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Detecting quantumness in uniform precessions
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Building on work by Tsirelson, we present a family of protocols that detect the nonclassicality of suitable
states of a single quantum system, under the sole assumption that the measured dynamical observable undergoes
a uniform precession. The case of the harmonic oscillator was anticipated in the work by Tsirelson, which we
extend. We then apply the protocols to finite-dimensional spins that undergo uniform precession in real space
and find a gap between the classical and the quantum expectations for every j � 3

2 (excluding j = 2).
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I. INTRODUCTION

Uniform precession is one of the most basic forms of
motion. If a Hamiltonian H generates uniform precession of
some dynamical variables in classical theory, the quantum the-
ory obtained by canonical quantization also predicts uniform
precession of the corresponding observables in the Heisenberg
representation.

The one-dimensional harmonic oscillator is paradigmatic.
Imported into quantum theory by Heisenberg, as a side re-
mark while tackling the nonharmonic oscillator [1], it is
now textbook knowledge, in the even simpler algebraic ap-
proach of Dirac [2]. Since Planck’s blackbody radiation and
the Einstein-Debye specific heat, countless observations have
been made of nonclassical features of harmonic systems.
Today’s level of control over individual quantum harmonic
systems extends from optical modes as the most explored
platform [3] to mechanical modes as the frontier [4–6]. All
the reported quantum features of harmonic oscillators have to
do with the kinematics (preparing nonclassical states, which
are actually independent of the dynamics) or originate from
the discrete nature of the energy spectrum (e.g., the presence
of a zero-point energy). By contrast, the dynamics of the inde-
pendent variables (x, p) is a uniform precession in phase space
both in classical and in quantum theory. It is then thought that
proper quantum features of harmonic oscillators have to be
found elsewhere.

Building on a virtually unnoticed work by Tsirelson [7],
we show that this common belief is unwarranted. For suitable
initial states, evidence of nonclassicality can be obtained from
the statistics of one measurement, under the sole assumption
that the observed dynamical variable undergoes a uniform
precession. We extend Tsirelson’s observation to systems with
finitely many levels (spins). A necessary condition to have a
gap between the classical and the quantum prediction is that
the precession couples noncommuting variables. The proto-
cols introduced here constitute a different type of certification
of nonclassicality.

In Sec. II we introduce the protocol for general uniformly
precessing observables and derive the classical bounds. In

Sec. III we apply the protocol to the same physical system
as Tsirelson: precession in the phase space of the one-
dimensional harmonic oscillator. In Sec. IV we consider
precessions in real space due to spin angular momentum. Sec-
tion V sketches some of the analytical results, whose detailed
description and derivation are given in the Appendixes.

II. CLASSICAL BOUNDS OF UNIFORMLY
PRECESSING OBSERVABLES

Consider two physical quantities A1 and A2 that define a
precession, that is, their evolution in time is given by

A1(t ) = A1(0) cos(ωt ) + A2(0) sin(ωt ),

A2(t ) = A2(0) cos(ωt ) − A1(0) sin(ωt ) (1)

for a fixed pulsation ω = 2π/T . For classical systems, A1(t )
and A2(t ) are the values of the physical quantities measured
at times t ; for quantum systems, A1(t ) and A2(t ) are their
corresponding Hermitian operators given in the Heisenberg
representation.

Divide one period T of the precession into K equal times
tk = (k/K )T , with K > 0 an integer and k = 0, 1, . . . , K − 1.
In every round of the protocol, one of the times tk is cho-
sen with uniform probability 1/K and the observable A1 is
measured at that time. After several rounds, one estimates the
average probability of having found A1 > 0,

PK ≡ 1

K

K−1∑
k=0

[
Prob(A1 > 0 at t = tk )

+1

2
Prob(A1 = 0 at t = tk )

]

= 1

K

K−1∑
k=0

P (A1(tk )), (2)

where P (x) = 1
2 [1 + sgn(x)] is the Heaviside step function.

The term. 1
2 Prob(A1 = 0) is needed to control the behavior at

points (A1 = 0, A2), as we will see shortly.
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FIG. 1. Classical phase-space picture of the protocol, for (a) K =
3 and (b) K = 7, split into regions labeled �±k , with k =
0, 1, . . . , K − 1. The trajectory of several example states are shown.
Points in the region �±k0 at t = 0 will be in the region �±[(k0+k)modK]

at t = tk . For odd K , points in the region �+k (�−k) have the classical
score Pc

K = 1
2 (1 + 1

K ) [Pc
K = 1

2 (1 − 1
K )], which can be easily found

by counting how often the point stays on the positive A1 plane. A
similar argument for even K gives Pc

K = 1
2 .

We will denote by PK the maximum of PK over all states.
The results obtained with classical mechanics are denoted by
Pc

K and Pc
K .

In classical physics, a pure state, i.e., a state of maximal
knowledge, is represented by a point (A1(t ), A2(t )) in the
A1-A2 plane, which precesses therefore with period T . Let us
introduce the angle θ ≡ arctan2(A2, A1) and the open sectors

�+k =
{

(A1, A2) : θ ∈
(π

2
,
π

2
− π

K

)
− 2πk

K

}
,

�−k =
{

(A1, A2) : θ ∈
(

π

2
− π

K
,
π

2
− 2π

K

)
− 2πk

K

}
. (3)

Due to the uniform precession, points initially in the region
�±k0 will be in the region �±[(k0+k)modK] at t = tk .

A simple graphical argument [see Figs. 1(a) and 1(b) for
K = 3 and 7, respectively] tells us that for even K , points
initially in �±k have A1 positive K/2 out of K times, giv-
ing Pc

K = 1
2 . Meanwhile, for odd K , points initially in �±k

will have x positive (K ± 1)/2 out of K times, giving Pc
K =

1
2 ± 1

2K . As for the points that lie at the boundary between
two open sectors, they yield Pc

K = 1
2 ; this is the case notably

for (A1, A2) = (0, 0) due to the term 1
2 Prob(A1 = 0) in (2).

Therefore, for a generic classical state, i.e., for any probability
density ρ(A1, A2) over phase space, the classical score satis-
fies

1

2

(
1 − 1

K

)
� Pc

K � 1

2

(
1 + 1

K

)
≡ Pc

K for K odd. (4)

III. HARMONIC OSCILLATOR: PRECESSION IN
PHASE SPACE

A one-dimensional material point is a system whose
only independent dynamical variables are position x and
momentum p. This system is called a harmonic oscilla-
tor if its dynamics is generated by the Hamiltonian H =

1
2m (p2 + mω2x2). Under this Hamiltonian, x and p evolve in
time according to x(t ) = x(0) cos ωt + p̃(0) sin ωt and p̃(t ) =

p̃(0) cos ωt − x(0) sin ωt , with p̃ = p/mω. In other words, the
evolution describes a precession in phase space.

Therefore, we can identify (A1, A2) = (x, p̃) and perform
the protocol as introduced in the preceding section. The scores
obtained with the quantum harmonic oscillator are denoted
by P∞

K and P∞
K because we are dealing with an infinite-

dimensional vector space.
This protocol with K = 3 was originally considered by

Tsirelson [7]. He found that P∞
3 � 0.709 > Pc

3 = 2
3 . The ori-

gin of such a gap between the quantum and the classical
prediction must be traced to the fact that the precession
couples incompatible variables. Every probability density sat-
isfies the classical bound: To violate the bound, the joint
distribution of (x, p) must be a quasiprobability density with
negative values. A very compelling image of Tsirelson’s dis-
covery is indeed obtained by plotting the Wigner function
W (x, p) of the state that is numerically found to yield P∞

3
[Figs. 2(a)–2(c)]. Anticipating the use of our techniques, to be
described below, we also plot the state for K = 7, for which
P∞

7 � 0.61 > Pc
7 = 4

7 [Figs. 2(d)–2(f)]. The fact that these
Wigner functions have the same symmetry as the classical
probabilities will be proved rigorously below, where it will
also be used to derive an upper bound on P∞

K .

IV. SPIN j: PRECESSION IN REAL SPACE

Under the Hamiltonian H = −ωJz, where Jz is the com-
ponent of the angular momentum �J of the system in the
z direction, any vector �V precesses around the z axis
at pulsation ω: Vx(t ) = Vx(0) cos ωt + Vy(0) sin ωt , Vy(t ) =
Vy(0) cos ωt − Vx(0) sin ωt , and Vz(t ) = Vz(0). Hence, the
protocol can be performed by identifying (A1, A2) = (Vx,Vy).
To have a quantum gap, we need a vector whose quantum
description is such that [Vx,Vy] �= 0 (for instance, the position
vector �x would not do).

