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Loschmidt echo and momentum distribution in a Kitaev spin chain
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We investigate the Loschmidt echo in a one-dimensional spin chain having Kitaev-type interaction in constant
and kicked magnetic fields. The Loschmidt echo for the initial states having different magnon excitations shows
long-time revivals for smaller chains and has short-time revival peaks for the longer chains. The system near the
critical point shows peculiarly long-time revival peaks of the Loschmidt echo for relatively larger chains. The
presence of a magnon in the initial state affects the Loschmidt echo revival peaks. The momentum distribution
function exhibits maxima for a few momenta that are associated with the momentum of the magnon excitation
present in the initial states. The probability maxima decay as O(1/N ) with the system size. For the Hamiltonian
with kicked magnetic fields, the Loschmidt echo depends on the kick period. For a special kick period, the
Loschmidt echo shows no evolution at all irrespective of the system size.
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I. INTRODUCTION

The recent experimental advancement in ultracold atoms
trapped on the optical lattices [1,2] has created a renewed
interest in exploring the dynamics of quantum systems, par-
ticularly using quantum quenches [3–7]. For closed quantum
systems, the quantum quenching leads to a unitary evolution
which can be determined by the Loschmidt echo analysis
[8–10]. For the quantum systems quenched to the critical
point, the dynamics of the finite chains have periodic revival
peak structures which decrease with the increasing system
size [10–19]. The enhanced decay of the Loschmidt echo
(LE) can be considered as the witness of the quantum phase
transition [20–23]. The singularities of LE can also give the
signature of strongly localized phases [24]. The extensions of
the LE have also been used to study information scrambling,
and the direct link between the out-of-time-order correlator
and the Loschmidt echo has been studied [25–27]. In this
process, the local information of the system disperses to
the nonlocal degrees of the freedom throughout the system
[28–34]. The Loschmidt echo can be computed by taking the
overlap of the prior to and after the quenched state that can
be tuned using the Hamiltonian parameters. The rate function
defined using the LE has been studied extensively to trace
the signal of the dynamical phase transition in many quantum
systems [35–49]. In recent times, the connection between the
quantum quenches and the topological properties and topo-
logical edge states has also been investigated. The topological
systems, especially the topological superconductor, have been
investigated in detail [50–52] and have been shown to be quite
robust to the quantum quenching [53–55].
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The concept of the Loschmidt echo in the physical sys-
tem was first implemented in the nuclear magnetic resonance
(NMR) experiment [56] by applying radio-frequency pulses
to an ensemble of spins under a static magnetic field. Af-
ter a certain time, determined by these pulses, the nuclear
induction signal called spin echo was observed. The exper-
imental results were shown where a suitable sequence of
radio-frequency pulses was used to show that the nuclear
spin Hamiltonian evolves back in time and the revival of
magnetization can be obtained in the system [57]. Further,
polarization echo [58] was shown, where a local excitation
injected in a many-body system is partially observed after the
forward and reverse evolution. The difficulty encountered in
experimental errors and reversibility time of the LE has been
studied recently [59,60].

We study the Loschmidt echo in a Kitaev spin chain in one
dimension [61–63] when the Hamiltonians are set at different
global parameters. We will study the behavior of the LE both
near and away from the critical region. We will examine initial
states with no magnon excitation and initial states with one-
magnon excitations.

We also study the momentum distribution of an excited
magnon for this model within the framework of the LE.
The momentum distribution has been studied in different
scenarios. The momentum distribution in spinless bosons
[66] and in spin-1 bosons [67] in one dimension have been
studied previously. Also, the signature of the Fulde-Ferrel-
Larkin-Ochnikov (FFLO) phase can be seen in the momentum
distribution function of the trapped one-dimensional Fermi
gases [64,65]. The momentum distribution function can give
information about the spatial distribution of electrons in the
quasiparticle bands [68]. In the momentum space, it can
give the probabilistic distribution of a magnon excitation
in the time-evolved state of the Hamiltonian. We will see
that the evolution characteristic of the momentum distribu-
tion coincides with the characteristic of the LE dynamics.
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FIG. 1. Loschmidt echo.

Also, the peaks of the distribution function are confined to
some special values of momenta, which is expected in this
case.

The Loschmidt echo measures the degree of reversibility
of the system when it evolves under a Hamiltonian for a
certain amount of time and evolves back using the perturbed
Hamiltonian for the same amount of time. The forward and
backward evolution in time is shown pictorially in Fig. 1. The
Loschmidt echo (LE) is defined as the square of the modulus
of overlap of the two states that evolve from the same ini-
tial state under the considered Hamiltonian and Hamiltonian
with perturbation [69]. An initial state |ψ (0)〉 evolves under
the Hamiltonian Hf for time t and then it further evolves
under the Hamiltonian −Hb for the same time. This can be
written as

L(t ) = | 〈ψ (0)| eiHbt e−iHf t |ψ (0)〉 |2. (1)

From this, LE can be viewed as a measure of the degree
of the reversibility of the dynamics. In this paper, we inves-
tigate the LE for three different initial states which evolve
under the Hamiltonians Hf and Hb, which are set on and off
the critical point by tuning the Hamiltonian parameters. The
paper is organized in the following form. Section II discusses
the Hamiltonian setup, its eigenstates, and the state dynamics.
Section III discusses the LE for a zero-magnon initial state.
The LE for one magnon in the momentum space is discussed
in Sec. IV. In Sec. V, we discuss the LE for an initial state with
a uniform probability distribution of momenta. We consider
a kicked magnetic field in the Hamiltonian and discuss the
LE and the momentum distribution in all three initial states in
Sec. VI. We conclude with the results in Sec. VII.

