, the total
variance is an entropylike quantity and quantifies the uncer-
tainty of the state ρ. It achieves its maximum at the maximally
mixed state 1/d, i.e., maxρ V (ρ) = V (1/d ) = d − 1/d , and
attains its minimum if and only if ρ is pure, i.e., minρ V (ρ) =
V (|ψ〉) = d − 1, for any pure state |ψ〉.

In this context, the Brukner-Zeilinger invariant information
of the state ρ may be reinterpreted as the difference between
the total variance of the maximally mixed state and that of the
state ρ [14]:

I (ρ) = V

(
1
d

)
− V (ρ), (5)

which implies a tradeoff relation between uncertainty and
information,

V (ρ) + I (ρ) = d − 1

d
, (6)

in view of Eqs. (1) and (4).
Based on Eq. (5) between the total variance and the

Brukner-Zeilinger invariant information, before introducing
the concept of the Brukner-Zeilinger invariant information in
the presence of conjugate symmetry, we first discuss the total
variance in the presence of conjugate symmetry.

Given an orthonormal operator basis S = {Sj : j =
1, . . . , d+} of the conjugate symmetric subspace L+(HC ) of
L(HC ) with d+ = (d2 + d )/2, the total variance of a state ρ

on HC relative to L+(HC ) is defined as

V (ρ, S) =
d+∑
j=1

V (ρ, S j ).

Now we show that V (ρ, S) is independent of the choice of the
basis S. Let Y = {Yj : j = 1, · · · , d+} be another orthonormal
basis of L+(HC ). Suppose that

Si =
d+∑
j=1

ti jYj, i = 1, . . . , d+,

with (ti j ) being a real orthogonal matrix satisfying
∑

i ti jti j′ =∑
i t jit j′i = δ j j′ , j, j′ = 1, . . . , d+, then

d+∑
i=1

trρS2
i =

d+∑
j, j′=1

(
d+∑
i=1

ti jti j′

)
tr(ρYjYj′ ) =

d+∑
j=1

trρY 2
j .

Similarly,

d+∑
i=1

(trρSi )
2 =

d+∑
j=1

(trρYj )
2,

and consequently,

d+∑
i=1

V (ρ, Si ) =
d+∑
j=1

V (ρ,Yj ),

which implies that V (ρ, S) is independent of the choice of
the basis S. Thus we may denote it by V+(ρ) = V (ρ, S).
Similarly, the total variance of ρ relative to the conjugate
antisymmetry subspace L−(HC ) can be defined as

V−(ρ) = V (ρ, T ) =
d−∑
i=1

V (ρ, Ti ),

with T = {Ti : i = 1, . . . , d−} being any orthonormal operator
basis of the conjugate antisymmetric subspace L−(HC ) of
L(HC ) and d− = (d2 − d )/2. This quantity is also indepen-
dent of the basis choice of L−(HC ). V+(ρ) and V−(ρ) can
be interpreted as the uncertainty of the state ρ relative to
the conjugate symmetric subspace L+(HC ) and the conjugate
antisymmetric subspace L−(HC ), respectively. It can be eval-
uated that

V+(ρ) = d + 1

2
−

∑
μ,ν

(Reρμν )2 = d + 1

2
− ||ρ+||2, (7)

V−(ρ) = d − 1

2
−

∑
μ,ν

(Imρμν )2 = d − 1

2
− ||ρ−||2. (8)

Here ‖A‖2 = trA†A denotes the squared Hilbert-Schmidt
norm of an operator A on HC .

To establish the above relations, we choose the orthonor-
mal operator basis A = {Aμν : μ, ν = 1, . . . , d} of L(HC ),
with

Aμν =

⎧⎪⎨
⎪⎩

|μ〉〈μ|, μ = ν,

1√
2
(|μ〉〈ν| + |ν〉〈μ|), μ > ν,

i√
2
(|μ〉〈ν| − |ν〉〈μ|), μ < ν.
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It is easy to verify that {Aμν : μ � ν} and {Aμν : μ < ν} con-
stitute a basis of L+(HC ) and that of L−(HC ), respectively.
Consequently,

V+(ρ) =
∑
μ�ν

V (ρ, Aμν ), V−(ρ) =
∑
μ<ν

V (ρ, Aμν ).

