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Generating tensor-network states via combination of phonons and qubits in a trapped-ion platform
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Tensor-network (TN) states supply one of the most powerful variational tools to simulate quantum many-body
systems. Though classical simulation of TN states (with approximation) is efficient, the required computational
(classical) resources are still beyond our current capability when the size of the system and bond dimension
becomes large (which is necessary for studying complicated quantum many-body systems). The TN contraction,
which is the dominant cost in TN algorithms, can be replaced by measuring the corresponding physical
observables directly in the experimentally prepared TN states. The computational cost is thus dramatically
reduced. Here, we propose a scheme to generate TN states by combining multiple phonon modes and qubits in
the ion trap platform. With the full connectivity and parallelism of the phonon modes operation, we can generate
TN states with rough but complex entanglement structures [such as the multiscale entanglement renormalization
Ansatz on the one-dimensional (1D) lattice and the projected entangled pair states on the kagome lattice] by
shallow generation circuits. With the abundant local free parameters of the qubits operation, we can refine the
local details of the generated TN states. We further benchmark the expressive power of the generated TN states
by optimizing the ground energy, which is very close to the exact results of the 1D transverse-field Ising model
near the critical point and the 1D Heisenberg model. Our method supplies a quantum-classical hybrid way to
simulate the ground states of many-body systems and paves a promising way to demonstrate the advantage of
quantum simulation.
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I. INTRODUCTION

The ground states play an essential role in exploring quan-
tum many-body physics, such as quantum phase transition
[1], spin liquid [2], and high-temperature superconductivity
[3]. Among different ways to approach the ground states
[4–10], the tensor-network (TN) method—a classical varia-
tional algorithm—has been proved as a powerful numerical
tool [9,10]. Particularly, it has been proved that the ground
state of a one-dimensional (1D) gapped local Hamiltonian
system can be efficiently represented by the matrix product
state (MPS) [11,12].

However, even though the complexity of the general TN
algorithms only increases polynomially with the bond di-
mension D used to measure the entanglement of the ground
state [10] under some approximations [13–15], it is still very
costly to simulate large many-body systems with complex
entanglement structures. For example, the computational cost
to simulate the projected entangled pair states (PEPS) in a
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two-dimensional (2D) bosonic system with open boundary
condition (OBC) scales as O(D10) [D is usually of the order
of O(10) at least] [16–18]. The situation will be even worse in
the fermionic systems due to the violation of the entanglement
entropy area law [19] which requires the larger D to keep the
calculation accuracy.

In the general TN algorithms, the most costly part is to
contract the whole tensor network to obtain the observable
expectation. On the other hand, the contraction of TN can be
done automatically by measuring the corresponding observ-
ables on the same TN states generated in the experiments.
Therefore, the contraction of the TN state can be transformed
to the efficient generation of powerful TN states in physical
platforms.

Recently, a lot of schemes to generate TN states have been
proposed for different platforms, such as cavity-QED [20,21],
waveguide-QED [22], atomic array [23], circuit-QED [24],
optics [25–27], and trapped ion [28–30]. However, since all
of the schemes are based on sequential unitary operations,
the flexibility of the generated TN states is limited to the 1D
MPS [20–24,26,31,32] and 2D PEPS on the square lattice
[24,25,27,33]; consequently, their expressive power is limited.
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Particularly, the multiscale entanglement renormalization
Ansatz (MERA), which can be used to simulate states with
entanglement beyond area law such as the ground state of a
system near the critical point [34,35] and has a deep relation-
ship with the holographic theory [35,36], cannot be generated
by the sequential way; also the PEPS state on the kagome
lattice [2,37–39], which is the natural Ansatz to simulate the
ground state of the quantum system on the kagome lattice,
cannot be generated by this method.

The trapped-ion system is one of the most promising
systems for quantum computing [40–43]. Besides encod-
ing quantum information onto the qubit degree of freedom
[40,44–48], the hybrid phonon and spin system [49] have
attracted a lot of attention in quantum simulation [49–56] and
error correction [57–59]. Quantum operations between multi-
ple motional modes (either local modes [60–64] or collective
modes [55,65–69]) and between qubits (either one-qubit gate
or two-qubit gate [40,44–48,70]) have been much improved
recently. Recent developments in high optical access ion traps
[71] give the ability for addressing and operating ions with
much freedom.

Based on these technologies, in this paper, we propose a
scheme to generate TN states by combining the phonon modes
and qubits in the ion trap. Due to the full connectivity and
parallelism of the operations between two phonon modes,
the generated TN states are more flexible than by the previ-
ous scheme [21–24,26,27,31,32]. Particularly, the MERA on
the 1D lattice and the PEPS on the kagome lattice can be
generated, and the TN states which can be generated by the
previous scheme such as the MPS can be generated within
much fewer steps. Moreover, with the abundant free parame-
ters of the qubit operations, we can refine the local details of
the generated TN states, which improves the expressive power
of the states. To benchmark the expressive power of the TN
states generated in our scheme, we use them to optimize the
ground-state energies of the 1D Heisenberg model and the 1D
transverse-field Ising model near the critical point. Comparing
them with the exact results, their differences are within 1%,
which explicitly shows that the TN states generated by our
scheme are powerful enough to simulate the ground states of
these quantum many-body systems.

II. THEORETICAL BACKGROUND

A. Tensor-network state and its application

Generally, a quantum state in a n-qudit system can be
exactly expressed as

|ψ〉 =
∑

s1,s2,...,sn

Cs1,s2,...,sn |s1, s2, . . . , sn〉 (1)

where Cs1,s2,...,sn (s1, s2, · · · , sn ∈ {1, 2, · · · , d}) is the ampli-
tude of basis |s1, s2, . . . , sn〉 and they form a rank-n tensor
which can be represented as a diagram shown in Fig. 1(a). Un-
fortunately, the number of coefficients (free parameters) in the
quantum states is increasing exponentially with the number of
qudits. This fact leads to the intractability of solving quantum
many-body systems problems through the exact diagonaliza-
tion method in classical computers. Besides the Monte Carlo
method with the notorious sign problem in the frustrated

… …
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FIG. 1. (a) A rank-n tensor for representing a general quantum
state. (b) The TN diagram of the MPS. (c) The TN diagram of the
PEPS on the square lattice. (d) The TN diagram of the MERA on the
1D lattice. The triangle denotes an isometry tensor and the square
denotes a disentangler tensor.

system and fermionic systems [4,5], the variational method is
the main method to overcome the “exponential wall” problem
by only focusing on the special subspace of the whole Hilbert.
Different Ansätze have been proposed for many-body sys-
tems, such as Hartree-Fock [6], Gutzwiller function [7,8], and
TN states [9,10], among which the TN states have been proved
as powerful tools for simulating strong-correlated systems.