II. EIGENSTATES OF THE HAMILTONIAN

We consider a system of N spins in one dimension having
nearest-neighbor interactions in the presence of a transverse
magnetic field. The nearest spins have a Kitaev-type interac-
tion, which is an x − x interaction on the odd pair of sites and
y − y interactions on the even pair of sites. The spin chain
Hamiltonian considered here is the one-dimensional simpli-
fication of the two-dimensional Kitaev honeycomb lattice
model [70,71]. The z − z interaction in the Kitaev honeycomb
Hamiltonian is replaced by the uniform magnetic field term.
The spin chain Hamiltonian is given by

H = jx

N−1∑
i=odd

σ x
i σ x

i+1 + jy

N∑
i=even

σ
y
i σ

y
i+1 + h

N∑
i=1

σ z
i . (2)

The coefficient jx ( jy) is the strength of the nearest-neighbor
interaction on the odd (even) pair of sites. The coefficient h
is the strength of the uniform magnetic field in the system.
The spin model cannot be simplified to the Ising or the xy
spin chains because a spin at any site in this model has only

one, either x or y, direction of interaction with its next-nearest
neighbor. For this reason, it cannot be mapped into the Ising
or the XY spin models. The presence of only one degree
of interaction at each site adds surprising features to this
model, some of which are contrary to the one-dimensional
behavior. The Hamiltonian has a macroscopic degeneracy in
the ground state in the absence of the magnetic field. How-
ever, the ground-state quantum correlation measures like the
concurrence measure of the entanglement, and the quantum
discord does not show an expected scaling behavior near the
critical point of the system. The Hamiltonian is diagonalizable
using the Jordan-Wigner fermion method, and all the eigen-
states can be constructed, and the dynamics can be studied
[61–63]. We will represent the Hamiltonian parameters in the
unit of jx, effectively making it a two-parameter family of r =
jy/ jx, and h/ jx. Thus, we will represent the Hamiltonian as
H = H (r, h/ jx ) in the following. We will briefly review how
to study the dynamics of an initial state using this Hamilto-
nian. In the momentum space, the Hamiltonian takes the form
H = 2

∑
q Hq, where the sum is over N/4 momentum values,

0 < q < π/2. Each q is associated with the four momentum
values q − π , −q, q, and π − q. The free fermion form of Hq

can be written as

Hq =
4∑

i=1

λiξ
†
i ξi. (3)

Here, λi = ±|e| ±
√

|e|2 + h2 are the eigenvalues
of the mode Hamiltonian. The parameter |e| =
1
2

√
[( jx + jy) cos q]2 + [( jx − jy) sin q]2. The index i in

increasing order implies the increasing values of λi. The
operators ξi are the eigenoperators corresponding to λi, which
can be written as⎡

⎢⎢⎢⎢⎣

ξ
†
1

ξ
†
2

ξ
†
3

ξ
†
4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

C iS h1C ih1S
S −iC h2S −ih2C
C iS h3C ih3S
S −iC h4S −ih4C

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

F †
+

G†
+

F †
−

G†
−

⎤
⎥⎥⎥⎥⎦

. (4)

Here, C = cos θq/2, S = sin θq/2 with θq =
sin−1 (1−r) sin q√

[(1+r) cos q]2+[(1−r) sin q]2
, and hi = h/λi. The

fermion operators F± = (cq−π − c†
−q )/

√
2 and G± =

(cq − c†
π−q )/

√
2. Using Eq. (3), all the eigenstates of the

Hamiltonian can be created from the vacuum state defined as
ξi |vac〉 = 0. The unnormalized ground state can be written as

|g〉 =
∏

0�q�π/2

[(1 − h1)(1 − h2) + {(1 − h1h2) + (h2 − h1)

× cos θq}c†
qc†

π−q − i(h1 − h2) sin θq(c†
−qc†

q + c†
q−π c†

π−q )

+ {(1 − h1h2) − (h2 − h1) cos θq}c†
q−π c†

q + (1 + h1)

× (1 + h2)c†
q−π c†

−qc†
qc†

π−q] |0000〉. (5)

Similarly, we can construct the excited states using the mode
operators ξ

†
i on the vacuum state for different q values. In

the absence of magnetic field, there are mode operators with
zero energy. The presence of the zero-energy eigenoperators
causes the Hamiltonian to have a macroscopic degeneracy
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in its ground state. The quantum correlations also have sur-
prising features in this model. Contrary to the Ising and xy
spin chains, the quantum correlations such as the concurrence
measure and the quantum discord do not exhibit a signal of
the quantum critical point in the system. However, these cor-
relations show maxima at the quantum critical point [61]. The
dynamics of magnetization shows counterintuitive revivals
with respect to the concurrence and the quantum discords
[62]. In the following sections, we will consider different
initial states and investigate the LE and the evolution of the
momentum distribution.

III. NO-MAGNON INITIAL STATE

We consider an initial state of spins completely polarized
in the −ve z axis, which translates to a zero-fermion state
in the momentum space. The state is written as |ψ (0)〉 =
|00..00〉. This state can be thought of as an eigenstate of the
Hamiltonian in Eq. (2) when the magnetic field is very large.
According to the protocol discussed in Eq. (1), we can write
the forward evolution as

|ψ (t )〉 = e−iHf t |00..00〉 . (6)

In the above expression, Hf = H (r, h f / jx ) represents the
forward Hamiltonian with h f , the magnetic field. It can be
written as the sum of the mode Hamiltonians Hq [shown in
Eq. (3)] that commute with each other, Hf = 2

∑
q Hq. Thus,

the forward evolution can be further written as

|ψ (t )〉 = e−2i
∑

q Hqt |00..00〉 = �q |φq(t )〉 . (7)

Here, |φq(t )〉 ≡ e−2iHqt |0000〉q evolves under the mode
Hamiltonian Hq in the forward direction. Similarly, the
backward evolution happens under the Hamiltonian Hb =
H (r, hb/ jx ), where hb is the magnetic field for this evolution.
The Hamiltonian can be written as Hb = 2

∑
q H ′

q. Here, H ′
q

are the mode Hamiltonians of Hb. The time-evolved state can
be written as

|ψ ′(t )〉 = e−2i
∑

q H ′
qt |00..00〉 ≡ �q |φ′

q(t )〉 , (8)

where the state |φ′
q(t )〉 = e−2iH ′

qt |0000〉q evolves under the
mode Hamiltonian H ′

q in the reverse direction. Therefore, the
LE in Eq. (1) can be simplified as the square of amplitude of
the overlap of the two states |ψ (t )〉 and |ψ ′(t )〉, given as

L(t ) = |A|2, A = �qAq, Aq = 〈φ′
q(t )|φq(t )〉 . (9)