For this study, we choose �J itself, since famously [Jx, Jy] =
ih̄Jz. For simplicity of notation, we assume in what follows
that �J is a spin j (the results are of course unchanged for a
subspace of fixed j of a more complex angular momentum),
with Hilbert space dimension d = 2 j + 1. Analogously to the
preceding section, the scores obtained with the d-dimensional
Hilbert space are denoted by Pd

K and Pd
K .

We label |mx〉 the eigenvector of Jx for the eigenvalue
h̄m, with m ∈ {− j,− j + 1, . . . , j − 1, j}. The detection of a
positive component of Jx is then represented by the operator

P (Jx ) = 1
2 [1 + sgn(Jx )], (5)

where

sgn(Jx ) =
j∑

m=− j

sgn(m)|mx〉〈mx|. (6)

Then, given a state, Pd
K will be the expectation value of the

operator

QK = 1

K

K−1∑
k=0

e−iθk JzP (Jx )eiθkJz ≡ EK [P (Jx )], (7)
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FIG. 2. (a) and (d) Wigner function W (x, p) of the state of the one-dimensional harmonic oscillator that achieves P∞
K (truncated at the

energy eigenstate n = 2100) for (a) K = 3 and (d) K = 7. Here x and p are in units of
√

h̄/mω and
√

h̄mω, respectively. Superimposed are
the phase-space sectors and corresponding value of the classical score Pc

K . Notice how the negativity of W (x, p) is concentrated in the sectors
where Pc

K is minimal. (b) and (e) Corresponding wave functions ψ (x) (truncated at n = 5000K). For both the Wigner and wave functions, if
|ψn〉 is the state that achieves P∞

K truncated at n, then n is chosen so that |〈ψn|ψ2n〉|2 > 0.99. (c) and (f) The state that achieves P∞
K is of the

form |ψ〉 = ∑
m(−1)
m/2�cm |mK〉, with cm ∈ R. The coefficients cm, found numerically with the truncation n � 5000K , are plotted above.

with θk = 2πk/K . Thus, the maximum Pd
K is the largest

eigenvalue of QK and the optimal state is the corresponding
eigenvector.

For K even, QK = 1
21 for all d . Indeed, we see that

e−iθkJz |mx〉 ≡ |mθk 〉, the eigenvector of cos θkJx + sin θkJy for
eigenvalue m. However, if K is even, θk+K/2 = θk + π is also
in the sum and e−i(θk+π )Jz |mx〉 ≡ |−mθk 〉. Therefore, for K
even, Pd

K = Pd
K = Pc

K = 1
2 for every state.

For K odd, finding eigenvalues and eigenvectors of finite
matrices can be reliably achieved with standard numerical
tools. The results are shown in Fig. 3 for K = 3 and Fig. 4
for K = 7; we plotted the same graphs for other odd values
of K as well. They all show a systematic behavior of Pd

K
as a function of d . The first nontrivial value PK+1

K is also
the largest; for larger d , the graph exhibits a pattern with

periodicity 2K , while settling around a value that is clearly
higher than the classical one. The fact that this value seems
to approach P∞

K obtained with the harmonic oscillator is not a
coincidence, as we are going to discuss below.

V. ANALYTICAL RESULTS

The starting point to obtain analytical results is the obser-
vation that

EK [|mz〉〈m′
z|] = |mz〉〈m′

z|δ0,(m−m′ )modK . (8)

In words, for any observable A, the averaging EK destroys
all the matrix elements in the basis of the eigenvectors of Jz,
but those such that (m − m′)modK = 0. In particular, when
d � K , EK [A] = diagz(A) is the diagonal of A in the ba-
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LB

avg

FIG. 3. Values whose analytical expression is known for every K are given in red. The average of Pd
3 over 2000 � d � 4000 yields

Pavg
3 = 0.7092; the analytical asymptotic lower bound (13) is PLB

3 = 0.7087. We find Pd
3 > Pc

3 for d = 3 + 1 and d � 2 × 3. The insets show
Wigner functions W (θ, ϕ) defined on spherical phase space [8] for (a) d = 3 + 1, (b) d = 3 + 2, and (c) d = 21 × 3 + 1. The time evolution
under the Hamiltonian H = ωJz corresponds to a rotation of the Wigner function around the z axis with angular frequency ω. A stereographic
projection of its upper hemisphere is shown, where the origin corresponds to θ = 0, the boundary corresponds to θ = π/2, and the ticks
around the boundary label azimuthal angles ϕ ∈ [0, 2π ]. The lower hemisphere (θ ∈ [π/2, π ]) is an exact reflection of the upper hemisphere
(θ ∈ [0, π/2]). Dashed lines mark the same phase-space sectors as in Fig. 2. Note the similarity between the image in (c) and Fig. 2(a).

sis of eigenstates of Jz. Since 〈mz|sgn(Jx )|mz〉 = 0 for all
m, it follows that QK = 1

21 and Pd
K = Pd

K = 1
2 for all states,

LB

FIG. 4. Same as in Fig. 3 for K = 7. The average of Pd
7 over

6000 � d � 8000 yields Pavg
7 = 0.6088; the analytical asymptotic

lower bound (13) is PLB
7 = 0.6089. We find Pd

7 > Pc
7 for d = 7 + k,

with k ∈ {1, 3, 5} and d � 2 × 7. The insets show the Wigner func-
tion defined on spherical phase space for (a) d = 7 + 1 and (b) d =
7 × 7 + 1. Note also the similarity between the image in (b) and
Fig. 2(d).

as long as d � K , i.e., j < K
2 . When d > K , EK [A] has a

block-diagonal structure, with K separate subspaces indexed
by m̄ ∈ {− j,− j + 1, . . . ,− j + K − 1}, each of dimension
 j−m̄

K � + 1. On top of this structure, one uses specific prop-
erties of the operator sgn(Jx ).

All that precedes is detailed in Appendix A. In Appendix B
we use the Wigner matrices that connect the eigenstates of Jz

and those of Jx [9,10] to obtain the matrix elements of sgn(Jx )
in the basis of the eigenstates of Jz. Eventually, the values of
Pd

K that we were able to compute analytically are listed in
Appendix C. All these values are represented by red dots in
Figs. 3 and 4.

In particular, we have obtained the expression of the first
nontrivial value

PK+1
K = 1

2

[
1 + 2−(K−1)

(
K − 1

K−1
2

)]
. (9)

The numerics strongly support the conjecture that this is the
largest Pd

K for given K . While we have not been able to prove
this conjecture in its generality, we do have the expression for
the next several Pd

K , including the next two peaks P3K+1
K and

P5K+1
K , and they are all indeed provably smaller. The eigen-

value PK+1
K is nondegenerate and its corresponding eigenstate

is

|
K〉 = 1√
2

[|mz = j〉 + (−1)(K−1)/2 |mz = − j〉] (10)

for j = K
2 . The largest among the PK+1

K is P4
3 = 3

4 , ob-
tained when j = 3

2 . Under the conjecture just mentioned,
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this value is the largest quantum violation of the classical
bound.