Direct calculations show that

V (ρ, Aμν ) =

⎧⎪⎨
⎪⎩

ρμμ − ρ2
μμ, μ = ν,

1
2 (ρμμ + ρνν ) − 2(Reρμν )2, μ > ν,

1
2 (ρμμ + ρνν ) − 2(Imρμν )2, μ < ν,

which imply Eqs. (7) and (8). Furthermore, we know that
V+(ρ) and V−(ρ) achieve their maximum at ρ = 1/d . That
is, the maximally mixed state is the maximal uncertainty state
with respect to both L+(HC ) and L−(HC ).

With the above derivations, we naturally obtain a decom-
position of the total variance V (ρ) as follows.

Proposition 1. The total variance V (ρ) of a state ρ can be
decomposed into the variance V+(ρ) [relative to the conjugate
symmetric subspace L+(HC )] and the variance V−(ρ) [relative
to the conjugate antisymmetric subspace L−(HC )], i.e.,

V (ρ) = V+(ρ) + V−(ρ). (9)

We remark that for a given orthonormal operator basis X =
{Xi : i = 1, . . . , d2} of the space L(HC ), V+(ρ) and V−(ρ) can
also be expressed as

V+(ρ) =
d2∑

i=1

V (ρ, Xi+), V−(ρ) =
d2∑

i=1

V (ρ, Xi−),

where Xi+ and Xi− denote the conjugate symmetric and anti-
symmetric parts of Xi, respectively.

With the above preparation, now we proceed to study
Brukner-Zeilinger invariant information in the presence of
conjugate symmetry. Following the relation between the total
variance and the Brukner-Zeilinger invariant information in
Eq. (5), it is natural to introduce

I+(ρ) = V+

(
1
d

)
− V+(ρ), I−(ρ) = V−

(
1
d

)
− V−(ρ),

(10)
which are called the Brukner-Zeilinger invariant information
in the presence of conjugate symmetry and antisymmetry,
respectively. It can be evaluated that

I+(ρ) =
∥∥∥ρ+ − 1

d

∥∥∥2
, I−(ρ) = ‖ρ−‖2.

Actually, I−(ρ) turns out to coincide with the l2-norm measure
of imaginarity of the state ρ [37].

Since I+(ρ) and I−(ρ) can also be interpreted as the in-
formation of ρ relative to the conjugate symmetric subspace
L+(HC ) and the conjugate antisymmetric subspace L−(HC ),
respectively, similar trade-off relations between uncertainty
and information as in Eq. (6) can be directly established as

V+(ρ) + I+(ρ) = V+

(
1
d

)
= d + 1

2
− 1

d
, (11)

V−(ρ) + I−(ρ) = V−

(
1
d

)
= d − 1

2
. (12)

Proposition 2. The Brukner-Zeilinger invariant information
I (ρ) defined by Eq. (1) can be decomposed into two parts as

I (ρ) = I+(ρ) + I−(ρ). (13)

Moreover,
(i) I+(ρ) and I−(ρ) are convex in ρ.
(ii) I+(ρ) and I−(ρ) are invariant under orthogonal trans-

formation, i.e., for any orthogonal operator O on HC ,
I+(OρO†) = I+(ρ) and I−(OρO†) = I−(ρ).

(iii) It holds that

0 � I+(ρ) = ‖ρ+‖2 − 1

d
� 1 − 1

d
,

0 � I−(ρ) = ‖ρ−‖2 � 1

2
.

Now we sketch the proof of the above properties. First,
Eq. (13) follows readily from Proposition 1 and Eq. (10).

For item (i), the convexity of both I+(ρ) and I−(ρ) follows
directly from the convexity of trρ2 in ρ and the linearity of ρ+
and ρ− in ρ.

Item (ii) follows from the unitary invariance of the
Brukner-Zeilinger invariant information I (ρ) and the fact that,
for any operator A and any orthogonal operator O, (OAO†)+ =
OA+O† and (OAO†)− = OA−O†.