Using Eq. (5) and its equivalent for the excited states, we
can calculate the LE echo as a function of time for different
magnetic field values for the forward and reverse directions.
In Fig. 2, LE is plotted when forward evolution happens
under the Hamiltonian Hf (r = 1, h f / jx = 1) and reverse
evolution happens by flipping the magnetic field direction,
Hb(r = 1, hb/ jx = −1). Throughout the analysis, the local
interaction jx is set to unity. The Loschmidt echo for small
chains has a periodic structure in the evolution, while for
longer spin chains, its revival peaks are reduced. Figure 2(a)
shows the behavior of the Loschmidt echo for the smaller spin
chains, while Fig. 2(b) shows the same for the larger chain
lengths. The LE at t = 0 is unity as the system is in its initial
state. As time progresses, the LE decays exponentially in a
very short time. However, it revives quickly and a periodic

FIG. 2. LE as a function of time for (a) a shorter chain of N = 32
and (b) a larger chain of N = 100. The forward evolutions in both
cases are at r = 1 and hf / jx = 1, while for the reverse evolution,
the magnetic field is flipped. The Loschmidt echo shows long-time
revival peaks for smaller chains. For the larger spin chains, it decays
exponentially and has only short-time revival peaks.

structure of dynamics appears over time. Revival peaks appear
only for shorter chain lengths in a long-time evolution, as
shown in Fig. 2(a). For up to N = 44, the LE shows periodic
revival peaks in the long-time evolution, but as the length of
the chain increases, these peaks start vanishing. In Fig. 2(b),
for N = 100, only one peak is significant, which appears soon
after the evolution, and no further significant revival peaks
are seen in the long-time evolution. For larger spin chains, Aq

functions in Eq. (9) go out of phase quickly after the evolution,
making the Loschmidt echo difficult to revive in long-time
evolution. We can also analyze the LE behavior at different
r values. At r = 0, h f = 1, hb = −1, the LE shows periodic
behavior as a function of time. This could be because, at
r = 0, all Aq functions are periodic and remain in phase over
time. As we increase r from 0 to 1, the LE loses its periodic
nature and falls to zero, and does not revive. We plot the LE
as a function of time for different number of sites in Fig. 3.
At r = 1 and h f = 1, hb = −1, the LE shows revival peaks
for different chain lengths. The strong and periodic revival
peaks in the short-length chains indicate that it is easy to align
the spins of the system in the z direction. However, since all
spin-up or spin-down states are not the eigenstates of the sys-
tem, the LE cannot show a perfect revival. For larger chains,
the short-time peak falls to 0.1 for N = 500. Beyond that, it
becomes comparatively insignificant and the Loschmidt echo
exhibits no short- or long-time revival peaks at all in the
thermodynamic limit. The evolution of the rate function of
the Loschmidt echo in the Kitaev honeycomb model in the
presence of the magnetic field has similar characteristics. For
this behavior, the honeycomb Hamiltonian is set to have zero
spin-spin interaction in the z direction, Jz = 0, and the quench
does not cross the phase [36]. In this setup, the honeycomb
model is similar to our Hamiltonian except for the magnetic
field, which is applied in all three spin directions.

When the evolution in either direction happens under the
Hamiltonian near the critical point, the revival peaks of the
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FIG. 3. LE as a function of N for r = 1 and hf = jx, hb = − jx .
After N = 40, a strong short-time revival peak appears, which re-
mains significant up to N = 500. Beyond this, the Loschmidt echo
in the thermodynamic limit has no long- or short-time revival peaks.

Loschmidt echo are gone completely, even for smaller spin
chains. Figure 4 shows the behavior of LE for the different
spin chains in such a scenario. The LE for a N = 32 spin chain
is plotted in Fig. 4(a). We set r = 1 and the forward magnetic
field, h f = 0, and consider different magnetic fields hb when
the system evolves backward in time. We can see that as we
increase hb, the LE falls very sharply and never revives. In
Fig. 4(b), the LE has been plotted for hb = −0.5 jx, keeping
other parameters the same as they are in Fig. 2(a). We can
see that the LE shows polynomial decay for small spin chains,
while it shows a sudden fall for large spin chains. Therefore,
we show only short-time dynamics for these two cases. In
Fig. 4(c), we have shown the behavior of LE for larger lengths
N = 100 and N = 120 in the critical region h f = 0.1 jx and
hb = −0.1 jx. In this case, the Loschmidt echo exhibits re-
vival peaks after a long-time evolution. However, these peaks
sharply fall beyond these lengths. For smaller size chains, the
LE exhibits periodic revival peaks with higher amplitudes.

The quick revival peak that we see in a noncritical regime is
not present in this case. However, the long-time revivals of the
Loschmidt echo are pronounced only at h f = −hb = 0.1 jx,
which disappears as we tune the magnetic field even slightly
to h f = −hb = 0.15 jx. The magnetic fields near the critical
point will show very fluctuating behavior, as expected. Also,
in this case, the revival does not occur at nearly the same time
for the different lengths of the chain, as it occurs for the short-
time revival peak in the noncritical Hamiltonian cases. This
may induce the behavior that the values of the revival peaks
as a function of N do not show any certain characteristics
in this case. However, for chains larger than N = 100, the
peaks fall very quickly and become insignificant, which is
the general character of the system. In a different scenario of
a two-level system surrounded by the Ising-type spin chain,
the time of the revival peaks has been shown to be propor-
tional to the length of the chain [11]. They also show that
the enhanced decay of LE can be used to witness quantum
criticality.