The MPS [shown in Fig. 1(b)] is a 1D TN state which can
be expressed as

|ψMPS〉 =
∑

s1 ,··· ,sL

Tr[As1 (1)As2 (2) · · ·AsL (L)]|s1 s2 · · · sL 〉, (2)

where L is the length of the 1D chain, sk = 1, 2, · · · , d
(k = 1, 2, . . . , L) is the physical index of site k, As(k) is the
tensor on site k and chosen to be a D × D matrix for any
given s, and D is generally called the bond dimension (or
Schmidt number) of the state |ψ〉 which is related with the
entanglement of the state. Particularly, for OBC, As(1) and
As(L) are D-dimensional vectors. With this form, the number
of free parameters in the MPS is O(LD2d ). Obviously, any
quantum state can be approximated by a MPS form precisely
if the parameter D is big enough (exponentially increasing
with the size L). When the parameter D is limited to some
fixed number, the states in Eq. (2) form a variational space
(a part of the whole Hilbert space). Fortunately, it is proved
that the ground state of the gapped local 1D system can be
efficiently covered by this subspace [11]. As a result, the
MPS is a powerful class of the variational states for the 1D
quantum many-body system; actually, the variational Ansatz
in the density-matrix renormalization-group method is a
MPS [72].

Moreover, the MPS can be expressed in another way. As
shown in Fig. 2(a), there are two virtual particles on each
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(a)

(b)

FIG. 2. The pair of blue dots connected by a wavy line represents
the maximally entangled pair, P (k) and P (i, j) are the linear opera-
tors, and |Bell〉 is the Bell state. (a) Another expression of the MPS.
(b) The PEPS on the square lattice.

site the Hilbert space of which is D dimensional. For each
edge connecting two nearest-neighbor site, we associate a
maximally entangled state |Bell〉 = 1

D (|0, 0〉 + |1, 1〉 + · · · +
|D − 1, D − 1〉) of two virtual particles (the pairs of the blue
dots, one on each neighboring site, connected by a wavy line
in Fig. 2). Then, we apply a linear operator on each site to
project the two virtual particles on the same site to a physical
space:

P (k) =
∑
s;l,r

As
lr (k)|s〉〈l, r| (3)

where k is the site index, s is the physical index, and |l〉 (|r〉)
is the state of the left (right) virtual particle on the site k. With
these notations, the MPS can be defined as

|ψMPS〉 =
∏

k

P (k)
⊗

e

|Bell〉e

=
∑

s1,s2,··· ,sL

Tr[As1 (1)As2 (2) · · ·AsL (L)]|s1 s2 · · · sL 〉
(4)

where |Bell〉e is the Bell state associated with the edge e in
the lattice, and Ask (k) is a matrix on the site k with index sk

formed by the tensor A
sk
l,r (k).

By generalizing this idea, we can define the higher-
dimensional TN state—the PEPS [9,17,73]. Taking the PEPS
on the square lattice as an example, as shown in Fig. 2(b),
we align a maximally entangled pair to each edge of a square
lattice, and then we apply a linear projector to each site:

P (i, j) =
∑

s;u,l,d,r

As
uldr (i, j)|s〉〈u, l, d, r|, (5)

where (i, j) denotes the location of the operator, and |u〉, |l〉,
|d〉, and |r〉 denote the state of the upper, left, down, and right
virtual particles on the site (i, j). Finally, the PEPS on the
L1 × L2 square lattice is defined as

|ψPEPS〉 =
∏
i, j

P (i, j)
⊗

e

|Bell〉e

=
∑

s(1,1),s(1,2),...,s(L1 ,L2 )

Contr[As(1,1) (1, 1)As(1,2) (1, 2) · · ·

× As(L1 ,L2 ) (L1, L2)]|s(1,1), s(1,2), . . . , s(L1,L2 )〉 (6)

where |Bell〉e is the Bell state associated with the edge e,
As(i, j) is a tensor formed by the element As

u,l,d,r (i, j) on site
(i, j), and Contr(·) means contraction of the tensor network.

The MPS and the PEPS satisfy the area-law scaling of
the entanglement entropy [9]. However, for some systems,
such as the fermionic systems [19] and the systems near the
critical points [34], the entanglement of their ground states is
beyond the area law. As a result, the bond dimension D for
the PEPS to approach certain accuracy for the ground states
will increase with the system size, which is not efficient for
classical computation. Some more complicated TN states are
required.

The MERA [34,74], the scaling of which of the entan-
glement can be beyond the area law, has been proposed to
calculate some complicated ground states, such as the ground
states of the systems near the critical point [34,35]. The TN
representation of the MERA on a 1D lattice is shown in
Fig. 1(d). By definition [34,74], the MERA on a 1D lattice
consists of two kinds of tensor—isometry tensor (triangle)
and disentangler tensor (square). Besides, recent works point
out that the MERA has some relationship with holography
[35,36], which is one of the most important directions of
quantum gravity [75,76].

B. Difficulty of the TN algorithm

With a given TN state Ansatz (fixed parameters D), the
main task of the TN algorithm is to optimize the parameters
to approach the target state such as the ground state of the
quantum many-body system. There are two main methods to
optimize the free parameters of the TN: one is based on the
gradient descent method and the other is based on imaginary
time evolution [17,77]. For both methods, the final physical
results must be obtained by calculating the expectation value
of physical observables, which is completed by contracting
the whole tensor network. Even though the complexities of
the exact contraction of the MPS and the MERA on the 1D
lattice are O(D3) [10] and O(D9) [10,74], respectively, they
are thus efficient for classical computers. However, generally,
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FIG. 3. The blue line is the virtual lag of the PEPS, the orange
line is the physical lag of the PEPS, and D is the bond dimension
of the PEPS on the square. (a) The calculation of 〈� ′

PEPS|�PEPS〉.
(b) The exact contraction of the TN in (a). The contraction between
the tensor Alrud,s and Al ′r′u′d ′,s′ would be tensor Tll ′,rr′,uu′,dd ′ . (c, d)
The approximated contraction of the TN in (a) by the matrix product
operator (MPO) compression approximation method. The red part is
the MPO where Dc is the bond dimension cut of the MPO.

the exact contraction of the tensor network in two dimensions
will result in the exponential increase of the resource with the
system size. Taking the exact contraction of 〈� ′

PEPS|�PEPS〉 on
the L × L square lattice as an example [as shown in Figs. 3(a)
and 3(b)], we have the following.

(1) For each site, contract the physical index of the tensor
As(i, j) (upper part) and A∗s′

(i, j) (lower part) to form a rank-8
tensor with element Tll ′,rr′,uu′,dd ′ (i, j), then combine the index
u and u′, l and l ′, d and d ′, and r and r′ to form a D2 × D2 ×
D2 × D2 tensor T (i, j). The L2 new tensors T (i, j) form a
new tensor network as shown in Fig. 3(b).

(2) After contracting the tensors T (i, j) on each column,
we get the D2L × D2L matrix except for the boundary column
which is a D2L × 1 vector (under OBC). Obviously, it leads to
exponential increment of the calculation time and storage.