For item (iii), since ||ρ+||2 � ||ρ||2 � 1 and
||(|μ〉〈μ|)+||2 = 1 for μ = 1, . . . , d , we obtain
maxρ ||ρ+||2 = 1. On the other hand, by∥∥∥∥

(
ρ − 1

d

)
+

∥∥∥∥
2

= ‖ρ+‖2 − 1

d
� 0,

we know that minρ ||ρ+||2 = 1/d. From Eq. (11) we get

d − 1

2
� V+(ρ) � d + 1

2
− 1

d
. (14)

For the minimum of I−(ρ), by noting that I−(ρ) is just the
l2-norm measure of imaginarity for the state ρ, it is clear that
the minimum of I−(ρ) is 0 and that, for any state ρ satisfy-
ing ρ− = 0, its Brukner-Zeilinger invariant information in the
presence of conjugate antisymmetry vanishes, i.e., I−(ρ) = 0.

Thus, such a ρ has the maximal uncertainty relative to the
subspace L−(HC ) by Eq. (12), i.e., V−(ρ) = (d − 1)/2.

To evaluate the maximum of I−(ρ), we first note that,
by use of the convexity of I−(ρ), the maximum of I−(ρ)
is achieved by pure states. Given the orthonormal basis
{|μ〉 : μ = 1, . . . , d} of the system Hilbert space, let |ψ〉 =∑d

μ=1 αμ|μ〉 be an arbitrary pure state. Let αμ = |αμ|eiθμ ,
with

∑
μ |αμ|2 = 1, then ρ = |ψ〉〈ψ | = ∑

μ,ν αμα∗
ν |μ〉〈ν|,

and

||ρ−||2 =
d∑

μ,ν=1

[Im(αμα∗
ν )]2

=
d∑

μ,ν=1

|αμ|2|αν |2 sin2(θμ − θν )

=
d∑

μ,ν=1

|αμ|2|αν |2 1 − cos 2(θμ − θν )

2
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= 1

2

(
d∑

μ=1

|αμ|2
)2

− 1

2

(
d∑

μ=1

|αμ|2 cos 2θμ

)2

− 1

2

(
d∑

μ=1

|αμ|2 sin 2θμ

)2

= 1

2
− 1

2

∣∣∣∣∣
d∑

μ=1

|αμ|2e2iθμ

∣∣∣∣∣
2

= 1

2
− 1

2

∣∣∣∣∣
d∑

μ=1

α2
μ

∣∣∣∣∣
2

� 1

2
,

where in the last relation the equality holds if and only if
| ∑d

μ=1 α2
μ| = 0. The states with this property have the max-

imal Brukner-Zeilinger invariant information with conjugate
antisymmetry and thus are the minimal uncertainty states with
respect to the subspace L−(HC ). They are also the maximally
imaginary states [37]. Actually, there are infinite states satis-
fying | ∑d

μ=1 α2
μ| = 0, such as |ψ〉 = ∑d

μ=1 eiθμ |μ〉/√d , with
|αμ|2 = 1/d and θμ = μπ/d for μ = 1, . . . , d .

Until now we have established the properties of I−(ρ) in
item (iii). By Eq. (12) we get the upper and lower bounds for
V−(ρ), i.e.,

d

2
− 1 � V−(ρ) � d − 1

2
.

Therefore, combining Eq. (14) we know that V−(ρ) � V+(ρ)
for any state ρ.

To gain a more concrete and intuitive understanding of
the Brukner-Zeilinger invariant information in the presence of
conjugate symmetry or antisymmetry, we consider the sim-
ple qubit case. Suppose the qubit space HC = C2 has the
computational basis {|0〉, |1〉} (eigenvectors of the third Pauli
operator σz, i.e., σz|0〉 = |0〉, σz|1〉 = −|1〉). The conjugation

(relative to the computational basis) is defined as

J (a|0〉 + b|1〉) = a∗|0〉 + b∗|1〉, a, b ∈ C,

which is an antilinear isometry on the qubit system Hilbert
space C2. Any qubit state has the following Bloch rep-
resentation, ρ = (1 + r · σ )/2, with the Bloch vector r =
(rx, ry, rz ) ∈ R3, |r|2 = r2

x + r2
y + r2

z � 1, 1 being the identity
operator, and σ = (σx, σy, σz ) being the vector consisting of
the Pauli matrices. In this context of Bloch representation,

JρJ = 1
2 (1 + rxσx − ryσy + rzσz ) (15)

implements the conjugation or the transpose of the density
operator, i.e., the reflection about the xz plane, and transforms
the Bloch vector r = (rx, ry, rz ) to (rx,−ry, rz ). From straight-
forward calculation we obtain

I (ρ) = 1
2

(
r2

x + r2
y + r2

z

)
, I+(ρ) = 1

2

(
r2

x + r2
z

)
, I−(ρ) = 1

2 r2
y ,

which is intuitive in view of Eq. (15).

