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Markovian and non-Markovian dynamics of quantum coherence in the extended XX chain

Shaoying Yin ,1,* Shutian Liu,2,† Jie Song,2 and Hongliang Luan 1

1Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education,
School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

2School of Physics, Harbin Institute of Technology, Harbin 150001, China

(Received 14 May 2022; accepted 14 September 2022; published 27 September 2022)

The Markovian and non-Markovian dynamics of quantum coherence, including single-spin coherence, two-
spin coherence, and its distribution (collective and localized coherence), are investigated in the XX spin chain
with three-spin interaction. We find that the single-spin and localized coherence do not decrease but increase
with time, which makes the dynamic evolution of the two-spin coherence more robust than entanglement and
quantum discord. The three-spin interaction can lower the values of quantum coherence in Markovian evolution
and heighten the oscillation frequency of quantum coherence in non-Markovian evolution because it can speed
up the flow of coherence information. Finally, the trade-off relation between the collective and the localized
coherence is clearly shown in their dynamic evolution. Thanks to the coherence trade-off, we find the substitution
of localized coherence for collective coherence in dominating the dynamics of the two-spin coherence.
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I. INTRODUCTION

Quantum coherence, characterizing the superposition
properties of quantum states, is an essential feature of
quantum mechanics. It is also a cornerstone of quantum in-
formation science [1–3]. Searching its physically meaningful
and mathematically rigorous quantifiers is of fundamental
and practical significance for many research fields related to
coherence. A rigorous framework to quantify quantum coher-
ence was formally introduced by Baumgratz et al. recently.
They proposed a set of axioms which need to be satisfied by
any coherence measure [4]. This work gave rise to a series of
theoretical and experimental investigations [5,6]. Theoretical
investigations mainly focus on the quantification of coher-
ence based on different physical thoughts [7–13], their critical
properties in quantum spin chains [14–24], and so on [25–29].

In contrast to other quantum quantifiers, such as entangle-
ment and quantum discord, quantum coherence has several
unique features [3,29–31]. For example, in a bipartite system,
its coherence can be localized in an individual qubit, or be
manifested as correlations between the two qubits. Thus, re-
searchers generally decompose coherence into two parts based
on the different physical conceptions, such as intrinsic and lo-
cal coherences [30], localized and collective coherences [31],
and the local and global coherences [32,33]. It is crucial
but time consuming for the decomposition of the intrinsic
and local coherences to find out the minimized state σ min

S
from all separable states. Based on the quantum version of
Jensen-Shannon divergence, Radhakrishnan et al. introduced
a basis-independent coherence measure by using the closest
product state to replace the minimized state σ min

S [31]. Then
two parts of the total coherence include the collective and
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localized coherences, which are easy to obtain. It is also found
that quantum coherence and its distribution obey the triangle
inequality and trade-off relation [30,31]. The coherence dis-
tribution and its fundamental properties are theoretically and
experimentally investigated in quantum spin systems [34–37].

Stable quantum resources are vital for quantum informa-
tion processing tasks, but the quantum coherence of an open
quantum system is fragile and may eventually vanish because
of the environmental perturbations and quantum fluctuations.
This is a great obstacle to the applications of quantum coher-
ence in quantum technology. In order to find some solutions
to the tough issue, the coherence dynamics of an open quan-
tum system has been extensively studied recently [38–43].
However, these works mainly focus on the dynamics of total
coherence not the coherence decomposition. It is well known
that the quantum coherence and its decomposition are closely
correlated but substantially different. So it is very necessary
to study the dynamic evolution of coherence decomposition
and check whether some physical properties still remain, such
as the trade-off relation. Moreover, the dynamics of an open
quantum system is generally categorized as the Markovian
and non-Markovian evolution [44,45]. The unidirectional flow
of the information from the open system to the environment
is known as Markovian evolution, which is bound to cause
a loss of quantum information embodied in open quantum
systems. A flow of information attached by memory effects
from the environment back to the open system represents
the key property of the non-Markovian evolution, and the
memory effects have a strong impact on the behaviors of
the system. Therefore, for the open quantum systems, the
Markovian and non-Markovian dynamics are indispensable to
explore the physical properties of quantum coherence and its
decomposition.

However, most recently, the dynamics of coherence de-
composition in Markovian and non-Markovian environment
is scarcely investigated, such as collective and localized
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coherences, which is obtained by the square root of quantum
version of the Jensen-Shannon divergence, and extensively
used in various of investigations [30,31,35–37]. Quantum
spin systems represent the ideal platform to study the phys-
ical properties and meaning of the quantum coherence. In
this paper, we investigate the Markovian and non-Markovian
dynamics of the quantum coherence and its distribution
(collective and localized coherence) in the XX spin chain
with three-site interaction. It is interesting that the single-
spin and localized coherence increase not decrease with the
time, which makes the two-spin coherence more robust than
entanglement and quantum discord. Three-spin interaction
strengthens the correlation between the system and the en-
vironment and brings about some important impacts on the
coherence dynamics. We also find that the triangle inequality
and trade-off relations among the two-spin coherence, col-
lective coherence, and localized coherence are maintained in
dynamic evolution.