Actually, the exact contraction of the PEPS is the #P-
complete problem [78].

Because of the difficulty we discussed above, different
approximated contraction methods are introduced, such as
the tensor-entanglement renormalization group [13], and the
matrix product operator (MPO) compression approximation
method [14,15]. Based on these approximation methods, the
contraction of the TN state can be implemented efficiently,
i.e., we can complete TN contraction with polynomial scaling
time and storage. For example, we can efficiently calculate the
above case with the MPO compress approximation method as
shown in Figs. 3(a), 3(c) and 3(d).

(1) We contract the tensor in the first column of the upper
part and lower part to get a MPO [the red part in Figs. 3(c) and
3(d)] the bond dimension of which is D2.

(2) We make the contraction between the MPO and the
tensors in the next column, and get a new MPO with bond
dimension D4.

(3) To prevent the exponential increasing of the bond
dimension, we should truncate the bond dimension to Dc (usu-
ally set as Dc = D2); in other words, we use a MPO with bond
dimension Dc to approximate the tensor network obtained in
step 2.

(4) Repeat step 2 and 3 until all columns are contracted.
By this approximation, we would finally reduce the com-

plexity of the contraction of the TN to O(D4D3
c + D6D2

c )
where Dc is the bond dimension cut [18]. Inserting Dc = D2

(usual setting), the complexity of the contraction of the PEPS
on the square lattice is usually O(D10).

C. General rules for tensor-network state generation

Though the calculation based on the TN state can be
completed efficiently after doing approximation, however, the
scaling [O(D9) for the 1D MERA [10,35] and O(D10) for
PEPS on the 2D lattice [16–18]] is still very high and makes
the calculation cost still beyond our current capability when
the bond dimension D is large. Specifically, according to the
recent result [79], 107 heterogeneous cores on Sunway Taihu-
Light are used to calculate the ground state of a 2D quantum
system on a 24 × 24 open square lattice by using PEPS with
bond dimension only D = 16.

With the development of quantum technologies, we
have stepped into the noisy intermediate-scale quantum era
(NISQ). It is possible to generate large-scale TN states in
the experimental platform. Replacing the contraction process
in the classical computation with measuring the same local
physical quantities in the prepared corresponding TN state can
dramatically reduce the computation complexity. Combining
with the optimization in classical computers, the advantage of
quantum simulation can be achieved by this quantum-classical
algorithm.

Generating high-quality TN states with sufficient expres-
sive power is the key part of the quantum-classical algorithm.
The basic idea for TN states generation is doing the mapping
between the building blocks: the unitary in quantum simu-
lation and the tensor in a tensor network. First, any unitary
operation can be viewed as a tensor; particularly, for a two-
body unitary operation, we have

V =
∑

o1,o2,i1,i2

V o1o2
i1i2

|o1, o2〉〈i1, i2|, (7)

where V o1o2
i1i2

forms a rank-4 tensor which can be represented as
the diagrams shown in Fig. 4(a). Second, the product between
unitary operations corresponds to the contraction between the
corresponding tensors. For example, the product between two-
body unitary operations the quantum circuit of which is shown
in Fig. 4(d) is

UV =
∑

j1, j2;i1,i2
o1,o2

U j1 j2
i1i2

V o2o3
j1, j2

|o1, o2〉〈i1, i2|, (8)

where
∑

j1, j2
U j1 j2

i1i2
V o2o3

j1, j2
forms a rank-4 tensor which is the

contraction result of two rank-4 tensors and can be represented
as a diagram shown in Fig. 4(c). As a result of the univer-
sality of unitaries, any tensor-network state can be prepared
with some fixed universal tensors (corresponding to a set of
universal gates); however, the network may not be efficient.
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(a) (b) (c) (d)

FIG. 4. (a, b) The TN diagram of the two phonon modes opera-
tion. (c) The TN diagram of the production between two two-mode
operations. (d) The quantum circuit of the production of two two-
mode operations.

Here, we focus on unitary gates with parameters, which are
achievable with high quality in the current experimental setup,
to generate variational tensor-network states and apply them
to simulate the ground states of quantum many-body systems.

D. Phonon-qubit tensor-network state generation scheme

Recently, different platforms have been introduced to gen-
erate TN-type quantum states [21–24,26,27,31,32]. These
schemes to generate the TN state by sequential processes as
an example are shown in Fig. 5. The sequential ways limit the
entanglement structure of the TN states which limits the range
of the ground states that can be simulated by the schemes, and
requires very deep generation circuits which makes the out-
puts easily affected by the local noise of the unitary operation.

Actually, the two limitations above can be solved if
the operation in the quantum simulator has the following
advantages.

(1) Full connectivity. If the operation can be done between
any pairs of the information units (such as phonon modes and
qubits), the quantum circuits for generating TN states can be
designed more freely than in previous schemes, which sug-
gests TN states with more complex entanglement structures
can be generated.

(2) Parallelism. If the operations between different pairs of
the information units can be implemented simultaneously, the
TN states can be generated by the shallow circuit. It suggests
more robustness against the local noise in the circuit, which
allows us to prepare a TN state in a larger system and larger
D (larger variational space).

Fortunately, the two-mode phonon operations in the ion
trap have both of the advantages we stated above as we

U

U

U

U

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

(a) (b)

FIG. 5. (a) The quantum circuit for generating the MPS by the
Ansatz in [26]. (b) The corresponding TN diagram of the quantum
circuit in (a).

discussed in Sec. III. However, the number of the free pa-
rameters of the two-mode phonon operations is scarce (each
operation has only two free parameters), which limits the
expressive power of the generated TN states. In contrast to the
two-mode phonon operation, the two-qubit operation has less
connectivity since the coupling strength between two ions is
limited by the power-law decay [80,81], and less parallelism
since we need much fewer Raman beams to couple phonon
pairs than to couple qubit pairs, which suggests less crosstalk
noise but has much more free parameters.

In the following, we will introduce a scheme to generate
TN states through the combination of the phonon modes and
qubits in a trapped-ion system. With the full connectivity and
parallelism of the phonon operation, we can generate complex
TN states with rough entanglement structure by a shallow
circuit, such as the MERA on a 1D lattice the entanglement
scaling of which can be beyond the area law and the PEPS on
the kagome lattice which is a geometrically frustrated lattice.
With the abundant free parameters of the qubit operation, we
can refine the local details of the generated TN states which
improves their expressive power.