This protocol is also an entanglement witness, when per-
formed with composite systems. Indeed, if the system is
composed of two particles with fixed spins j1 and j2, the
state that achieves the maximum violation for measurements
of Jx = J ( j1 )

x ⊗ 1( j2 ) + 1( j1 ) ⊗ J ( j2 )
x is always entangled when

expressed in the subsystems (Appendix C 7). This can be
extended the multipartite case, which is a composite system
of many particles, each with a fixed spin. For example, for
a chain of K spin- 1

2 particles, the state that achieves the
score PK+1

K is the maximally entangled K-partite Greenberger-
Horne-Zeilinger state

|
K〉 = 1√
2

[|↑〉⊗K + (−1)(K−1)/2 |↓〉⊗K ]. (11)

Most of the structure found for finite-dimensional systems
carries over to the quantum harmonic oscillator by replacing
|mz〉 → |n〉, Jz → a†a, and P (Jx ) → P (X ), where we present
these analogies

P (X ) =
∫ ∞

0
dx|x〉〈x| = 1

2
[1 + sgn(X )]. (12)

In Appendix D we present these analogies. In particular, one
finds the explicit expression (D11) for 〈n|sgn(X )|n′〉. The
plots of Fig. 2 were made by diagonalizing a truncation of
this operator. We also show that, in the limit j → ∞, P (Jx )
has the same matrix elements as P (X ). Therefore, as noticed,
Pd→∞

K is indeed the same as P∞
K described in Sec. III.1

We have also obtained bounds for P∞
K . On the one hand, in

Appendix D we have the closed-form lower bound

P∞
K � PLB

K = 1

2

(
1 +

√
1 + FK

K

)
, (13)

with FK = 2
π

∑(K−1)/2
k=1 (−1)k arccos[2 sin( πk

K ) − 1]. It can be
verified that PLB

K is strictly larger than Pc
K , for every odd

K . As for an upper bound, we start by noticing that the
block structure of EK [P (X )] implies that the eigenvector
corresponding to the maximal eigenvalue is a superposition
of Fock states differing by integer multiples of K . For such
vectors, W (r, θ + 2πk/K ) = W (r, θ ) holds, where W (r, θ ) ≡
W (r cos θ, r sin θ ). In other words, their Wigner function has
the same symmetry as the classical probabilities (see Fig. 2).
For all states with this symmetry,

P∞
K = K + 1

2
W+ + K − 1

2
W− = Pc

K − W−, (14)

where

W± =
∫

θ∈�±k

∫
r∈R+

r dr dθ W (r, θ )

1Note that the analogy between a large spin and the harmonic
oscillator cannot be based on the approximation [Jx, Jy] ∼ [x, p], fre-
quently used, for instance, in describing collective spins like atomic
clocks. That approximation holds only for states such that 〈Jz〉 ≈ h̄ j,
which is not the case here.

are the weights over the �+k and �−k sectors and we have
used also the normalization W+ + W− = 1

K . The weight of
a Wigner function over any pointed sector in phase space
is lower bounded as W � −s− ≈ −0.1559 [11]. Thus, by
setting W− = −s− we have

P∞
K � PUB

K = Pc
K + s−. (15)

The numerics (see the values reported in Figs. 3 and 4) suggest
that PLB

K is very close to P∞
K . If that is the case, the upper

bound (15) is not tight (PUB
3 ≈ 0.8226 and PUB

7 ≈ 0.7273); it
is nonetheless an improvement, since previously only P∞

K < 1
was rigorously proved [7].

VI. CONCLUSION

In summary, we have presented a criterion to certify the
nonclassical nature of a single quantum system based on
its time evolution, when the latter is a simple precession at
frequency ν. Any detection of quantumness must involve in-
compatible variables and ours is not an exception. A gap with
the classical bound can only happen when the precession cou-
ples noncommuting variables and is well understood in terms
of quasiprobability distributions with negative values [12].
Our criterion can be tested on many platforms. For discrete
systems, the most obvious that come to mind are a proper
spin, for instance, a nuclear spin, and Zeeman subspaces in
atoms and ions. For continuous variables, one could consider
optical, acoustic, or mechanical modes. The dynamics being
usually embedded in the system, the challenge lies mainly in
the creation of a suitable state and in the detection depending
on the platform.

Detection of nonclassical features has been a prominent
topic in recent decades, in the context of emerging quantum
technologies. As any violation of the classical bound requires
negativity in the Wigner function, our protocol is a negativity
witness [13]. In terms of usefulness, at a very general level one
can say that any of the states detected by our protocol, together
with the set of Gaussian operations, is sufficient for universal
quantum computation [14]. More specifically, with the states
|
K〉 that are optimal for our protocol one can construct an
order-K bosonic error-correcting code [15] with the logical
encoding |±K〉 = (±1)a†a |
K〉 and Z = ei(π/K )a†a.

Since it does not involve entanglement, our criterion cannot
be a “black box,” that is, a device-independent certifica-
tion [16]. Indeed, two elements of characterization are needed:
The dynamics must be a precession at a known pulsation ω

and one must be measuring the same variable (x or Jx in the
cases we studied) at any of the probing times tk .

The fact that only one measurement is performed in each
round, that of a single dynamical variable, distinguishes
our criterion from tests of contextuality [17] and Leggett-
Garg-type criteria [18], which require the simultaneous or
sequential measurement of two or more observables in each
round. In particular, our criterion does not utilize the noninva-
sive measurements required in similar Leggett-Garg tests of
harmonic oscillators [19,20], which avoids the “clumsiness”
loophole entirely [21].

We also highlight that, under the very plausible conjecture
that maxd Pd

K = PK+1
K , the observation of this maximal quan-

tum violation identifies uniquely the dimension and the state,
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under the assumptions that the dynamics is a precession and
that one is measuring a component of angular momentum.
This would be a different type of single-particle self-test:
Previously reported instances of such tests assumed either a
bound on the dimension of the system (see Sec. 9.2 of [22] for
a review) or the properties of a set of observables [23].

Some directions of future research should be noted. First,
there is a possible conceptual connection between our proto-
col and the concept of dynamic nonlocality, so called because
the time evolution of some observables depends on the value
of the potential at different locations [24]. An example of
such observables are modular variables, like x(t )modx0 and
p(t )modp0, which have already been considered together with
Leggett-Garg inequalities for tests of contextuality [25]. Mod-
ular variables split phase space into periodic cells, analogous
to how our protocol splits phase space into sectors (see Fig. 1).
Further work would be required to investigate if a formal
relationship exists between our protocol and that of dynamic
nonlocality.

Second, while we have focused on the violation of the
classical bound by a quantum state, casting this protocol on
a general probabilistic theory (GPT) framework is another av-
enue for future research. It is clear that epistemically restricted
theories cannot reproduce the quantum gap, as they recover
only a subtheory of quantum mechanics with Gaussian states,
which cannot violate the classical bound [26]. While there
have been recent works on continuous-variable GPT that per-
mit negative quasiprobabilities [27,28], the full set of states
allowed under such theories is yet to be characterized.

Beyond these timely concerns, we repeat the core of our
surprising result by paraphrasing Tsirelon’s title [7]: Quan-
tumness can be certified simply by asking how often the
coordinate of a uniformly precessing system is positive.
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APPENDIX A: PROPERTIES OF QK

1. Block diagonal structure enforced by EK

From the main text, Pd
K is the largest eigenvalue of the

observable QK = EK [P (Jx )]. In this section we will show
that QK , or indeed EK [A] for an arbitrary operator A =∑

m,m′ 〈mz|A|m′
z〉 |mz〉〈m′

z|, is block diagonal. We begin by
considering the effect of EK on each basis operator |mz〉〈m′

z|,

EK [|mz〉〈m′
z|] = 1

K

K−1∑
k=0

e−i(2πk/K )Jz |mz〉〈m′
z|ei(2πk/K )Jz

= |mz〉〈m′
z|

1

K

K−1∑
k=0

e−i2πk[(m−m′ )/K]. (A1)

The summation is a sum over the roots of unity, which eval-
uates to 1 when K is a factor of m − m′ and 0 otherwise:
EK [|mz〉〈m′

z|] = |mz〉〈m′
z|δ0,(m−m′ )modK .

This means that 〈mz|EK [A]|m′
z〉 is nonzero only when

m modK = m′modK , which in turn implies that EK [A] has
a block-diagonal structure, where each unique value of
(m − m′)modK ∈ {0, 1, . . . , min(K − 1, 2 j)} defines a sepa-
rate subspace. Here (m − m′)modK is maximally min(K −
1, 2 j) as it cannot be greater than or equal to the dimension of
the system d = 2 j + 1. It is convenient to label the subspaces
with m̄ ∈ {− j,− j + 1, . . . , min(− j + K − 1, j)}, where the
m̄th block refers to the block containing the state |mz = m̄〉.

In summary, we have

EK [A] =
min( j,− j+K−1)⊕

m̄=− j

�
(m̄)
K A�

(m̄)
K , (A2)

where �
(m̄)
K is a projection into the m̄th subspace,

�
(m̄)
K ≡

( j−m̄)/K�∑
k=0

|mz = m̄ + kK〉〈mz = m̄ + kK|. (A3)

The upper limit comes from the requirement that mz = m̄ +
kK � j and it follows that the dimension of the m̄th subspace
is  j−m̄

K � + 1.
Notice that when d � K ,  j−m̄

K � �  d−1
K � = 0, so the di-

mension of every subspace is 1. This means that

EK [A] = diagz(A) when d � K. (A4)

For later convenience, we define further splits of each sub-
space �

(m̄)
K into even and odd subspaces

�
(m̄)
K = �

(+m̄)
K + �

(−m̄)
K , (A5)

where

�
(+m̄)
K ≡

( j−m̄)/2K�∑
k=0

|mz = m̄ + 2kK〉〈mz = m̄ + 2kK|,

�
(−m̄)
K ≡

( j−m̄−K )/2K�∑
k=0

|mz = m̄+ (2k+ 1)K〉〈m̄+ (2k + 1)K|.