IV. ONE-MAGNON INITIAL STATE
WITH A DEFINITE MOMENTUM

In the last section, we have studied the even-number
magnon state starting from the zero-magnon initial state. In
this section, we will consider the odd-number magnon state
in evolution, starting with a one-magnon initial state. Let us
consider an initial state that has only one magnon with a
definite momentum q, given by

|ψq(0)〉 = c†
q |00..00〉 . (10)

This state will evolve into a superposition of states with dif-
ferent odd number of magnons. The evolution of this state can
be written using the evolution of c†

q under the Hamiltonian Hf ,
defined for Eq. (6) as

|ψq(t )〉 = c†
q(−t )e−iHf t |00..00〉 , (11)

where the time evolution of the creation operator is written as

c†
q(−t ) = eiHf t c†

qe−iHf t . (12)

FIG. 4. Loschmidt echo near the critical point. (a) For a small chain of N = 32 at r = 1, hf = 0, and different values of hb. The Loschmidt
echo decays very sharply in the higher magnetic field in the reverse evolution. (b) At r = 1, hf = 0, and hb = −0.5 jx for different spin chains.
The LE falls more quickly and does not show revival for the longer spin chains. The revival peaks are present for the smaller chains, which we
do not show in the plot. As the length of the spin chain increases beyond N = 16, the revival is not possible. (c) For hf = −hb = 0.1 jx , the LE
shows peaks after a long-time evolution even for larger spin chains, N = 100 and N = 120. Beyond this length, the revivals peaks fall quickly.
For the smaller chains, the revivals peaks are periodic with higher amplitudes.
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The time-evolution term e−iHf t |00..00〉 in Eq. (11) can be
computed using Eq. (7). The state |ψq(t )〉 can further evolve
under the Hamiltonian Hb. The time-evolved creation operator
c†

q(−t ) of mode q is a function of the momentum values
{q − π,−q, q, π − q}. There are N/4 such momentum values
allowed for the Hamiltonian, which each having four modes.
Therefore, C(k, q) can have three more possibilities with {k =
q − π,−q, π − q}. Thus, c†

q(−t ) can be written in terms of
the other associated momenta operators as

c†
q(−t ) = β1c†

q−π + β2c−q + β3c†
q + β4cπ−q, (13)

where β j = ∑4
i=1 e−2iλit�∗

i3�i j . λi are the eigenvalues of the
Hamiltonian Hq and the � matrix is written as

� =

⎡
⎢⎣

(1 + h1)C (1 − h1)S i(1 + h1)C i(1 − h1)S
(1 + h2)S (1 − h2)C −i(1 + h2)S −i(1 − h2)C
(1 + h3)C (1 − h3)S i(1 + h3)C i(1 − h3)S
(1 + h4)S (1 − h4)C −i(1 + h4)S −i(1 − h4)C

⎤
⎥⎦.

(14)

Thus the time-evolved mode operators in Eq. (12) are func-
tions of all four momenta operators associated with the
corresponding mode. During the course of the evolution,
the probability distribution of the momentum may change.
Therefore, we can overlap the final evolved state with the
same or a different momentum state defined in Eq. (10). This
can be written by defining a probability distribution function
Pq(k, t ), which is essentially a momentum distribution func-
tion of the momentum k in the time-evolved state which has
the initial state with a definite momentum q. This can be
rewritten as

Pq(k, t ) = 〈ψ ′(t )| c′
k (−t )c†

q(−t ) |ψ (t )〉 , (15)

where the |ψ ′(t )〉 is defined in Eq. (8). The operator c′
k (−t ) =

eiHbt c†
qe−iHbt defined for the backward evolution gives the time

evolution of the momentum k under the Hamiltonian Hb. The
time-evolved momentum operator c†

q(−t ) acts only on |φq(t〉),
leaving other mode states of |ψ (t )〉 unaffected. Similarly,
c′

k (−t ) acts only on 〈φ′
q(t |), leaving other mode states of

〈ψ ′(t )| unaffected. Therefore, we can rewrite the probability
distribution function of a momentum k as

Pq(k, t ) = |A/Aq|2|C(k, q)|2, (16)

where A and Aq are defined in Eq. (9) and

C(k, q) = 〈φ′
q(t )| c′

k (−t )c†
q(−t ) |φq(t )〉 . (17)

The probability distribution function for k = 1 is just the
Loschmidt echo. Therefore, the expression can be given by

L(t ) = |A/Aq|2|C(q, q)|2. (18)

We can see in the above that the presence of a magnon with
a fixed momentum value in the initial state affects only the
mode state associated with that momentum. Therefore, the LE
for larger spin chains does not show the effect of the excitation
in the initial state and has a similar result to the LE for the
no-magnon initial state. However, it has a significant impact
on the smaller chains. In Fig. 5, we plot the Loschmidt echo
for a spin chain of N = 32 for the short- and the long-time
evolution. The Hamiltonian parameters are set as r = 1,

FIG. 5. LE for the one-magnon initial state with a definite mo-
mentum. The plot is for N = 32 at r = 1, hf = jx = −hb. The
presence of one magnon increases the revival peaks by a smaller
amount. However, the increase is distinguishable only for smaller
chains.

h f = jx, hb = − jx. The revival peaks get a little stronger by
the presence of the magnon in the initial state. However, when
the Hamiltonian is set in the critical zone for either direction
of the evolution, the revival characteristic is lost and does not
show similar behavior of the LE having no-magnon excitation
in the initial state. To see the impact of the presence of
one-magnon excitation in the initial state on the LE, we plot
the time-averaged LE as a function of spin length in Fig. 6.
The average value of LE is calculated for a long-time evolved
function up to t jx = 500. This is necessary for relatively
smaller chains. However, for larger chains, t jx = 5 is a suffi-
cient time of evolution to calculate the average LE as it falls
sharply in a small time and remains zero in further evolution.

FIG. 6. Averaged values of the LE as a function of chain lengths
for two different initial states. The system parameters are r = 1, hf =
jx = −hb. The one-magnon initial state with momentum value, q =
π/N , has frequent revival peaks, which increases the average value
of the LE as compared to the LE with a no-magnon initial state.
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The plot shows the vanishing gap between LE in two cases
as the spin system gets bigger. The stronger revival peaks for
the one-magnon initial state places the time-averaged L(t ) on
the top in the plot. We can see that for N = 40 and beyond,
the two LE values merge completely, which shows the
diminishing effect of a one-magnon excitation in the initial
state.