1. Generation Ansätze for TN states
with rough entanglement structure

As examples, in the following, we will show how to gener-
ate different types of TN states based on the four-parameter
experimentally realized two-mode unitary operators in the
phonon modes of a trapped ion U (γ ,ψ, θ, φ) ≡ U (�) =
UCMR(θ, φ)UTMS(γ ,ψ ) where UCMR(θ, φ) and UTMS(γ ,ψ )
are the collective modes rotation operation and two-mode
squeezing operation separately.

a. Matrix product state. The MPS is one of the most
simple but powerful TN states for the 1D many-body system
[9,11,17]. Besides the sequential circuit in Fig. 5, the MPS
can be generated by a shallow quantum circuit as shown
in Fig. 6(a) in a trapped-ion system due to the parallelism
of the phonon operation. It is clear that its depth is much
smaller than the depth in the sequential circuit. Particularly,
the circuits with depth 2 [all operations are two-mode unitary
U (�) with different parameter values] are enough to generate
a simple MPS. Obviously, the MPS can be generated by the
quantum circuit with more layers [the example is shown in
Fig. 6(c)], which gives the generated MPS more parameters
and more entanglement (larger D), thus covering ground states
of more many-body systems. Based on the mapping between
the unitaries and the tensors, the TN diagram of the two-layer
and four-layer generation circuit can be drawn as Figs. 6(b)
and 6(d). To map the rank-6 tensor which is obtained by
contracting the tensors in the red dashed circle or the red
dashed polygon of Figs. 6(b) and 6(d) to the standard form
in MPS, we need to fix the input legs (green legs) and view
the output legs (orange legs) as physical legs as shown in
Fig. 6(e). Generally, the input legs can be used as a parameter;
however, for experimental convenience, we choose it as a
vacuum state for every phonon mode.

b. Projected entangled pair states. Besides the MPS, the
PEPS [9,16,73] on the square lattice and the kagome lattice
can be generated in the following way.
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…
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…

(e)

(b)

(f)

… …

… …

(c) (d)

FIG. 6. The MPS Ansatz generation. The green legs are the input
legs and the orange legs are the output legs. (a) The two-layer gener-
ation circuit for the MPS. (b) The TN diagram of the quantum circuit
in (a). (c) The four-layer generation circuit for the MPS. (d) The TN
diagram of the quantum circuit in (c). (e) The new rank-6 tensor by
contracting the tensors in the red dashed circle in (b) or red dashed
polygon in (d), and we get the form As

lr in Eq. (2) after fixing the input
parameters and combining two d-dimensional legs (orange line) into
one d2-dimensional leg (orange thick line). (f) The MPS TN diagram
generated by the quantum circuit in (a) and (c).

First, the PEPS on the L × L square lattice can be generated
by the procedure shown in Fig. 7.

(1) We generate L MPS chains [each has 2L phonon modes
as shown in Figs. 7(a) and 7(b)] by the method we discussed
before.

(2) Using four-parameter unitary operation U (�), we con-
nect L MPS chains to form a PEPS on a L × L lattice.
Concretely, as shown in Figs. 7(c) and 7(d), the unitary U (�)
is applied on the phonon mode i (i is odd) on the first and
second MPS chain; when we add the third MPS chain to the
2 × L PEPS, the unitary U (�) is applied on the phonon mode
j ( j is even) on the second and third MPS chain. Generally,
when we add the (k + 1)th MPS chain to the PEPS on the
k × L lattice, if k is odd (even), the unitary U (�) is applied
on the odd(even)-numbered phonon mode on the kth and
(k + 1)th MPS chain. It is worth noting that all the unitary
operations U (�) can be operated simultaneously when they
act on different pairs of the modes.

To show the standard PEPS diagram, we contract the three
connected tensors in the red dashed polygon of Fig. 7(d) to get
a new rank-8 tensor shown in the panel of Fig. 9. By fixing
the input legs (green legs) of the rank-8 tensor (the vacuum
state is chosen as an example) and considering the outputs legs
(orange legs) as the physical leg, the tensor is transformed to

… …
…

…

…

…

……

……
…

…

…

…

……

……

(b)

(c) (d)

FIG. 7. The PEPS on the square lattice generation Ansatz. The
left part is the operation steps for generating PEPS on the square
lattice. The right part is the corresponding TN diagram of the left
part. In the left diagrams, each black point represents one phonon
mode, and we do the U (�) operation to the pair of the mode linked
by the line. The same type of lines means the operation can be done
simultaneously. In the right diagrams, the green legs are the input
legs and the orange legs are output legs, and the white square with
four legs represents the tensor of the operation U (�).

the form As
uldr in Eq. (6). Then, we get the PEPS on the square

lattice the TN diagram of which is shown in Fig. 9(a). It is
worth noting that the full connectivity of the phonon operation
makes sure that the operations above can be done, and all
operations can be completed within a + 1 steps because of
the parallelism. Here a is the number of steps to generate the
MPS chains (at least two steps as we stated above).

Second, the generation of a PEPS on the kagome lattice
can be demonstrated in Fig. 8.

(1) The phonon modes are divided into groups; in each
group, the phonon modes are arrayed into four rows (Fig. 8).
There are n pairs of phonon modes in the first and third rows,
and a unitary U (�) with a different parameter is applied on
each pair. A MPS with 2n pairs of phonon modes is generated
in the second and fourth row with the previous method.

(2) As shown in Figs. 8(c) and 8(d), in each group,
three kinds of operations U (�) (each can have different
parameters) are simultaneously used to entangle the modes
in different rows. The first kind is operated between the
right phonon mode of the ith pair in the first row and the
right phonon mode of the 2ith pair in the second row (i =
1, 2, . . . , n); the second kind is operated between the left
phonon mode of the (2i − 1)th pair in the second row and the
left phonon mode of the ith pair in the third row; and the third
kind is operated between the right phonon mode of the ith pair
in the third row and the right phonon mode of the (2i − 1)th
pair in the fourth row.

(3) As shown in Figs. 8(e) and 8(f), in each group, an-
other three kinds of operations U (�) (each with different
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FIG. 8. The PEPS on the kagome lattice generation Ansatz. The
left part is the operation steps for generating PEPS on the kagome
lattice. The right part is the corresponding TN diagram of the left
part. In the right diagrams, the green legs are the input legs and the
orange legs are the output legs, and the white square with four legs
represents the tensor of the operation U (�). In the left diagrams,
each point represents one phonon mode, and we do the U (�) opera-
tion to the pair of the mode connected by the line. The same type of
lines means the operation can be done simultaneously.

parameters) are also simultaneously used to refine the entan-
glement structure of the modes. The first kind is operated
between the right phonon mode of the (2i − 1)th pair in the
second row and the right phonon mode of the ith pair in the
third row; the second kind is operated on the even-numbered
pairs of the phonon modes in the second row; and the third
kind is operating on the odd-numbered pairs of the phonon
modes in the fourth row.

(4) As shown in Figs. 8(c) and 8(e), by doing the
U (�) operation between the left phonon mode of the
ith pair in the first row of the lower group and the
left phonon mode of the 2ith pair in the fourth row
of the upper group, and between the right phonon mode of
the 2ith pair in the fourth row of the upper group and the right
phonon mode of the ith pair in the first row of the lower group,
we can connect two groups together. Each nearest-neighbor
group can be connected in this way.