(A6)

2. Properties of sgn(Jx)

The observable P (Jx ) can be rewritten as

P (Jx ) = 1
2 [1 + sgn(Jx )], (A7)

where

sgn(Jx ) =
j∑

m=− j

sgn(m)|mx〉〈mx|. (A8)

We do so because there are several desirable properties of
sgn(Jx ) that will simplify later calculations. Clearly, upon a
π rotation around the z axis, we have

e−iπJz sgn(Jx )eiπJz = −sgn(Jx ). (A9)

From this, we can infer two properties.
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Property 1. When m′ − m is even, 〈mz|sgn(Jx )|m′
z〉 = 0.

Indeed,

〈mz|sgn(Jx )|m′
z〉 = − 〈mz| e−iπJz sgn(Jx )eiπJz |m′

z〉
= −(−1)m′−m 〈mz| sgn(Jx ) |m′

z〉 . (A10)

Property 2. If λ is an eigenvalue of EK [sgn(Jx )], so is −λ.
Indeed, assume that |λ〉 is an eigenvector of EK [sgn(Jx )] with
eigenvalue λ. Then

EK [sgn(Jx )](eiπJz |λ〉) = eiπJzEK [e−iπJz sgn(Jx )eiπJz ] |λ〉
= −λ(eiπJz |λ〉), (A11)

where eiπJz can be dragged into EK [· · · ] in the second step
since it commutes with ei(2πk/K )Jz . Therefore, eiπJz |λ〉 is an
eigenvector of sgn(Jx ) with eigenvalue −λ.

3. Even and odd subspace of {EK[sgn(Jx)]}2

Appendix A 1 tells us that EK [sgn(Jx )] takes on a block-
diagonal form, where �

(m̄)
K projects onto the m̄th subspace.

Due to property 1 of sgn(Jx ), �
(±m̄)
K sgn(Jx )�(±m̄)

K = 0. There-

fore, using (A6),[
�

(m̄)
K sgn(Jx )�(m̄)

K

]2

= [
�

(+m̄)
K sgn(Jx )�(−m̄)

K + �
(−m̄)
K sgn(Jx )�(+m̄)

K

]2

= �
(+m̄)
K sgn(Jx )�(−m̄)

K sgn(Jx )�(+m̄)
K

+ �
(−m̄)
K sgn(Jx )�(+m̄)

K sgn(Jx )�(−m̄)
K , (A12)

that is, each block of {EK [sgn(Jx )]}2 is itself made up of a
separate even and odd block labeled by +m̄ and −m̄. Further-
more, since the two terms in Eq. (A12) are of the form AA† and
A†A, respectively, they share the same nonzero eigenvalues.

Finally, if λ2 is the maximum eigenvalue of
{EK [sgn(Jx )]}2, then λ = √

λ2 is the maximum eigenvalue
of EK [sgn(Jx )]. There is no ambiguity with the signs, as the
nonzero eigenvalues of EK [sgn(Jx )] must come in (λ,−λ)
pairs due to property 2 of sgn(Jx ).

What we conclude through this line of reasoning is that
we can find the maximum eigenvalue λ over just the odd (or
equivalently even) blocks,

λ2 = max
m̄,|ψ〉,
〈ψ〉=1

〈ψ | �(−m̄)
K sgn(Jx )�(+m̄)

K sgn(Jx )�(−m̄)
K |ψ〉 ,

(A13)

to obtain Pd
K = 1

2 (1 + √
λ2).

APPENDIX B: MATRIX ELEMENTS OF SGN(Jx)

Throughout this Appendix we will only consider m′ and m such that (m′ − m)mod2 �= 0, as the matrix elements of sgn(Jx )
are zero otherwise. An explicit expression for 〈mz|sgn(Jx )|m′

z〉 is given in Eq. (B1), the derivation of which will occupy the rest
of the Appendix:

〈mz|sgn(Jx )|m′
z〉 = (−1)(m′−m−1)/22−(2 j−1)

m′ − m

√√√√(
2
⌊ j+m

2

⌋⌊ j+m
2

⌋ )(
2
⌊ j−m

2

⌋⌊ j−m
2

⌋ )(
2
⌊ j+m′

2

⌋⌊ j+m′
2

⌋ )(
2
⌊ j−m′

2

⌋⌊ j−m′
2

⌋ )

×
√

( j + m)( j+m)mod2( j + m′)( j+m′ )mod2( j − m)( j−m)mod2( j − m′)( j−m′ )mod2. (B1)

A small simplification of 〈mz|sgn(Jx )|m′
z〉 is provided before continuing with the rest of the derivation. Here �

j
m′,m ≡ 〈mz| m′

x〉 =
〈mz|e−i(π/2)Jy |m′

z〉 is an element of the Wigner d matrix with some known symmetries and values [9]:

�
j
m,m′ = (−1)m−m′

�
j
m′,m = (−1) j+m�

j
m,−m′ , (B2)

�
j
m, j = 2− j

√(
2 j

j − m

)
, (B3)

�
j
m,0 =

⎧⎪⎨⎪⎩
0 for j + m odd

(−1)( j+m)/22− j

√(
j + m

j+m
2

)(
j − m

j−m
2

)
otherwise.

(B4)

Some recursion formulas are also known, including [10]

�
j
m,m′ = 1√

2( j − m′)

(√
j − m�

j−1/2
m+1/2,m′+1/2 −

√
j + m�

j−1/2
m−1/2,m′+1/2

)
. (B5)

Then, rewriting the matrix elements of sgn(Jx ) in terms of �
j
m,m′ and using Eq. (B2),

〈mz|sgn(Jx )|m′
z〉 =

j∑
m′′=− j

sgn(m′′)� j
m,m′′�

j
m′,m′′ = 2

j∑
m′′=m0

�
j
m,m′′�

j
m′,m′′ , (B6)

where m0 = 1/2 if d is even and m0 = 1 if d is odd.
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1. Edge cases 〈mz = − j|sgn(Jx)|mz = − j + k〉
We begin the derivation with edge cases of the form 〈mz = − j|sgn(Jx )|mz = − j + k〉, where k > 0 is odd:

〈mz = − j|sgn(Jx )|mz = − j + k〉 = 2�
j
− j, j�

j
− j+k, j + 2

j−1∑
m=m0

�
j
− j,m�

j
− j+k,m. (B7)

The first term can be resolved with Eq. (B3),

2�
j
j,− j�

j
j,− j+k = 2 × 2−2 j

√
(2 j)!

(2 j − k)!k!
=

√
2 j

k
�

j−1/2
j−1/2, j−1/2�

j−1/2
j−1/2, j−k+1/2, (B8)

where we have rewritten it in a form for later convenience. Meanwhile, with the recursive relation from Eq. (B5), the second
term in Eq. (B7) is

2
j−1∑

m=m0

�
j
− j,m�

j
− j+k,m = (−1)k2

j−1∑
m=m0

�
j
m, j�

j
m, j−k

= −2
j∑

m0+1

�
j
m−1, j

√
j − m + 1

2k
�

j−1/2
m−1/2, j−k+1/2 + 2

j−1∑
m0

�
j
m, j

√
j + m

2k
�

j−1/2
m−1/2, j−k+1/2

= −2

√
1

2k
�

j
j−1, j�

j−1/2
j−1/2, j−k+1/2 + 2

√
j + m0

2k
�

j
m0, j�

j−1/2
m0−1/2, j−k+1/2

− 2
j−1∑

m0+1

(
�

j
m−1, j

√
j − m + 1

2k
− �

j
m, j

√
j + m

2k

)
︸ ︷︷ ︸

= 0, using Eq. (B3)

�
j−1/2
m−1/2, j−k+1/2

= −2

√
1

2k

(
2− j

√
(2 j)!

(2 j − 1)!2!

)
�

j−1/2
j−1/2, j−k+1/2+ 2

√
j + m0

2k

(
2− j

√
(2 j)!

( j − m0)!( j + m0)!