We have seen that for the larger chain lengths, the one-
magnon initial state with a definite momentum does not have
an impact on the characteristic of L(t ). Therefore, we con-
sider N = 32 to see the effect produced by it. In Fig. 7, we
plot the probability distribution function for the two differ-
ent mode values separately. In Fig. 7(a), we take q = π/N
for N = 32. We show the results of four values of k = q −
π,−q, q, π − q. The probability distribution function Pq(k, t )
gives a nonzero distribution only for k = q and it always
gives zero for k �= q even if it belongs to the same mode, i.e.,
k = q − π,−q, π − q. The probability distribution function
remains the same if we shift q → {q − π,−q, π − q} and
take k = q (this is not shown in the plots). This may also be
the reason why the probability distribution function goes to
zero when k �= q even within the same mode. The zero proba-
bility distribution function means the time-reversal mode state
|φ′

q(t )〉 and the time-evolved state |φq(t )〉 remain orthogonal
through the evolution. In Fig. 7(b), we choose the last mode
value given by q = (N − 2)π/2N to show the momentum
dependence of the Loschmidt echo. As compared to Fig. 7(a),
we can see that the magnitude of the revival peaks depends
on the chosen momentum values. However, the peaks of the
LE appear at the same time for the different momenta. Also,
the Loschmidt echo does not change if we change the sign of
momentum in the initial state. This is because q and −q fall
in the same mode of the Hamiltonian and we know that the

FIG. 7. Plots of the window-averaged probability distribution
function values as a function of time for different initial momentum
values (a) q = π/N and (b) 15π/N , for a spin chain of N = 32
at r = 1, hf = jx , hb = − jx . The window length is equal to 100
time values separated by δt = 0.01 jx . The probability distribution
for q �= k gives zero, while for the q = k cases, which is equal to the
LE, it shows periodic revivals. For different q in the initial states,
the revival peaks of the probability distributions are of different
magnitudes, but occur at the same time of the evolution as shown
in (a) and (b).

probability distribution functions Pq(q, t ) and Pq−π (q − π, t )
have the same characteristic.

V. ONE-MAGNON INITIAL STATE WITH UNIFORM
PROBABILITY DISTRIBUTION

The momentum distribution function of the one-magnon
initial state shows a distribution only for the same momentum
present in the initial state. This opens the question of what
the probability distribution of the momentum would be if
the initial state has the excitation of more than one momen-
tum. To investigate this, we consider the initial state to be a
one-magnon state with the magnon localized in real space,
i.e., |ψ1(0)〉 = c†

1 |00..00〉. In the momentum space, this is
an equally probable state for all the allowed momenta of the
system. In this section, we consider such an initial state and let
this state evolve under the Hamiltonian Hf . The time-reversal
state is obtained under the Hamiltonian Hb. The LE is the
square of the overlap of two wave functions. For the proba-
bility distribution function analysis, we take the overlap of the
forward evolved state with a fixed momentum ck in the initial
state and compute the probability distribution of momentum k
which may or may not be equal to q. Thus, the initial state is
written as

|ψ1(0)〉 = 1√
N

∑
q

e−iqc†
q |00..00〉 . (19)

The evolution of the state can be given by

|ψ1(t )〉 = 1√
N

∑
q

e−iqc†
q(−t ) |ψ (t )〉 , (20)

where |ψ (t )〉 is the state written in Eq. (7). The backward
evolution of this state under the Hamiltonian Hb for the
same amount of time and taking the overlap with the state
c†

k |00..00〉 defines the probability distribution function P(k, t )
of the momentum k. We also call this function the momentum
distribution function. This is written as

P(k, t ) = 1

N
|
∑

q

e−iq 〈ψ ′(t )| c′
k (−t )c†

q(−t ) |ψ (t )〉 |2. (21)

This can be further simplified by defining B(k, q) =
〈ψ ′(t )| c′

k (−t )c†
q(−t ) |ψ (t )〉. We can rewrite this function as

B(k, q) = |A/Aq|C(k, q). (22)

And the probability distribution function can now be written
as

P(k, t ) = 1

N
|A/Ak|2|C(k, k) − C(k, k − π )

+ C(k,−k)e2ik − C(k, π − k)e2ik|2. (23)

Also, the LE in this case can be written as

L(t ) = 1

N
|
∑
q,k

e−iqeik 〈ψ ′(t )| c′
k (−t )c†

q(−t ) |ψ (t )〉 |2. (24)

This can be further simplified in a similar fashion as the
probability distribution function. Using the selection for
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FIG. 8. LE in all the three cases of initial states for N = 100
at r = 0.5, hf = jx , hb = − jx . For the two initial states |ψ (0)〉 and
|ψq(0)〉, the LE almost overlap each other. For the initial state of
equally probable momenta, it shows revival peaks of smaller magni-
tude as compared to the other two cases.

momentum values k and q, we can write

L(t ) = 1

N2
|
∑

k

[B(k, k) − B(k, k − π )

+ B(k,−k)e2ik − B(k, π − k)e2ik]|2. (25)

To simplify further, we make use of Eq. (22) and write it
using the momentum values k − π , −k, k, and π − k as

L(t ) = 1

N2
|A|2|

∑
0�k�π/2

1

Ak
{C(k, k) + C(k − π, k)

+ C(−k, k) + C(π − k, k) − C(k − π, k − π )

− C(−k, k − π ) − C(k, k − π ) − C(π − k, k − π )

+ e2ik[C(k − π,−k) + C(−k,−k)

+ C(k,−k) + C(π − k,−k) − C(k − π, π − k)

− C(−k, π − k) − C(k, π − k)

− C(π − k, π − k)]}|2. (26)

Using Eqs. (23) and (26), we calculate the momentum dis-
tribution function and the LE, respectively, for the initial
state with a flat momentum distribution. For this state, the
characteristic of the LE does not change as compared to the
no-magnon initial state or the one-magnon initial state with a
definite momentum. In Fig. 8, we plot the results for N = 100
spins. In this case, the Loschmidt echo does not revive as
much as it revives in the other two cases. For no-magnon
and one-magnon with definite momentum initial states, the LE
plots almost overlap each other. However, the presence of all
momenta in the initial state reduces the peaks strengths. For
the smaller chains, the difference in the behavior of the LE is
a little more pronounced in the long-time evolution. For larger
spin chains, the LE remains zero after a certain time. The LE
can become zero if the time-evolved states in the forward and
reverse evolution become orthonormal. This can alternatively