(a) (b)

FIG. 9. (a) The TN diagram of the PEPS on the square lattice
generated by the steps shown in Fig. 7. The tensor diagram in the
panel is the new rank-8 tensor by contraction the three connected
tensors in the red dashed polygon in Fig. 7(d) or the red dashed
triangle in Fig. 8(f), and we get the tensor As

uldr in Eq. (6) after fixing
the input parameters and combining two d-dimensional legs (orange
line) into one d2-dimensional leg (orange thick line). (b) The TN
diagram of the PEPS on the kagome lattice generated by the steps
shown in Fig. 8.

The tensors in the red dashed triangle of Fig. 8(f) can be
contracted to be a rank-8 tensor. Following the same process
above, we get the PEPS on the kagome lattice the TN diagram
of which is shown in Fig. 9(b). It is worth noting that the key
reason we can do the operations above is the full connectivity
of the phonon operation, and all operations can be completed
with depth a + 2 because of its parallelism, where a is the
number of steps used to generate the MPS chains (at least two
steps as we stated above).

c. Multiscale entanglement renormalization Ansatz. It is
very amazing, compared with other schemes [20–24,24–
27,31–33], that our TN state generator can generate the
MERA TN state. According to [34,35], the MERA TN con-
sists of two kinds of tensors: one is the isometry tensor and
another is the disentangler tensor. In the following, we take the
MERA on a 1D lattice as an example. The disentangler tensor
directly corresponds to a unitary operation, and the isometry
tensor can be realized by a unitary operation with one input
fixed to |0〉. As a result, a MERA on the 1D lattice shown
in Fig. 10(b) can be generated by the quantum circuit shown
in Fig. 10(a) which utilizes the parallelism of the phonon
operation. The generation steps are as follows.

(1) In the first isometry layer, we start with a phonon mode
with state |0〉 and another phonon mode with state |φ0〉, then
the unitary U (�) is applied to them.

(2) In the first disentangler layer, we add two new phonon
modes |φ0(1)〉 and |φ1(1)〉; the unitary U (�) is applied on
one of the outputs of the first isometry layer and the new
one |φ0(1)〉, while another unitary U (�) is applied on another
output and the new one |φ1(1)〉.

(3) In the mth isometry layer, for each output of the upper
layer, a unitary U (�) is applied to it and an additional phonon
mode with state |0〉.

(4) In the mth disentangler layer, a unitary U (�) is op-
erated on the two output modes from the nearest-neighbor
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(a)

(b)

output

FIG. 10. The two-layer MERA TN state in the 1D generation
Ansatz. The green legs are the input legs and the orange legs are
the output legs. (a) The quantum circuit to generate the MERA TN
state in one dimension. (b) The MERA TN diagram in one dimension
generated by the quantum circuit in (a) where the tensor with one |0〉
input is the isometry tensor and the one without |0〉 is the disentangler
tensor.

unitary (one for each) in the upper layer except for the
boundary—at the left (right) boundary, one mode is from the
upper left (right) boundary output and the other is from an
additional mode with state |φ0(m)〉 [|φ1(m)〉].

With these operators, we can generate the desired MERA
with depth 2L where L is the number of the layers (one layer
includes one isometry layer and one disentangler layer).

2. Improvement of local details of generated TN states

The TN states with different entanglement structures can
be generated by the Ansätze we stated before; however, be-
cause of the lack of the free parameters of the two-mode
phonon operation, the entanglement structures of the gen-
erated TN states are rough, and their local details are not
abundant enough to represent the state of the quantum many-
body system, i.e., the expressive power of the generated TN
states is low. Fortunately, the expressive power of the gen-
erated TN states can be improved with the help of the ion
trap qubit. By the technique we will mention in the following
Sec. III B, we can transfer the quantum information of the
phonon modes (in the subspace of the Fock state {|0〉, |1〉}) to
the ion qubit, and apply some local quantum gates to introduce
many additional local parameters (the noise of local qubit
operation can be controlled by the error mitigation or other
postprocessing method). For example, as shown in Fig. 11,

(a) (b)

T

T
U P

=

FIG. 11. (a) The square tensor with the “T” represents the oper-
ation by which we transfer the quantum information of the phonon
mode in the phonon number subspace {|0〉, |1〉} to the ion qubit. The
square tensor with the “U” represents the two-qubit operation. The
square tensor with the “P” represents the postprocessing which maps
the output state into a multiple qubits state. (b) The PEPS on the
square lattice generation Ansatz, where the orange legs are the output
legs, and the purple legs are the connection legs between the phonon
part and the qubit part.

after transferring the information from phonon modes to the
qubits, a layer of local two-qubit gates is operated on the
qubits, by which the number of the free parameters is im-
proved (16 additional parameters in each two-qubit gate).

III. EXPERIMENT TOOLBOX

In this part, we discuss the experiment toolbox to generate
the TN state in the trapped-ion platform. In Fig. 12(a), we give
the basic idea of the proposed scheme. The input phonon state
(i.e., vacuum product state |0 · · · 0〉) is sent into the phonon
circuit, which consists of the two-mode (rank-4 tensor) op-
erations and generates a rough but complex entanglement
structure. Then the quantum information is transferred into
qubits, and local qubits operations are done for improving the
local details of the output TN states. Finally, the classical com-
puter is used for the optimization of variational parameters
(for the two-mode operations and two-qubit operations). In the
following discussion, we consider the two-mode operations
between the transverse collective modes [55,65] instead of the
local modes [60–64], which provides the flexibility to couple
different pairs of the phonon modes.

We briefly outline the basic idea for the proposed experi-
ment setting here. In Sec. III A, we discuss in detail how to
implement the two-mode operations; in Sec III B we discuss
how to implement the quantum information transfer between
the phonon mode and the qubit, after which one can apply
the single- and two-qubit gate. The high optical access ion
trap system [71] developed recently gives us the ability for
addressing and manipulating ions individually, and also gives
us the flexibility for the two-mode operations. The two Raman
beams propagating towards the ion from opposite directions,
which gives the photon motional kick �k, can be used to drive
the phonon sideband operations for both x or y modes (two
transverse mode directions). The flexibility for the two-mode
operation can be viewed from two aspects.
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FIG. 12. (a) Schematic diagram of the proposed scheme. The
input phonon state (vacuum product state |0 · · · 0〉 for all the mo-
tional modes, shown as the red balls) is sent into the phonon circuit,
and further transferred to the qubit entangled state (shown as the
brown balls). Such state can be mapped to the highly entangled TN
states, i.e., the MPS and the PEPS on the square lattice (detailed
in Sec. II). The phonon circuit consists of the CMR (blue square)
and the TMS (orange oval) operations. The circuit parameters are
optimized on the classical computer. (b) Basic schematic diagram of
the experimental proposal. The photon momentum �k is given by
the momentum difference between Raman beams. The global beam
has the frequency of ωR,0 while the individual addressing beams have
frequency components ωR,1 and ωR,2. Also the laser intensity and the
phase between the global beam and individual addressing beams are
the variable parameters. The frequency difference between Raman
beams is used to address phonon mode pairs for the two-mode op-
eration. The detailed toolboxes for the operations and measurement
schemes are shown in Figs. 13 and 14.