)
�

j−1/2
m0−1/2, j−k+1/2

= −
√

2 j

k
�

j−1/2
j−1/2, j−1/2�

j−1/2
j−1/2, j−k+1/2 +

√
2 j

k
�

j−1/2
m0−1/2, j−1/2�

j−1/2
m0−1/2, j−k+1/2. (B9)

Recognizing the first term as the negative of that in Eq. (B8), Eq. (B7) is therefore

〈mz = − j|sgn(Jx )|mz = − j + k〉 =
√

2 j

k
�

j−1/2
m0−1/2, j−1/2�

j−1/2
m0−1/2, j−k+1/2. (B10)

If d is even, the terms are already in the form given in Eq. (B3). If d is odd, the recursive relation from Eq. (B5) can be applied
once more. In both cases,

〈mz = − j|sgn(Jx )|mz = − j + k〉 = (−1)(k−1)/22−(2 j−1)

√(
2 j

k
− (d mod2)

)(
2 j�
 j�

)(
2 j − k

2�
 j − k

2�
)(

k − 1
k−1

2

)
. (B11)

2. Commutator of sgn(Jx) and J−

In this section we work out how sgn(Jx ) commutes with the lowering operator J− = Jx − iJy to find the rest of the matrix
elements. First, we have

[J−, sgn(Jx )] = [Jx − iJy, sgn(Jx )] = −i[Jye−i(π/2)Jy sgn(Jz )ei(π/2)Jy ] = 1
2 e−i(π/2)Jy{−[J+, sgn(Jz )] + [J−, sgn(Jz )]}ei(π/2)Jy .

(B12)

For any |m| > 1, sgn(m ± 1) = sgn(m). As such, the commutators would only depend on the states |mz〉 with |m| � 1. The
action of the commutators on these states is easily found. For d even,

[J∓, sgn(Jz )]
∣∣± 1

2 z

〉 = ±J∓
∣∣± 1

2 z

〉 − sgn(Jz )J∓
∣∣± 1

2 z

〉 = ±(2 j + 1)
∣∣∓ 1

2 z

〉
, (B13)

and for d odd,

[J∓, sgn(Jz )] |±1z〉 = ±
√

j( j + 1) |∓1z〉 , [J∓, sgn(Jz )] |0z〉 = −
√

j( j + 1) |∓1z〉 . (B14)

032222-8



DETECTING QUANTUMNESS IN UNIFORM PRECESSIONS PHYSICAL REVIEW A 106, 032222 (2022)

Therefore, the commutator of sgn(Jx ) and J− is

[J−, sgn(Jx )] =
⎧⎨⎩
(

j + 1
2

)(∣∣− 1
2 x

〉〈
1
2 x

∣∣ + ∣∣ 1
2 x

〉〈− 1
2 x

∣∣) for d even√
j
(

j + 1
2

)[
1√
2
(|1x〉 + |−1x〉) 〈0x| + |0x〉 1√

2
(〈1x| + 〈−1x|)

]
for d odd.

(B15)

3. Other matrix elements of sgn(Jx) for d even

This section completes the derivation of the matrix elements of sgn(Jx ) for d even, focusing on values of 〈mz|sgn(Jx )|m′
z〉

where m′ > m, as the converse case can be found from sgn(Jx )† = sgn(Jx ). By defining l ≡ m + j and k ≡ m′ − m, these matrix
element can be written as 〈mz = − j + l|sgn(Jx )|mz = − j + l + k〉, which is in a form similar to the edge cases in Appendix B 1,
but with an offset of l .

Our approach is to set up a recursive relation using the commutator found in Eq. (B15) and using the action of the raising
operator J+ |mz = j + l − 1〉 = √

l (2 j − l + 1) |mz = − j + l〉. Then

〈mz = − j + l|sgn(Jx )|mz = − j + k + l〉 = 1√
l (2 j − l + 1)

〈mz = − j + l − 1|J−sgn(Jx )|mz = − j + k + l〉

= 1√
l (2 j − l + 1)

〈mz = − j + l − 1|{sgn(Jx )J− + [J−, sgn(Jx )]|}〉mz

= − j + k + l

=
√

(l + k)(2 j − l + 1 − k)

l (2 j − l + 1)
〈mz = − j + l − 1|sgn(Jx )|mz

= − j + k + l − 1〉 + (−1)l+1(2 j + 1)√
l (2 j − l + 1)

�
j
− j+l−1,−1/2�

j
− j+l+1,−1/2. (B16)

This sets up a recursive relation between the matrix element offset by l and l − 1, as desired. Meanwhile, the second term can
be found using Eqs. (B3) and (B5),

(−1)l+1(2 j + 1)√
l (2 j − l + 1)

�
j
− j+l−1,−1/2�

j
− j+l+l,−1/2

= (−1)(k−1)/22−(2 j−1)

√
l (2 j − l + 1)

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(2 j − l + 1)(2 j − k + l )

(
l − 1

l−1
2

)(
2 j − l

2 j−l
2

)(
k + l

k+l
2

)(
2 j − 1 − (k + l )

2 j−1−(k+l )
2

)
for l odd

−
√

(l − 1)(k + l )

(
l − 2

l−2
2

)(
2 j − l + 1

2 j−l+1
2

)(
k + l − 1

k+l−1
2

)(
2 j − (k + l )

2 j−(k+l )
2

)
for l even.

(B17)

Finally, we guess that the matrix element is of the form

〈mz = − j + l|sgn(Jx )|mz = − j + k + l〉

= (−1)(k−1)/22−(2 j−1)

k
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
l[2 j − (k + l )]

(
l − 1

l−1
2

)(
2 j − l

2 j−l
2

)(
k + l

k+l
2

)(
2 j − 1 − (k + l )

2 j−1−(k+l )
2

)
for l odd√

(2 j − l )(k + l )

(
l
l
2

)(
2 j − 1 − l

2 j−1−l
2

)(
k + l − 1

k+l−1
2

)(
2 j − (k + l )

2 j−k−l
2

)
for l even.

(B18)

If Eq. (B18) is true for l , due to the recursive relation given in Eq. (B16), it will also be true for l + 1. Furthermore, since
Eq. (B18) with l = 0 is the same as Eq. (B11), it is true for l = 0. Therefore, by induction, it holds for all values of l .

Finally, reinstating m = − j + l and m′ = − j + k + l provides us with Eq. (B1) for d even.

4. Other matrix elements of sgn(Jx) for d odd

The steps required for finding the other matrix elements of sgn(Jx ) for d odd are the same as those given in the
preceding section, but with the corresponding commutation relation from Eq. (B15). We find the recursive relation to
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be

〈mz = − j + l|sgn(Jx )|mz = − j + k + l〉 =
√

(k + l )(2 j − (k + (l − 1))

l (2 j − (l − 1))
〈mz = − j + l − 1|sgn(Jx )|mz = − j + k + l − 1〉

− (−1)(k−1)/22−(2 j−1)[2 j − (l − 1) − (k + l )]

2
√

l[2 j − (l − 1)]

×

⎧⎪⎨⎪⎩
√(

l − 1
l−1

2

)(
2 j − (l − 1)

2 j−(l−1)
2

)(
l + k

l+k
2

)(
2 j − (l + k)

2 j−(l+k)
2

)
for l odd,

0 for l even.

(B19)

Meanwhile, the corresponding guess is

〈mz = − j + l|sgn(Jx )|mz = − j + l + k〉

= (−1)(k−1)/22−(2 j−1)

k
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
l (2 j − l )

(
l − 1

l−1
2

)(
2 j − l − 1

2 j−l−1
2

)(
l + k

l+k
2

)(
2 j − (l + k)

2 j−(l+k)
2

)
for l odd,√

(k + l )[2 j − (k + l )]

(
l
l
2

)(
2 j − l

2 j−l
2

)(
l + k − 1

l+k−1
2

)(
2 j − (l + k) − 1

2 j−(l+k)−1
2

)
for l even.

(B20)

Once again, the recursive relation in Eq. (B19) means that (B20) being true for l implies it being true for l + 1. The consistency
of Eqs. (B11) and (B20) with l = 0 means that it holds for all values of l , providing us with Eq. (B1) for d odd.