FIG. 9. LE as a function of magnetic field at a fixed time
t jx = 1.2 for the different sizes of the system. (a) We consider r = 1
and hb = − jx . The rise of the LE near hf = jx shows that the system
far away from criticality has the revival peak, which decreases with
the system size. (b) We take hb = −0.1 jx . When the magnetic field
in the backward evolution approaches criticality, the revival of the
Loschmidt echo is not possible.

be achieved by tuning the magnetic field and letting the state
evolve to some time. We show the behavior of L(t ) as a
function of the magnetic field in Fig. 9 for the different lengths
of the spin chain. In this result, we change the magnetic
field in one direction of the evolution, keeping the rest of
the parameters fixed. At a specific time t jx = 1.2, at which
the revival peak appears, we show the Loschmidt echo as a
function of the magnetic field in the forward direction with a
fixed value of it in the reverse direction. In Fig. 9(a), we plot at
hb = − jx. We can see that the LE falls to zero when hb → 0,
but revives when hb → jx. The revival strengths depend on
the length of the chain. In Fig. 9(b), we plot at hb = −0.1 jx.
In this case, we do not see the revival of the Loschmidt echo
at all. This justifies the results that we have plotted for the
LE so far. It implies that when the system is comfortably far
away from the criticality in either direction of the evolution,
it can have revival peaks even at the very large system size.
However, when the system is set near criticality in one of the
directions of the evolution, the revival of the Loschmidt echo
is not possible even at lower lengths of the spin chain.

We show the momentum distribution function of Eq. (23)
in the full range of k in Fig. 10(a). The four peaks have the
same value and they correspond to the momentum values q −
π , −q, q, and π − q. In the initial state with equally probable
momenta, overlapping with a state with a definite momentum
can have contributions from the four modes states of the state
|ψ1(t )〉 in Eq. (20), which can have the same momentum. For
this reason, we have four peaks in the momentum distribution
function plotted against k. The behavior of the momentum
distribution depends on the specific time of evolution as well
as the length of the spin chain. We have considered the time
t jx = 1.2, where the LE shows its first revival peak. The
height of the peaks in the probability distribution decreases as
the length of the spin chain increases. In Fig. 10(b), the fall of
the peaks is plotted as a function of N . The height of the peaks
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FIG. 10. (a) The probability distribution function as a function of k in the full range at a specific time jxt = 1.2 for N = 100. The
Hamiltonian parameters are r = 1 and hf = 1 = −hb. The initial state for the state evolution is |ψ (0)〉 = c†

1 |00..00〉. The probability
distribution function depends on the value of k. It approaches maxima for four values of k. These four peaks’ structure basically shows
that the probability distribution functions of P(k − π, t ), P(−k, t ), P(k, t ), and P(π − k, t ) as a function of time are the same for a spin chain.
(b) The peaks of the probability distribution as a function of N . The peak falls as 1/N with size of the chain.

follows a power law as P(k, t ) = 2.177231 ∗ N−1.251044. We
do not show P(k, t ) as a function of time as it shows a similar
pattern to the LE.

We also show the momentum distribution function for
the different time values and also for the different lengths
of the spin chain in Fig. 11. The distribution function is plotted
in the range of 0 < k < π/2 for two spin chains of length N =
32 and N = 100 in Figs. 11(a) and 11(b), respectively. For

FIG. 11. The probability distribution function as a function of k
at the three different times for the two lengths of the chain, (a) for
N = 32 and (b) N = 100. The initial state is |ψ (0)〉 = c†

1 |00..00〉.
The other parameters are set as hf = jx , hb = − jx , and r = 1. The
range of k has been shortened to plot just one peak of P(k, t ). The
position of the peak depends on the time of evolution. We can see
the peaks near the same k for t = 1/ jx and t = 1.2/ jx , while for
jxt = 0.1 the peak appears flattened towards k = 0. For a larger spin
chain in (b), the characteristic of the momentum distribution remains
the same; however, the magnitude depends accordingly.

each chain, we consider three different time values t = 0.1/ jx,
t = 1/ jx, and t = 1.2/ jx. The Hamiltonian parameters are
r = 1, h f = jx for the forward evolution and r = 1, hb = − jx
for the reverse evolution. In these plots, we have chosen a
range of k to show only one peak of the momentum distribu-
tion function in any of the plots. Here we can see the time and
momentum dependence of P(k, t ). The peaks at t = 1/ jx and
t = 1.2/ jx are centered around the same value of k = 1.9 for
N = 32 as well as N = 100, while for t = 0.1/ jx, the peaks
are flattened and have shifted towards the left for both chains.
Also, we can see that the pattern of the momentum distribution
remains the same for different N . However, the magnitude of
P(k, t ) has fallen as 1/N order. The P(k, t ) has magnitude
of the order of 10−2 at t = 1/ jx compared to the other time
values. At this moment, the LE is also almost zero, as can be
seen in Fig. 8.

VI. LOSCHMIDT ECHO WITH KICKED
MAGNETIC FIELD

In previous sections, we discussed the LE for the Hamil-
tonian under the uniform magnetic field. In this section,
we consider the interaction Hamiltonian under the kicked
magnetic field, which is introduced using the δ function. In
general, the characteristic of the dynamics under this Hamil-
tonian is similar to the dynamics under the constant magnetic
field case. However, the kicks values are determining factor
in the dynamics. The special values of kicks give surprising
results for the LE. The effect of applying the magnetic field
using the δ function occurs only at the kicking times, and,
in between the two kicks, the dynamics is governed by the
critical Hamiltonian, i.e., Hamiltonian with the zero magnetic
field. So, the dynamics has a mixed effect of the critical and
noncritical Hamiltonians. This affects the system most when
we choose special kick values. The analytical solution of the
model has been presented in our previous work [62]. Here,
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we review for convenience. In the symbolic form, the con-
stituent terms of the Hamiltonian in Eq. (2) can be written as
Hxx = H ( jx, 0, 0), Hyy = H (0, jy, 0), and Hz = H (0, 0, jz ).
The full Hamiltonian then is given by H = Hxx + Hyy + Hz.
The kicked Hamiltonian can be written as

H = Hxx + Hyy +
∞∑

n=−∞
δ(n − t

τ
)h

N∑
i=1

σ z
i . (27)