(1) High connectivity for the two-mode operations.
We can implement two-mode operations with the ith ion
qubit state as the auxiliary and carefully design Raman
beams on it. As shown in Fig. 12(b), one of the Raman
beams has the frequency ωR,0, which are the same for all
ions. Another Raman beam contains two frequency compo-
nents ωi

R,1 and ωi
R,2 and the corresponding phases φi

1 and φi
2.

One can tune ωi
R,1 and ωi

R,2 on the ith ion to address the two-
mode pairs in the phonon spectrum while having little effect
on other modes. Different from the couplings between qubits,
the couplings between collective modes are more flexible, for
example, not limited by the position of ions.

(2) High parallelism for the two-mode operations. As we
mentioned above, the Raman beam pairs on every ion can
be tuned individually, also shown in Fig. 12(b). Assume we
want the phonon circuit to have N phonon modes as input,
then for each layer of two-mode operations in the scheme the
Raman beams can be applied to N/2 ions simultaneously with
the desired frequencies ωi

R,1 and ωi
R,2 and phases φi

1 and φi
2.

The qubit degree of freedom of ions is used as the auxiliary
to couple the two modes, and all the two-mode operations can

be done simultaneously and independently. Such parallelism
for the two-mode operation shortens the circuit depth and is
beneficial for suppressing error propagating.

It is worth discussing the technical advantages of using
phonon operations (or hybrid with spin) instead of only the
qubit operations for the building of the entanglement. For
implementing a gate between two ion qubits, one needs
phase-locking Raman beam pairs on two ions, while for the
two-mode operations discussed below one only needs the
Raman beam pair on a single ion to couple two phonon modes,
and thus fewer Raman beams are required and less crosstalk
occurs in principle. For example, N Raman beam pairs are
required to couple N ions in pairs while N/2 Raman beam
pairs are required to couple N phonon modes in pairs (for
a single layer). In addition, the two-mode operations can be
applied to arbitrary phonon pairs, while the two-qubit oper-
ations are limited by the power-law decay for the coupling
strength. In one word, the parallelism and connectivity of
phonon modes are much better than the qubits. Besides, since
the dimension of the Fock space is larger than the qubit Hilbert
space, it is easier to generate a highly entangled state by the
phonon modes. However, as discussed above, because of the
lack of free parameters of the phonon operators, we need to
utilize the abundant free parameters of the two-qubit gates to
supply more free parameters and refine the local details of the
generated TN states.

A. Operations on phonon modes

Considering a chain with N ions in a harmonic linear ion
trap along the z direction, the dimensionless equilibrium po-

sition of each ion un ≡ z(0)
n / 3

√
e2

4πε0Mν2
0

can be calculated from

the N coupled algebraic equations ui − ∑i−1
j=1 1/(u j − ui )2 +∑N

i= j+1 1/(u j − ui )2 = 0, where M is the mass of each ion,
e is the electron charge, ε0 is the permittivity of vacuum,
and ω0 is the ion trap frequency (angular frequency). The
interaction matrix of the transverse phonon modes is given
below [45,70,82–84]:

Ax(y)
i j =

{
(βx(y) )2 − ∑N

k �= j 1/|u j − uk|3 (i = j)

1/|u j − ui|3 (i �= j)
(9)

where βx(y) = ωx(y)/ω0. By diagonalizing the matrix with
Ax(y) · bx(y)

m = λ
x(y)
m bx(y)

m , we can obtain the eigenfrequencies

ω
x(y)
m =

√
λ

x(y)
m ω0 and the eigenvectors bx(y)

m of the mth mo-
tional mode along the x (y) axis. Then we can define the
Lamb-Dicke parameters which describe the coupling between
the laser beams and ion motions:

ηx
im = cos θ (bx

m)i�k

√
h̄

2mωx
m

,

η
y
jn = sin θ (by

n) j�k

√
h̄

2mω
y
m

(10)

where θ is the angle between �k and the x axis. η
x(y)
im above

describes the coupling between the ith ion and mth motional
mode. To simplify the symbol, below we ignore the direction
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index x and y and only consider the mode index m, which can
take the value from 1 to 2N .

The Hamiltonian of the system with N ions and the
two Raman beams discussed above can be written as
[48,64,70,84,85]

H =
N∑

i=1

h̄ωHPF

2
σ i

z +
2N∑

m=1

h̄ωm

(
a†

mam + 1

2

)

+
N∑

i=1

∑
j=1,2

h̄�i

2
σ i

x[ei(ωi
j t−�	k·	r+φi

j ) + e−i(ωi
j t−�	k·	r+φi

j )],

(11)
where ωi

j = ωR,0 − ωi
R, j are the effective laser frequencies for

the Raman beams on the ith ion, σz is the Pauli matrix, �	k ·
	r = �kxx + �kyy, �i is the effective Rabi frequency on the
ith ion, and φi

j are the phases for the jth frequency component
on the ith ion. Actually, we can control at most 2N transverse
motional modes at the same time if all �i �= 0. However, for
the quantum information transfer between the phonon mode
and qubit in Sec. III B, we want to encode the multiphonon
state back to the qubit levels, so at most N phonon modes
are used and corresponding Raman beams on N/2 ions. We
further define the detuning as δi

j = ωi
j − ωHPF. In the interac-

tion picture with H0 = ∑ h̄ωHPF
2 σ i

z + ∑
h̄ωm(a†

mam + 1
2 ) and

under Lamb-Dicke approximation [η2
im(2〈n〉 + 1) 
 1], the

interaction Hamiltonian is shown below:

Hint =
N∑

i=1

∑
j=1,2

h̄�i

2
e−iδi

j t eiφi
j σ+

× [1 +
∑

m

iηi,m(ame−iωmt + a†
meiωmt )] + H.c. (12)

Based on the Hamiltonian above, we will discuss how to
realize the basic phonon operations in the experiment with
tunable δi

j and φi
j on the ith ion. In the following, we focus

on the Raman beam pair on a single ion, i.e., the ith ion, and
similarly for the Raman beams on other ions and motional
modes, and ignore the index i for the ion for simplification. We
will give the detailed derivation in the Appendix, following
[86] for the effective Hamiltonian theory.

In the following, we will discuss how to realize the two-
mode operation in the phonon space [55,60–62,64,65,87],
which is the core to generate the TN state in the ion trap.
As mentioned in Eq. (10), the momentum kick �k overlaps
with the collective modes in both the x and y axis, given
by the nonzero Lamb-Dicke parameter η, which describes
the coupling between the laser wave vector and motional
modes. This system provides two-mode operations with high
connectivity, for one can choose the detuning wi

j between the
Raman beam pairs to address motional mode pairs. Also, these
operations can be done in parallel and not limited by the ion
separation. One can choose the ith ion coupled to mth and nth
motional modes, which makes ηi,mηi,n larger, thus shortening
the operation time in each layer. We give the operations and
tunable parameters below [55,65], while leaving the detailed
deviation for the Appendix.