APPENDIX C: PARTICULAR VALUES OF Pd
K

1. For K even

When K = 2p, where p is a positive integer,

e−iπJzEK [sgn(Jx )]e−iπJz = 1

2p

p−1∑
k=0

[e−i(2π/2p)kJz sgn(Jx )ei(2π/2p)kJz + e−i(2π/2p)(p+k)Jz sgn(Jx )ei(2π/2p)(p+k)Jz ]

= 1

2p

p−1∑
k=0

e−i(2π/2p)kJz [sgn(Jx ) + e−iπJz sgn(Jx )eiπJz ]ei(2π/2p)kJz = 0, (C1)

where we have used Eq. (A9) in the last step. Therefore, when K is even, QK = 1
21 and Pd

K = 1
2 .

2. For d � K

When d � K , from Eq. (A4), EK [P (Jx )] = {1 + diagz[sgn(Jx )]}/2. However, property 1 of sgn(Jx ) means that the diagonal
elements are 〈mz|sgn(Jx )|mz〉 = 0. Therefore, QK = 1

21 and Pd
K = 1

2 .

3. For K < d � 2K

When K < d � 2K , the m̄th block is two dimensional for m̄ > j − K and one dimensional for m̄ � j − K . Given property 1,
the only nonzero elements of EK [sgn(Jx )] are the off-diagonal terms 〈m̄|sgn(Jx )|m̄ + K〉 = 〈m̄ + K|sgn(Jx )|m̄〉, so each two-
dimensional block is of the form

�
(m̄)
K sgn(Jx )�(m̄)

K =̂〈m̄|sgn(Jx )|m̄ + K〉
(

0 1
1 0

)
, (C2)

which can be easily solved. Using the explicit expressions of the matrix elements in Appendix B, the maximum eigenvalue and
corresponding eigenvector of QK are

Pd
K = 1

2

[
1 + 22 j−1

√(
K − 1

K−1
2

)(
2 j

K
− (d mod2)

)√(
2 j�
 j�

)(
2 j − K

2 �
 j − K

2 �
)]

,

|
K〉 = 1√
2

[|mz = − j + K〉 + (−1)(K−1)/2 |mz = − j〉]. (C3)
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4. For 2K < d � 3K

When 2K < d � 3K , the m̄th block is three dimensional for m̄ > j − K and two dimensional for m̄ � j − K . The two-
dimensional blocks are solved in the same manner as before, while the three-dimensional blocks are of the form

�
(m̄)
K sgn(Jx )�(m̄)

K =̂
⎛⎝ 0 y1 0

y1 0 y2

0 y2 0

⎞⎠, (C4)

where y1 = 〈m̄|sgn(Jx )|m̄ + K〉 and y2 = 〈m̄ + K|sgn(Jx )|m̄ + 2K〉. This can also be easily solved to find

Pd
K = 1

2

[
1 + 22 j−1

cos(φ)

√(
K − 1

K−1
2

)(
2 j

K
− (d mod2)

)√(
2 j�
 j�

)(
2 j − K

2 �
 j − K

2 �
)]

,

|
K〉 = 1√
2

[cos(φ) |mz = − j + 2K〉 + (−1)(K−1)/2 |mz = − j + K〉 + sin(φ) |mz = − j〉], (C5)

where

φ = arctan

⎛⎜⎝
√√√√√ [ j − k × (d mod2)]

(
2 j�
 j�

)
( j − k)

(
2 j − K�
 j − K�

)(2K
K

)
⎞⎟⎠.

5. For 3K < d � 5K

For 3K < d � 5K , we can use what we found in Appendix A 3 to simplify each four- and five-dimensional blocks into
two-dimensional ones. In particular, the −m̄ subspace of {EK [sgn(Jx )]}2 is

�
(−m̄)
K sgn(Jx )�(+m̄)

K sgn(Jx )�(−m̄)
K =̂

(
y1 y2

y2 y3

)
, (C6)

where

y1 =
1,2∑
k=0

|〈m̄ + K|sgn(Jx )|m̄ + 2kK〉|2, y2 =
1,2∑
k=0

〈m̄ + K|sgn(Jx )|m̄ + 2kK〉〈m̄ + 3K|sgn(Jx )|m̄ + 2kK〉,

y3 =
1,2∑
k=0

|〈m̄ + 3K|sgn(Jx )|m̄ + 2kK〉|2.

The upper limit of the sums are 1 for 3K < d � 4K and 2 for 4K < d � 5K . For brevity, the exact expressions of y1, y2, and y3

will not be listed here, but can be found by replacing the matrix elements with the explicit expression in Eq. (B1). Finally, by
finding the eigenvalues of the two-dimensional block, we have

Pd
K = 1

2

⎡⎣1 +
√

z1 + z3

2
+

√( z1 − z3

2

)2

+ z2

⎤⎦, (C7)

where

z1 =
1,2∑
k=0

|〈− j + K|sgn(Jx )|− j + 2kK〉|2, z2 =
1,2∑
k=0

〈− j + K|sgn(Jx )|− j + 2kK〉〈− j + 3K|sgn(Jx )|− j + 2kK〉,

z3 =
1,2∑
k=0

|〈− j + 3K|sgn(Jx )|− j + 2kK〉|2.

6. For 5K < d � 7K

For 5K < d � 7K , similar to the preceding section, we simplify each six- and seven-dimensional block into a three-
dimensional one. The −m̄ subspace of {EK [sgn(Jx )]}2 is

�
(−m̄)
K sgn(Jx )�(+m̄)

K sgn(Jx )�(−m̄)
K =̂

⎛⎝y1 y2 y4

y2 y3 y5

y4 y5 y6

⎞⎠, (C8)
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where

y1 =
3,4∑
k=0

|〈m̄ + K|sgn(Jx )|m̄ + 2kK〉|2, y2 =
3,4∑
k=0

〈m̄ + K|sgn(Jx )|m̄ + 2kK〉〈m̄ + 3K|sgn(Jx )|m̄ + 2kK〉,

y3 =
3,4∑
k=0

|〈m̄ + 3K|sgn(Jx )|m̄ + 2kK〉|2, y4 =
3,4∑
k=0

〈m̄ + K|sgn(Jx )|m̄ + 2kK〉〈m̄ + 5K|sgn(Jx )|m̄ + 2kK〉,

y5 =
3,4∑
k=0

〈m̄ + 3K|sgn(Jx )|m̄ + 2kK〉〈m̄ + 5K|sgn(Jx )|m̄ + 2kK〉, y6 =
3,4∑
k=0

|〈m̄ + 5K|sgn(Jx )|m̄ + 2kK〉|2.

The upper limit of the sums are 3 for 5K < d � 6K and 4 for 6K < d � 7K . Using standard tools to find the eigenvalues of a
symmetric three-dimensional matrix [29],

Pd
K = 1

2

(
1 + 1√

3

√
z1 + z3 + z6 + 2

√
u cos(φ)

)
,

where

φ = 1

3
arctan

(√
4u3 − v2

v

)
−

{
0 for v � 0
π
3 for v < 0,

u = z2
1 + z2

3 + z2
6 − z1z3 − z1z6 − z3z6 + 3

(
z2

2 + z2
4 + z2

5

)
,

v = (2z1 − z3 − z6)(2z3 − z1 − z6)(2z6 − z1 − z3) + 54z2z4z5 − 9z2
2(2z6 − z1 − z3) − 9z2

4(2z3 − z1 − z6) − 9z2
5(2z1 − z3 − z6),

z1 =
3,4∑
k=0

|〈− j + K|sgn(Jx )|− j + 2kK〉|2, z2 =
3,4∑
k=0

〈− j + K|sgn(Jx )|− j + 2kK〉〈− j + 3K|sgn(Jx )|− j + 2kK〉,

z3 =
3,4∑
k=0

|〈− j + 3K|sgn(Jx )|− j + 2kK〉|2, z4 =
3,4∑
k=0

〈− j + K|sgn(Jx )|− j + 2kK〉〈− j + 5K|sgn(Jx )|− j + 2kK〉,

z5 =
3,4∑
k=0

〈− j + 3K|sgn(Jx )|− j + 2kK〉〈− j + 5K|sgn(Jx )|− j + 2kK〉, z6 =
3,4∑
k=0

|〈− j + 5K|sgn(Jx )|− j + 2kK〉|2.