Here, we apply the magnetic field in the kicked form at period
τ . The time after the n kicks is given by t = nτ . The Hamil-
tonian is periodic over τ . In this case, the dynamics can be
governed by the Floquet operator formalism. The Hamiltonian
is broken into two parts, namely, the interaction Hxx + Hyy

and the magnetic field Hz Hamiltonians. The unitary operator
between the two successive kicks is written as

U = e−iτ (Hxx+Hyy )e−iτHz . (28)

And the state after n number of kicks can be written as

|ψn(t )〉 = U |ψn−1(t )〉 = U n |ψ (0)〉 . (29)

While considering an unentangled state in the computational
basis as an initial state, the evolution can only be governed
by the interaction Hamiltonian between the two kicks. The
unitary operator with the Hz Hamiltonian can give only
a phase contribution as the initial state is an eigenbasis
of Hz. The interaction part of the Hamiltonian can be
diagonalized for every mode q, which remains associated
with the other three momentum values cq−π , c−q, and cπ−q.
However, the two parts of the Hamiltonian do not commute;
therefore, it is necessary to transform the Hz in terms of
the eigenstates of the interaction Hamiltonian (the explicit
calculation of this unitary operator can be seen here [62]).
For a mode q, the unitary operator in Eq. (28) can be
written in the tensor product form as U = V1 ⊗ V2. The
matrices V1 and V2 can be expressed and diagonalized in
the suitable basis states, |00〉 , |01〉 , |10〉 , |11〉. We recall
the eigenvalues of V1, which are written as λ± = 1

2 [(e4iet +
1) cos(2ht ) ±

√
(e4iet + 1)2cos(2ht )2 − 4e4iet ] with the

corresponding eigenstates, X †
13 |00〉 = x1 |10〉 + y1 |01〉 and

Y †
13 |00〉 = x2 |10〉 + y2 |01〉, where xi, yi are the normalized

coefficients of the eigenstates. The subscript labels in
X13 |00〉 = X13 |0103〉 are the labels on the fermions for
our convenience. Similarly, the eigenvalues of V2 are
λ′

± = λ±(iet → −iet ) and the corresponding eigenstates are
X †

24 |00〉 = x′
1 |10〉 + y′

1 |01〉 and Y †
24 |00〉 = x′

2 |10〉 + y′
2 |01〉.

Thus, the eigenvalues and the corresponding eigenvectors of
the unitary U are written as

λ1 = λ+λ′
+, |λ1〉 = X †

13X †
24 |vacuum〉 ,

λ2 = λ−λ′
+, |λ2〉 = Y †

13X †
24 |vacuum〉 ,

λ3 = λ+λ′
−, |λ3〉 = X †

13Y
†

24 |vacuum〉 ,

λ4 = λ−λ′
−, |λ4〉 = Y †

13Y
†

24 |vacuum〉 . (30)

The vacuum state |vacuum〉 is a direct product of the vacuum
states of the V1 and V2 matrices. For each eigenvalue λi in
Eq. (30), the corresponding eigenvector of U can be rewritten
in terms of the momentum operators cq−π , c−q, cq, and cπ−q.

We write the first eigenstate of the unitary U as

|λ1〉 = [α1 + α2(c†
qc†

π−q ) + α3(c†
−qc†

q ) + α4(c†
q−π c†

π−q )

+ α5(c†
q−πc†

q ) + α6(c†
q−πc†

−qc†
qc†

π−q )] |0000〉 , (31)

where the probability amplitudes αi = f (xi, yi, x′
i, y′

i ) are a
function of the coefficients of eigenvectors of the matrices V1

and V2. The other eigenstates of unitary operator U can be
written in a similar way. It is good to recall that the state |λi〉 is
written for a mode, and the full state of the system is given by
the direct product of N/4 such modes, as has been expressed
in Eq. (7). The eigenstates |λi〉 for the kicked Hamiltonian are
equivalent to the state |φq(t )〉 for the direct Hamiltonian case
written in Eq. (7). For the kicked Hamiltonian, we can write
|ψn(t )〉 and |ψ ′

n(t )〉 for the forward and the reverse evolved
state, respectively. We follow the same parameter labels as h f

for the magnetic field in forward evolution, while hb for the
same in reverse evolution. The state after the n kicks of the
magnetic field can be written as

|ψn(t )〉 = U n |ψ (0)〉 =
∏

q

4∑
i=1

λn
i |λi〉 〈λi|ψ (0)〉. (32)

Using Eq. (32), we compute the Loschmidt echo in the kicked
Hamiltonian case for the values of the different parameters.
The kicking time of the magnetic field determines the be-
havior of the LE. For a kick period of infinitesimally small
value, the results of the direct Hamiltonian case and the
kicked case are the same. At special kicks, the LE shows sur-
prising behaviors. At τ = π/4, with Hamiltonian parameters
jx = jy = 1 and h = jx, the wave function does not evolve at
all from the initial state |00..00〉. This can be shown analyti-
cally for the spin chain of N = 4 sites. For other h/ jx values,
the wave functions in the forward and the reverse directions
show evolution. However, changing the direction of the mag-
netic field does not alter the wave function, so the overlap of
the |ψ ′

n(t )〉 and |ψn(t )〉 gives unity. Also, it is important to
see that after the first kick, the LE is unity. It is because we
have considered the same local interaction parameters r in
both directions of evolution. The unitary with the magnetic
field only changes the phase of the amplitudes of the wave
functions, which in overlap do not change the LE. The LE for
a smaller spin chain at τ = π/4 is plotted in Fig. 12, where it
is unity for r = 1 and h/ jx = 1. For an arbitrary magnetic field
value, it shows revivals at arbitrary times during evolution
and, as the magnetic field is tuned towards unity (h/ jx = 0.9),
the peaks become more pronounced only at fewer points in
the evolution, which all disappears when the magnetic field
is tuned at exactly h = jx. In Fig. 13, we show the LE for
the different spin chains at τ = π/4, jx = jy = 1, and h = jx.
The reverse field is set at hb = 0.9 jx. We can see that in the
long-time evolution, the smaller chains have revival peaks,
while for the larger spin chains, the Loschmidt echo falls
exponentially and does not show the revival similar to the LE
in the direct Hamiltonian case.