IV. SUMMARY

Given a computational basis of a finite-dimensional com-
plex Hilbert space, a natural conjugation arises, relative to
which any observable on the system Hilbert space can be
decomposed into a conjugate symmetric part and a conjugate
antisymmetric part. Correspondingly, the real Hilbert space
of observables can be written as the direct sum of the sub-
spaces consisting of all observables with vanishing conjugate
symmetric parts and those with vanishing conjugate antisym-
metric parts, respectively. Along this line, we decompose the
total variance and the Brukner-Zeilinger invariant information
of a state into the conjugate symmetric parts and the conjugate
antisymmetric parts. These quantities may have applications
in analyzing informational aspects of quantum systems.

The Brukner-Zeilinger invariant information was proposed
as an operationally invariant quantifier that reflects the intrin-
sic information of the underlying system [9]. It is desirable to

TABLE I. Interpretations of Brukner-Zeilinger invariant information I (ρ ). The various quantities are defined as follows: (i) V (ρ ) =
V (ρ, X ) = ∑d2

j=1 V (ρ, Xj ) = d − trρ2, where X = {Xj: j = 1, . . . , d2} is any orthonormal basis for the operator Hilbert space L(HC ) and
V (ρ, Xj ) = trρX 2

j − (trρXj )2 is the conventional variance. (ii) ||A||2 = trA†A. (iii) S2(ρ ) = 1 − trρ2 is the Tsallis-2 entropy [36]. (iv)

I (ρ,
) = V (1/d,
) − V (ρ,
) and V (ρ, 
) = ∑d
i=1 V (ρ,
i ) for any von Neumann measurement 
 = {
i: i = 1, . . . , d}, U
U † =

{U
iU †: i = 1, . . . , d}, with U being any unitary operator. The integration is with respect to the normalized Haar measure dU on the unitary

group of a d-dimensional complex Hilbert space. (v) The index of coincidence is defined as C(ρ, N ) = ∑d2

j=1 p2
j = (trρ2 + 1)/[d (d + 1)], with

pj = trρNj for any symmetric informationally complete positive operator valued measure (SIC-POVM) N = {Nj: j = 1, . . . , d2} [15,39]. (vi)

V (ρ, N ) = ∑d2

j=1 V (ρ, Nj ). (vii) The variance of a state ρ in an observable K was defined as VK (ρ ) = trK (ρ − trρK )2 [40,41].

Interpretation of I (ρ ) Expression of I (ρ )

Difference of variance V (1/d ) − V (ρ )
Hilbert-Schmidt distance ||ρ − 1/d||2
Average noncommutativity

∑d2

j=1 ‖[ρ, Xj]‖2/(2d )
Difference of Tsallis-2 entropy S2(1/d ) − S2(ρ )
Integration over unitary group (d + 1)

∫
I (ρ,U
U †)dU

Difference of coincidence index of SIC-POVM d (d + 1)[C(ρ, N ) − C(1/d, N )]
Difference of variance relative to SIC-POVM d (d + 1)[V (1/d, N ) − V (ρ, N )]
Variance of state in 1/d dV1/d (ρ )
Average variance of state (d + 1)

∫
VU |φ〉〈φ|U † (ρ )dU
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investigate the operational meaning of the Brukner-Zeilinger
invariant information in the presence of conjugate symmetry
or antisymmetry and to characterize them as the extractable
information under the condition that the available observables
are limited to be conjugate symmetry and conjugate antisym-
metry, respectively. This may shed light on our understanding
of the concrete difference between the quantum mechanics on
a real Hilbert space and the conventional quantum mechanics
(on a complex Hilbert space) [38].

Since conjugation plays a fundamental role in quantum
mechanics, we hope the present work may be helpful in
quantitative studies of conjugation from the perspective of
information and uncertainty.

Finally, the connections of this work with coherence and
asymmetry relative to Z2 symmetry (including parity, time
reversal, conjugation, spin flip, etc.) also deserve further study.
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APPENDIX

In view of the significance and many facets of the
Brukner-Zeilinger invariant information I (ρ) = trρ2 − 1/d,

we summarize its various interpretations in Table I.
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