7. Inseparability of the maximally violating state across the composition of two spins

Consider a composite system of two particles with angular momenta j1 and j2. Without any loss of generality, let us take
j1 � j2. Then

Jz = J ( j1 )
z ⊗ 1 j2 + 1 j1 ⊗ J ( j2 )

z =
j2+ j1⊕

j= j2− j1

J ( j)
z . (C9)

When performing the protocol with K angles, if the maximum violation PK+1
K is obtained, the state must belong in the block

j = K
2 and must be of the form

|
K〉 = 1√
2

[| j〉 j + (−1)(K−1)/2 |− j〉 j] = 1√
2

[1 + (−1)(K−1)/2e−iπJy ] | j〉 j . (C10)

Defining the Clebsch-Gordan coefficients as Cm+n
m,n = ( j1〈m| ⊗ j2〈n|) |m + n〉 j , the state | j〉 j can be expanded in the j1 and j2

basis as

| j〉 j =
j1∑

m= j− j2

C j
m, j−m |m〉 j1 ⊗ | j − m〉 j2 . (C11)

The upper and lower limits of the sum come from the requirement that m � j1 and j − m � j2. With this, Eq. (C10) is

|
K〉 = 1√
2

[
1 + (−1)(K−1)/2e−iπJ (1)

y e−iπJ (2)
y
] j1∑

m= j− j2

C j
m, j−m |m〉 j1 ⊗ | j − m〉 j2

= 1√
2

(
j1∑

m= j− j2

C j
m, j−m |m〉 j1 ⊗ | j − m〉 j2 + (−1) j1+ j2−1/2

j2− j∑
m=− j1

C j
−m, j+m |m〉 j1 ⊗ |−m − j〉 j2

)
. (C12)
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Proof of inseparability

Let us assume that the maximally violating state is separable, that is, |
K〉 = |ψ1〉 j1 ⊗ |ψ2〉 j2 . Then

( 〈 j1| j1 ⊗ 1 j2

) |
K〉 = 〈 j1| ψ1〉 j1 |ψ2〉 j2 = 1√
2

C j
j1, j− j1

| j − j1〉 j2 + (−1) j1+ j2−1/2 1√
2

C j
− j1, j+ j1

|− j1 − j〉 j2 ,

( 〈 j − j2| j1 ⊗ 1 j2

) |
K〉 = 〈 j − j2| ψ1〉 j1 |ψ2〉 j2 = 1√
2

C j
j− j2, j2

| j2〉 j2 + (−1) j1+ j2−1/2 1√
2

C j
j2− j,2 j− j2

| j2 − 2 j〉 j2 . (C13)

Note that C j
j1, j− j1

and C j
j− j2, j2

are always nonzero for j2 − j1 � j � j2 + j1, while C j
− j1, j+ j1

is nonzero only when j = j2 − j1
and C j

j2− j,2 j− j2
is nonzero only when j2 − j1 � j � j2. Hence, there are always terms on the right-hand side that are nonzero,

which implies that both 〈 j1| ψ1〉 j1 and 〈 j − j2| ψ1〉 j1 must be nonzero. Therefore, we can divide the equation by these terms to
obtain an expression for |ψ2〉 j2 and compare these expressions for the different cases of j1 and j2.

For the case j2 < j � j1 + j2,

|ψ2〉 j2 = 1√
2 〈 j1| ψ1〉 j1

C j
j1, j− j1

| j − j1〉 j2 , |ψ2〉 j2 = 1√
2 〈 j − j2| ψ1〉 j1

C j
j− j2, j2

| j2〉 j2 .

These two expressions for |ψ2〉 j2 can be consistent only when | j − j1〉 j2 = | j2〉 j2 . This cannot be satisfied when j2 < j < j1 + j2,
and in those cases |
K〉 �= |ψ1〉 j1 ⊗ |ψ2〉 j2 .

Meanwhile, for the case j = j1 + j2, we can write out |
K〉 explicitly:

|
K〉 = 1√
2

[ | j1〉 j1 ⊗ | j2〉 j2 + (−1)(K−1)/2 |− j1〉 j1 ⊗ |− j2〉 j2

]
.

This state is clearly entangled. Therefore, |
K〉 is entangled when j2 < j � j1 + j2.
For the case j2 − j1 < j � j2,

|ψ2〉 j2 = 1√
2 〈 j1| ψ1〉 j1

C j
j1, j− j1

| j − j1〉 j2 , |ψ2〉 j2 = 1√
2 〈 j − j2| ψ1〉 j1

[
C j

j− j2, j2
| j2〉 j2 + (−1) j1+ j2−1/2C j

j2− j,2 j− j2
| j2 − 2 j〉 j2

]
.

The two expressions for |ψ2〉 j2 are clearly contradictory, so |
K〉 �= |ψ1〉 j1 ⊗ |ψ2〉 j2 for j2 − j1 < j � j2.
For the case j = j2 − j1,

|ψ2〉 j2 = 1√
2 〈 j1| ψ1〉 j1

[
C j

j1, j− j1
| j − j1〉 j2 + (−1) j1+ j2−1/2C j

− j1, j+ j1
|− j1 − j〉 j2

]
,

|ψ2〉 j2 = 1√
2 〈 j − j2| ψ1〉 j1

[
C j

j− j2, j2
| j2〉 j2 + (−1) j1+ j2−1/2C j

j2− j,2 j− j2
| j2 − 2 j〉 j2

]
.

In this case, the expressions can be equal only if | j − j1〉 j2 = | j2〉 j2 and |− j1〉 j2 = | j2 − 2 j〉 j2 or if | j − j1〉 j2 = | j2 − 2 j〉 j2 and
|− j1 − j〉 j2 = | j2〉 j2 . Every one of these conditions contradicts j = j2 − j1. Therefore, |
K〉 is entangled in all four cases.

As a particular case, if the smallest spin is j1 = 1
2 , then |
K〉 is maximally entangled. Indeed, from (C12) we have

|
K〉 = 1√
2

∣∣∣∣−1

2

〉
j1

⊗
[
C j

−1/2, j+1/2

∣∣∣∣ j + 1

2

〉
j2

+ (−1) j2C j
1/2, j−1/2

∣∣∣∣− j + 1

2

〉
j2

]
+ 1√

2

∣∣∣∣1

2

〉
j1

⊗
[
C j

1/2, j−1/2

∣∣∣∣ j − 1

2

〉
j2

+(−1) j2C j
−1/2, j+1/2

∣∣∣∣− j − 1

2

〉
j2

]
,

where indeed |C j
−1/2, j+1/2|2 + |C j

1/2, j−1/2|2 = 1 for all j. Therefore, ρ j1 = 1
21 j1 .

APPENDIX D: RESULTS FOR THE HARMONIC OSCILLATOR

Most of the structure found for finite-dimensional systems carries over to the quantum harmonic oscillator by replacing
|mz〉 → |n〉, Jz → a†a, and P (Jx ) → P (X ), where

P (X ) =
∫ ∞

0
dx|x〉〈x| = 1

2
[1 + sgn(X )]. (D1)

In this Appendix we first list those properties without repeating the proofs. Then we establish the equivalence of sgnJx and
sgn(X ) as j → ∞ and derive a lower bound for P∞

K .
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1. Block-diagonal structure enforced by EK

For an arbitrary operator A∞ in Hilbert space,

EK [A∞] =
K−1⊕
n̄=0

�
(n̄)
K A∞�

(n̄)
K , (D2)

where �
(n̄)
K ≡ ∑∞

k=0 |n̄ + kK〉〈n̄ + kK|. We further split �
(n̄)
K into even- and odd-subspace projectors �

(n̄)
K = �

(+n̄)
K + �

(−n̄)
K ,

where

�
(+n̄)
K ≡

∞∑
k=0

|n̄ + 2kK〉〈n̄ + 2kK|, �
(−n̄)
K ≡

∞∑
k=0

|n̄ + (2k + 1)K〉〈n̄ + (2k + 1)K|. (D3)

2. Properties and matrix elements of sgn(X )

The operator sgn(X ) transforms under the parity transformation eiπa†a as

eiπa†asgn(X )e−iπa†a = −sgn(X ). (D4)

This entails the following properties: (i) 〈n|sgn(X )|n′〉 = 0 when n and n′ share the same parity and (ii) if λ is an eigenvalue
of EK [sgn(X )], so is −λ. Based on these, we can prove that P∞

K = 1
2 (1 + √

λ2), where λ2 is the maximum eigenvalue of
(EK [sgn(X )])2 over just the even blocks (or equivalently odd, but here the analytical form happens to be nicer in the even
case):

λ2 = max
n̄,|ψ〉,
〈ψ〉=1

〈ψ | �(+n̄)
K sgn(X )�(−n̄)

K sgn(X )�(+n̄)
K |ψ〉 . (D5)

As the matrix elements of 〈n| sgn(X ) |n′〉 are zero when n′ and n are both even or both odd, throughout the rest of the section we
will consider only n′ odd and n even. By first expanding sgn(X ) in the position basis,

〈n|sgn(X )|n′〉 =
∫ ∞

0
dx(〈n|x〉〈x|n′〉 − 〈n| − x〉〈−x|n′〉) = 2

∫ ∞

0
dx〈n|x〉〈x|n′〉, (D6)

where we have used 〈−x|n〉 = 〈x|n〉 for n even and 〈−x|n′〉 = −〈x|n′〉 for n′ odd. These wave functions are well known and are
given by

〈x|n〉 = 2−n/2e−x2/2√
n!