In Fig. 14, we show the window-averaged LE at an arbi-
trary kick τ = π/12 j−1

x . The window length is set equivalent
to 50 kicks. The parameters in the main plot are set as r = 1,
h f = jx, and the magnetic field is flipped in the reverse di-
rection of evolution. For a smaller chain N = 16, the revival
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FIG. 12. The LE for a small chain of N = 16 at a special kick
τ = π/4. At r = 1, hf / jx = −hb/ jx = 1, the system does not show
the dynamics. Changing the magnetic field to hb → 0 in reverse
evolution, the LE shows frequent revival peaks. As the magnetic field
is tuned towards unity (in h/ jx → 1), the revival peaks are rare but
very significant, which subsequently disappear as h/ jx = 1.

peaks occur frequently, which gives the window average a
higher value of nearly 0.2. However, the number of revival
peaks of the Loschmidt echo for larger spin chains signifi-
cantly reduces, giving a lower window average. For the spin
length as large as N = 100, the revival peaks of the Loschmidt
echo are absent. The inset plot is set at the same parameters
as the main plot, except that we consider reverse magnetic
field hb = 0.1 jx. In this case, the LE saturates at the smaller
chain length very shortly after the evolution starts and does
not revive even at the relatively smaller length of the chain,
N = 44.

FIG. 13. LE for different chain lengths at τ = π/4. For the
larger spin chains, similar to the direct Hamiltonian behavior, the
LE falls sharply after the evolution begins and does not show re-
vival peaks in the long-time evolution. However, at τ = π/4 and
hf / jx = −hb/ jx = −1, the LE behavior remains the same.

FIG. 14. Window-averaged plots of the LE for the different spin
chain lengths. We consider arbitrary τ = π/12 j−1

x and the direction
of the magnetic field h/ jx = 1 is reversed in reverse evolution. We
can see that the LE decreases substantially as the length of the
spin chain increases from N = 16 to N = 44. Also, revival peaks
are absent for the larger spin chain. Inset: the magnetic field is set
near the critical point in the reverse evolution, which reduces the LE
significantly. Also, the LE saturates at smaller spin system N = 44
in this case. The window length is considered to be 50 kicks.

VII. CONCLUSION

We have studied the Loschmidt echo in a Kitaev Hamilto-
nian under the constant and the kicked magnetic fields. The
analytical as well as the numerical approach has been applied
to compute the LE. We consider different initial states. These
states are a no-magnon initial state, a one-magnon initial state
with definite momentum, and a one-magnon initial state with
a uniform probability distribution. The behavior of LE is an-
alytic throughout the evolution at different parameter values.
In the direct Hamiltonian case, we have presented results for
two parameter sets: first, when the system is near criticality in
either direction of the evolution, and second, when the system
is away from the criticality in both directions of the evo-
lution. For smaller chains, the Loschmidt echo periodically
shows revival peaks in the long-time evolution. But unlike
quantum correlations such as magnetization and concurrences
dynamics, the LE does not show the revival peaks in long-time
evolution for longer spin chains, although it has a short-time
revival peak that is present for longer chains. When the system
is at the critical point during forward or reverse evolution, the
LE does not have such revival peaks. This behavior can also
be seen when we show the LE as a function of the magnetic
field. However, near the criticality of the system, the LE can
have long-time revival peaks even for the larger chains. This
behavior is present only when typically small magnetic fields
are present in both directions of the evolutions. These revival
peaks occur at different times contrasting with the short-time
revival peaks of the LE in a noncritical regime. In the thermo-
dynamic limit, the LE does not show revival peaks irrespective
of whether the system is near critical or away from it in either
direction of the evolution.
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The presence of a magnon with definite momentum in
the initial state reduces the revival peaks, which depends on
the length of the chain. In longer chains, it does not have a
significant effect for the reason that the magnon excitation
affects only the evolution of one mode state of the Hamil-
tonian. Therefore, for sufficiently larger chains, the effect is
not seen at all. However, the initial state with equally prob-
able momenta shows a significant drop in subsequent revival
peaks even for the longer chains as compared to the revival
peaks of the LE with a no-magnon initial state. The presence
of momentum in the initial state provides a framework to
investigate the probability distributions of different momenta
in the evolved state of the system. For the initial state having
one-magnon excitation with definite momentum, the proba-
bility distribution of a different momentum gives zero even
if the momentum belongs to the same mode present in the
initial state. The probability distributions for a different mo-
mentum in the initial state show the same character during
the long-time evolution. However, they have different peak
strengths. The probability distribution of the same momentum
is equivalent to the LE in this case.

For the initial state of one magnon with a uniform prob-
ability distribution, the momentum distribution function of a
mode has four peaks when plotted as a function of momentum.
These peaks correspond to the associated momenta of the
same mode. The momentum distribution is an overlap func-
tion with a specific momentum in the initial state, which can
give nonzero values when it overlaps with at least four modes
states of the evolved state in Eq. (20), which have that specific

momentum excitation. This explains the four-peak structure
of the momentum distribution function. At specific times, the
probability distribution function as a function of the momen-
tum values attains its maximum near k ≈ 1.2 for different
chain lengths when N is large enough, say near N = 100. For
smaller chain lengths, it differs significantly. The maxima of
the probability distribution function fall as the length of the
chain increases as ≈ O(1/N ). This is exactly for the same
reason that we have for the initial state of one magnon with
definite momentum where the effect of the magnon decreases
as the length of the chain increases.

In the last section, we have considered the kicked Hamilto-
nian case for the Loschmidt echo analysis. The LE generally
shows a similar characteristic as the direct Hamiltonian case,
except at a few special kick parameters. For a larger spin
chain, the LE falls to zero in a few kicks just after the
evolution and does not revive, while for a smaller chain, it
shows the revival peaks in the long-time evolution. However,
in the kicked case, the kick parameter may define the character
of the LE. One such special kick we consider is τ = π/4,
where the evolution of the Hamiltonian does not happen at
all, for any length of the chain. This behavior is because of the
characteristic of the wave function evolving under the kicked
Hamiltonian.
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