The first kind of operation is the CMR operation, which
guarantees the particle number and parity conservation in

(a) (b)

FIG. 13. Trapped-ion realization of the two-mode operations.
Here we take 171Yb

+
as an example and adapt the methods from

[55,65]. The system has the qubit level encoded in the 2 S1/2 hyperfine
level: | ↓〉 := |F = 0, mF = 0〉 and | ↑〉 := |F = 1, mF = 0〉. Mo-
tional degree of freedom mode 1 and mode 2 are coupled to the
system qubit with the frequency ω1 (blue curve) and ω2 (purple
curve). The lower one corresponds to the | ↓〉 phonon state and
the upper one corresponds to the | ↑〉 phonon state. The (a) CMR
operation R(θ, φ) and (b) TMS operation S(γ , ϕ) are implemented
via controlling the frequencies ωR,0, ωR,1, ωR,2 and phase φ1, φ2. The
lower row denotes the phonon spectrum and the required detuning
for the corresponding mode operation.

the Fock space. As shown in Fig. 13(a) with δi
1 = −ω1 −

δR and δi
2 = −ω2 − δR, here ω1 and ω2 are the frequencies for

the modes we want to operate. With such pulse, the two-mode
operation on modes 1 and mode 2 is given as

R(θ, φ) = exp

{
−i

θ

2
(a†

1a2eiφ + a1a†
2e−iφ )σz

}
,

UCMR(θ, φ) = exp

{
−i

θ

2
(eiφa†

1a2 + e−iφa1a†
2)

}
,

(13)

where η1 and η2 are the Lamb-Dicke parameters for mode 1
and mode 2, θ = tη1η2�

2/8δR, and φ = φ2 − φ1. With the
qubit state prepared in the (σz) eigenstate, the CMR operation
UCMR can be implemented.

The second kind of operation is the TMS operation, which
only guarantees parity conservation in the Fock space. As
shown in Fig. 13(b) with δ1 = ω1 − δS and δ2 = −ω2 − δS ,
ω1 and ω2 are still the frequencies for the modes we want to
operate. With such pulse, the two-mode operation on modes 1
and mode 2 is given as

S(γ ,ψ ) = exp
{
−i

γ

2
(a†

1a†
2eiψ + a†

1a†
2e−iψ )σz

}
,

UTMS(γ ,ψ ) = exp
{
−i

γ

2
(eiψa†

1a†
2 + e−iψa†

1a†
2)

} (14)

where η1 and η2 are the Lamb-Dicke parameters for mode 1
and mode 2, γ = tη1η2�

2/8δS , and ψ = φ2 − φ1. With the
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FIG. 14. Details on the phonon-qubit hybrid technology. The
goal is to coherently transfer the |0〉 (|1〉) phonon state to the | ↓〉
(| ↑〉) state, while other parts are postselected. (a) Initial state we
consider (output from the phonon circuit), where phonon and qubit
degrees of freedom get decoupled. Blue circles denote the state we
want to transfer and red circles denote the state we want to remove.
(b) “Rolled” operation UR for the phonon and qubit state, where
n � 1 phonon states are “rolled” to the | ↑〉 qubit state and n > 1
phonon states shift left by 2. (c) All the phonon states coupled with
the | ↓〉 qubit state are removed (with the laser pulse connecting
| ↓〉 and other excited states). (d) Blue sideband pulse from | ↑, 1〉
to | ↓, 0〉. Notice | ↑, 0〉 cannot be driven during this step. After the
pulse sequence above, we transfer the correlation between phonon
modes to the ion qubits.

qubit state prepared in the eigenstate of σz, CMR operation
UCMR can be implemented.

B. Transfer from multiphonon state to qubit entangled state

In this section, we will discuss how to transfer the cor-
relation between phonon modes to the ion qubits degree of
freedom as required for further qubit operations. As we have
shown above, we send the initial product state to the phonon
circuit composed of the TMS and the CMR, and get a N
phonon modes state which gets decoupled with qubit states:

|ψ〉out =
∞∑

i1,··· ,iN =0

ci1,··· ,iN |↓1, · · · ,↓N , i1, · · · , iN 〉. (15)

Next, via the phonon-qubit hybrid technology, we transfer the
partial quantum information in the phonon number subspace
{|0〉, |1〉} of each mode to each ion qubit state {| ↓〉, | ↑〉}.
Then with the N qubits entangled state (from the N phonon
modes entangled state) at hand, we can perform the qubit
operation on it to improve the expressive power of the scheme
and do standard qubit measurement to estimate the expected
value of observables.

Now we give the details of the whole process shown in
Fig. 14.

(1) As shown in Fig. 14(b), first we perform the “rolled”
operation mentioned in [65], which gives

UR = |1,↑〉〈0,↓| + |0,↑〉〈1,↓| +
∑
n>1

|n − 2,↓〉〈n,↓|.
(16)

After this operation, n � 1 phonon states get rolled to
the | ↑〉 state, while n > 1 phonon states have their phonon
number decreased by two. Also, UR can be performed on each
individual qubit, and we can address a single motional mode

with the selected detuning of the driving pulse close to the
mode frequency. With these operations, the phonon and qubit
state get coupled as

|ψ〉1 =
1∑

i1,··· ,in=0

ci1,··· ,in |↑1, 1 − i1〉 ⊗ · · · ⊗ |↑n, 1 − in〉

+ others, (17)

where “others” contains the states with at least one qubit in
the | ↓〉 state.

(2) As shown in Fig. 14(c), we can use the laser pulse to
drive the | ↓〉 to ancillary state |e〉, which is away from the
qubit state manifold. The driving left the quantum state similar
to Eq. (17): if the phonon number for the mth motional mode
im � 1, then the corresponding mth ion is in | ↑〉; if the mth
mode im > 1, then the corresponding mth ion is in |e〉. In other
words, “others” contains the states with at least one qubit in
the |e〉 state.

(3) Postselection to the space where all the qubits are in
the | ↑〉 state can be done by measuring the qubit state of
all the ions on the | ↑〉 state. When there exist ions in the
|e〉 state, the quantum states get discorded. The quantum state
after postselection can be written as

|ψ〉2 = 1

N
∑

i1,··· ,in=0,1

ci1,··· ,iN |↑1, 1 − i1〉 ⊗ · · · ⊗ |↑N , 1 − iN 〉,

(18)
where N is the normalized factor. The postselection probabil-
ity is high since the TMS operation makes the part in which
the phonon number on each site is less than 2 dominant.