√
π

Hn(x), (D7)

〈x|n′〉 = 2−n′/2e−x2/2√
n′!

√
π

Hn′ (x), (D8)

where Hn(x) and Hn′ (x) are the Hermite polynomials

Hn(x) = n!(−1)−n/2
n/2∑
k=0

(−1)k (2x)2k

(2k)!
(

n
2 − k

)
!
, (D9)

Hn′ (x) = n′!(−1)(n′−1)/2
(n′−1)/2∑

k=0

(−1)k (2x)2k+1

(2k + 1)!
(

n′−1
2 − k

)
!
. (D10)

Then 〈n|sgn(X )|n′〉 = 〈n′|sgn(X )|n〉 can be evaluated by substituting Eqs. (D7)–(D10) into Eq. (D6),

〈n|sgn(X )|n′〉 = 2
∫ ∞

0
dx

2−n/2e−x2/2√
n!

√
π

(
n!(−1)−n/2

n/2∑
k=0

(−1)k

(2k)!
(

n
2 − k

)
!
(2x)2k

)

× 2−n′/2e−x2/2√
n′!

√
π

(
n′!(−1)(n′−1)/2

(n′−1)/2∑
k′=0

(−1)k′

(2k′ + 1)!
(

n′−1
2 − k′)! (2x)2k′+1

)

= (−1)(n′−n−1)/22−[(n′+n)/2−1]

√
n!n′!
π

n/2∑
k=0

(n′−1)/2∑
k=0

(−1)k+k′
22(k+k′ )

(2k)!(2k′ + 1)!
(

n
2 − k

)
!
(

n′−1
2 − k′)!

∫ ∞

0
dx2e−x2

(x2)k+k′

︸ ︷︷ ︸
(k+k′ )!
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= (−1)(n′−n−1)/22−[(n′+n)/2−1]

n′ − n

√
n′

π

(
n
n
2

)(
n′ − 1

n′−1
2

)
for n even, n′ odd. (D11)

3. Equivalence of sgn(Jx) and sgn(X ) as j → ∞
While the operator Jx(t ) = Jx cos(ωt ) + Jy sin(ωt ) that we considered in the main text evolves similarly to the position

operator X (t ) = X cos(ωt ) + P sin(ωt ) considered by Tsirelson, these operators are not exactly equivalent as [X, P] = i1 while
[Jx, Jy] = iJz. Nonetheless, we will show in this section that sgn(Jx ) → sgn(X ) as j → ∞, which means that Pd

K → P∞
K in that

limit.
We relabel the angular momentum states |ñ〉 ≡ |mz = ñ − j〉 such that |ñ = 0〉 refers to the lowest-energy state of Hd = ωJz

and |ñ〉 refers to the ñth excited state. This is analogous to |n〉 being the ñth excited state of H∞ = h̄ωa†a.
Consider 〈ñ|sgn(Jx )|ñ′〉, where ñ′ = j + m′ is odd and ñ = j + m is even. Then

〈ñ|sgn(Jx )|ñ′〉 = (−1)(ñ′−ñ−1)/22−(2 j−1)

ñ′ − ñ

√
ñ′
(

ñ
ñ
2

)(
ñ′ − 1

ñ′−1
2

)
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(2 j − ñ′)

(
2 j − ñ

2 j−ñ
2

)(
2 j − ñ′ − 1

2 j−ñ′−1
2

)
for d odd√

(2 j − ñ)

(
2 j − ñ − 1

2 j−ñ−1
2

)(
2 j − ñ′

2 j−ñ′
2

)
for d even

(D12)

= (−1)(ñ′−ñ−1)/22−[(ñ′+ñ)/2−1]

ñ′ − ñ

√
ñ′
(

ñ
ñ
2

)(
ñ′ − 1

ñ′−1
2

)

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√(
1 − ñ′

j

) × √
j2−(2 j−ñ)

(
2 j − ñ

2 j−ñ
2

)
× √

j2−(2 j−ñ′−1)

(
2 j − ñ′ − 1

2 j−ñ′−1
2

)
for d odd√(

1 − ñ
j

) × √
j2−(2 j−ñ−1)

(
2 j − ñ − 1

2 j−ñ−1
2

)
× √

j2−(2 j−ñ′ )

(
2 j − ñ′

2 j−ñ′
2

)
for d even.

(D13)

The dependence of these matrix elements on j is mostly of the form√
j2−(2 j−y)

(
2 j − y

2 j−y
2

)
= 1√

π
(
1 − y

2 j

)eγ (D14)

for some γ , with y replaced by ñ, ñ − 1, ñ′, or ñ′ − 1 for the corresponding expression in Eq. (D12). The right-hand side of
Eq. (D14) is due to Stirling’s formula, where γ has an upper and lower bound [30]

1

12(2 j − y) + 1
− 1

3(2 j − y)
� γ , γ � 1

12(2 j − y)
− 2

6(2 j − y) + 1
. (D15)

As j → ∞, both the lower and upper bounds of γ approaches 0, so Eq. (D14) approaches 1/
√

π . Hence,

lim
j→∞

〈ñ|sgn(Jx )|ñ′〉 = (−1)(ñ′−ñ−1)/22−[(ñ′+ñ)/2−1]

ñ′ − ñ

√
ñ′

π

(
ñ
ñ
2

)(
ñ′ − 1

ñ′−1
2

)
= 〈n = ñ|sgn(X )|n′ = ñ′〉. (D16)

The converse case for ñ odd and ñ′ even can be found from sgn(Jx ) = sgn(Jx )†, while all other matrix elements are zero, so
lim j→∞ sgn(Jx ) = sgn(X ). Therefore, P∞

K , in both its original formulation and the angular momentum system as j → ∞, are
the same.

4. Closed-form lower bound for P∞
K

Let λ2 be the maximum eigenvalue of {EK [sgn(X )]}2. Since λ2 � 〈ψ |{EK [sgn(X )]}2|ψ〉 for ψ |ψ〉 = 1, any normalized state
|ψ〉 provides us with a lower bound for λ2, hence for P∞

K = 1
2 (1 + √

λ2).
From the block-diagonal structure of {EK [sgn(X )]}2, we can consider just the even states. In addition, from the first few

finite-dimensional cases given in Appendix C and from solving for the eigenvectors of Q∞
K in a truncated Hilbert space, we

deduce that the eigenvector of {EK [sgn(X )]}2 will have a large component of |0〉. Hence, we study the lower bound for |ψ〉 = |0〉:

λ2 �
∞∑

k=0

〈0|sgn(X )|(2k + 1)K〉〈(2k + 1)K|sgn(X )|0〉 = 2

π

∞∑
k=0

2−(2k+1)K

(2k + 1)K

(
(2k + 1)K − 1

(2k+1)K−1
2

)
. (D17)

Equation (D17) is reminiscent of the series expansion

2

π
√

x
arcsin(

√
x) = 2

π

∞∑
k=0

2−(2k+1)

2k + 1

(
2k
k

)
xk. (D18)
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In fact, we recognize the series in Eq. (D17) to be a subseries of the right-hand side of Eq. (D18) with x = 1 and values of k
such that k modK = K−1

2 . Given that the full series converges to some function of x, the subseries can be expressed in terms of
this function as [31]

λ2 � 1

K

K−1∑
k=0

e−i(2π/kK )[(K−1)/2] 2

π
√

ei(2πk/K )
arcsin(

√
ei(2πk/K ) ) = 1

K
+ 2

πK

(K−1)/2∑
k=1

(−1)karccos

[
2 sin

(
πk

K

)
− 1

]
. (D19)

The simplification was performed by expressing arcsin in terms of the complex logarithm. In particular, for the case K = 3, we
have

λ2 � 1

3

(
1 − 2

π
arccos(

√
3 − 1)

)
≈ 0.174, (D20)

and therefore P∞
K � 0.7087.
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