(4) Finally, as shown in Fig. 14(d), we can perform the reg-
ular blue sideband transition between | ↑, n + 1〉 ↔ | ↓, n〉.
Notice that such transition is blocked for the | ↑, 0〉 state,
and n > 1 phonon states are absent; we do not worry about
the inhomogeneous driving in the sideband transition [88,89].
Thus the final quantum state we obtain is

|ψ〉3 = 1

N
∑

s1,··· ,sN =↓,↑
cs1,··· ,sN |s1, · · · , sN 〉

⊗ |i1, · · · , iN = 0〉,
(19)

where the motional degrees of freedom are |nm = 0〉 for all
the modes, and the information is transferred to the qubit state.
With the phonon-qubit hybrid technology, we can improve the
expressive power by further performing the qubit operation.

IV. NUMERICAL SIMULATION

To benchmark the validity of the ideas mentioned be-
fore, we simulate the ground state of the 1D Heisenberg
model HHeisenberg = J

∑
i(σ

i
xσ

i+1
x + σ i

yσ
i+1
y + σ i

zσ
i+1
z ) and 1D

transverse-field Ising model near the critical point HIsing =
J

∑
i(σ

i
xσ

i+1
x + σ i

z ) with different types of MERA Ansatz. In
order to compare the experimental results near the future, we
set the length of the 1D chain to be 5 and 11.
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FIG. 15. The fidelity between the states with the phonon number
cut D and D = 20 after postselecting into {|0〉, |1〉} subspace in the
different layers of MERA on the 1D lattice with the same parameters
at each site. For all results, we set the rotation parameter and phase
parameters of the CMR θ = 0, φ = 0 [in Eq. (13)], and the phase
parameters of the TMS ψ = 0 [in Eq. (14)]. The blue round dot is
the result with squeezing parameter γ = 0.4 [in Eq. (14)], the orange
inverted triangle dot is for γ = 0.8, the green triangle dot is for γ =
1.2, the red square dot is for γ = 1.6, and the purple diamond dot is
for γ = 2.0. (a) The results for two-layer MERA on the 1D lattice
with different squeezing parameters. (b) The results for three-layer
MERA on the 1D lattice with different squeezing parameters.

In our simulation, all the input states (the green legs in
Fig. 10) are set to vacuum state (|0〉), and the numerical
calculation is based on the TNSPACKAGE [90].

In order to compare our simulation results with the ex-
perimental results, we need to consider the Fock states with
multiple phonon numbers (corresponding to the tensor with
large D). Since the amplitude of the Fock state |n〉 decays
with n because of the TMS operation, thus we can simulate the
experimental results with the MERA Ansatz reliably with suit-
able truncation of the phonon number. In Fig. 15, we test the
relation between the exact results and the result with the trun-
cation of the phonon Dcut with two- and three-layer MERA
Ansätze, where the exact results are obtained by truncating
the phonon number to 20, which is big enough. Actually, we
can find that the fidelity between the MERA with truncation

FIG. 16. The optimized energy results calculated from the
MERA Ansatz. The vertical axis is the energy per site, and the hor-
izontal axis is the iteration step of the gradient descent method. For
both of the figures, the gray (black) horizontal line is the theoretical
result given by the exact diagonalization method, and the blue dotted
(orange dash-dotted) line is the result obtained from the MERA
Ansatz. (a) The results for the 5- and 11-site transverse-field Ising
model near the critical point. (b) The results for the 5- and 11-site
Heisenberg model.

dimension Dcut and the exact result is saturated when Dcut is
bigger than 5. With this result, we set the truncation parameter
Dcut to be 6 in our simulation, which is enough to guarantee
its reliability.

Then, we numerically simulate the energy of the ground
states of the 11-site (5-site) 1D transverse-field Ising model
near the critical point and Heisenberg model with the MERA
Ansatz. In Fig. 16, the ground energy obtained in our simu-
lation (blue dotted line and orange dashdotted line) is very
close to the exact value (the relative errors, i.e., Enum−Eth

Eth
, are

as small as 0.003 and 0.4% for 5- and 11-site 1D transverse-
field Ising models separately, and as small as 0.5 and 1% for
5- and 11-site 1D Heisenberg models separately). It is clear
that the TN states generated by the phonon-qubit TN states
generation scheme can well represent the ground state of the
1D transverse-field Ising model near the critical point and
Heisenberg model. If we add more operations into the unitary
element U (�) to introduce more free parameters, the results
can be further improved.

By the way, the results with the MERA Ansatz with only
phonon operation are far away from the exact result, which
indicates that the lack of free parameters of the phonon oper-
ations is the fatal flaw.
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V. SUMMARY

In this paper, we propose a scheme to generate the TN
state in the trapped-ion platform by combining the phonon
modes and qubits. Due to the full connectivity of the phonon
operation, the complex TN states with rough entanglement
structure can be generated programmably. We take the MERA
on the 1D lattice and the PEPS on the kagome lattice as
examples, in addition to the already generated MPS and PEPS
on the square lattice by other schemes. The parallelism of the
phonon operations makes the depth of the generation circuit
very shallow, which supplies additional robustness against the
noise. With the phonon-qubit hybrid technology, we introduce
the local qubit operations into our scheme. Due to the abun-
dant free parameters of the qubit operations, we refine the
local details of the generated TN states, and the expressive
power of the generated TN state is dramatically improved.
As shown in numerical results, the TN states generated by
our scheme can be used to be a variational ground state of
a many-body system, which may offer a way to demonstrate
quantum advantage by replacing the contraction of tensors.
Our numerical simulation supports all of our ideas. Last but
not least, recent experimental progress towards generation
of the phonon network [56] enhances the feasibility of our
scheme, and the analysis in the paper on scaling up to more
phonon modes also applies to our system.
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APPENDIX: PHONON MODE OPERATION DERIVATION

In this part, we will derive Eqs. (13) and (14) in the main
text, following [86]. Basically, in the interaction picture, the

time-dependent Hamiltonian has the form

ĤI (t ) =
N∑

n=1

ĥn exp (−iωnt ) + ĥ†
n exp (iωnt ) (A1)

and then we have the effective Hamiltonian to describe the
system as

Ĥeff (t ) =
N∑

m,n=1

1

h̄ω̄mn
[ĥ†

m, ĥn] exp(i[ωm − ωn]t ) (A2)

with

1

ω̄mn
= 1

2

(
1

ωm
+ 1

ωn

)
. (A3)

In the case for the CMR operation, we have

h1 = −iη1
h̄�

2
e−iφ1σ−a†

1,

h2 = −iη2
h̄�

2
e−iφ2σ−a†

2

(A4)

with ω1 = ω2 = δR and effective Hamiltonian

Ĥeff = h̄�2η1η2

4δR

(
a†

1a2eiφB + a1a†
2e−iφB

)
σz. (A5)

Similarly, for the TMS operation we have

h1 = −iηm
h̄�

2
e−iφ1σ−a1,

h2 = −iηm
h̄�

2
e−iφ2σ−a†

2,

(A6)

and effective Hamiltonian

Ĥeff = h̄�2η1η2

4δS

(
a†

1a†
2eiφB + a1a2e−iφB

)
σz. (A7)
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