The outline of this paper is as follows. In Sec. II, an
overview of the XX model with three-spin interaction is first
given. We also introduce two coherence measures based on
the quantum skew information, quantum Jensen-Shannon di-
vergence, and an alternative coherence distribution. In Sec. III,
we investigate the Markovian and non-Markovian dynamics
of single-spin coherence, two-spin coherence, and its distribu-
tion. The static behaviors of two-spin coherence as a function
of the three-spin interaction are also studied. Our conclusions
are given in Sec. IV.

II. PHYSICAL MODEL AND COHERENCE MEASURES

A. Description of the physical model

The Hamiltonian of the XX spin model with three-spin
interaction is [46–48]

H = J
N∑

n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1

)

−J ′
N∑

n=1

(
Sx

nSz
n+1Sx

n+2 + Sy
nSz

n+1Sy
n+2

)
, (1)

where Sμ
n (μ = x, y, z) are the spin- 1

2 operators on the nth site.
J denotes the two-spin interaction arising from the nearest-
neighbor qubits, and J ′ denotes the three-spin interaction
arising from the next-nearest-neighbor qubits, respectively. N
is the total number of the spins in the chain, and the periodic
boundary condition is assumed. In the following, the spin
chain model is considered in the thermodynamic limit N →
∞. By performing the Jordan-Wigner and Fourier transfor-
mations in sequence (see the Appendix), the Hamiltonian (1)
can be exactly diagonalized in the following form:

H =
∑

k

ε(k)c†
kck, (2)

where ε(k) is the energy spectrum, its expression is ε(k) =
cos(k) + α

2 cos(2k) with α = J ′
J .

Here, we concentrate on the quantum coherence of the
nearest-neighbor spin-pair located at sites m and m + 1 in
the spin chain, and its initial state is assumed to be maxi-
mally entangled. Then, the rest of the chain is the spin-chain

environment. The reduced density matrix of two spins at
sites m and m + 1 can be written in the computational basis
{|00〉, |01〉, |10〉, |11〉} as (see the Appendix)

ρm,m+1 =

⎛
⎜⎝

x+ 0 0 0
0 y+ z∗ 0
0 z y− 0
0 0 0 x−

⎞
⎟⎠, (3)

where z = 〈c†
mcm+1〉, x+ = 〈nmnm+1〉(nm = c†

mcm),
y+ = 〈nm(1 − nm+1)〉, x− = 〈1 − nm − nm+1 + nmnm+1〉,
and y− = 〈nm+1(1 − nm)〉. The analytic expressions of the
matrix elements z and x+ are given by

z = 1

8π2

∫ π

−π

∫ π

−π

f ∗(k) f (k′)ei(k−k′ )m−ik′
dk dk′, (4)

x+ = 〈nm〉〈nm+1〉 − zz∗, (5)

with

〈nm〉 = 1

8π2

∫ π

−π

∫ π

−π

f ∗(k) f (k′)ei(k−k′ )mdk dk′, (6)

f (k) = ei[km−ε(k)t](1 + ei(k+φ ). (7)

Since the coherence can exist within an individual qubit,
we also investigate the coherence dynamics of the single-spin
system. All single-spin density matrices are the same due
to the translation invariance. The single-spin density matrix
ρm can be obtained by trace out site m + 1 from Eq. (3), its
specific form is written as

ρm =
(

x+ + y+ 0

0 x− + y−

)
. (8)

B. Measurements of quantum coherence

In this section, we will introduce two kinds of coherence
measure, which are based on the quantum skew informa-
tion [7] and quantum Jensen-Shannon divergence [30,31]. It
will ensure the accuracy of our results to a certain extent.

First, Girolami introduced an observable measure of quan-
tum coherence for states of finite-dimensional systems, which
is based on the quantum skew information and can be written
as [7]

QCQSI(ρ, K ) = − 1
2 Tr{[√ρ, K]2}, (9)

where ρ represents the density matrix of a quantum state and
K denotes an observable. The coherence information embod-
ied in a quantum state is usually skewed to an observable.
The square-root terms sometimes prevent us from recasting
the skew information as a function of observables. Therefore,
a simplified version is introduced by Girolami [7],

QCS
QSI(ρ, K ) = − 1

4 Tr{[ρ, K]2}. (10)

It can be measured in an interferometric setup only by per-
forming two programmable measurements, regardless of the
dimension of the quantum system, so it is a meaningful and
an experimentally friendly coherence measure. This coher-
ence measure is basis dependent since it is dependent on
the observable. For the single-spin system, after a derivation
according to Eq. (9), we find that the analytical expressions of
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the σx and σy coherence (coherence carried by ρm when mea-
suring σx or σy) are the same and the σz coherence is equal to
zero. For the two-spin system, the coherence measure can be
written as QCQSI(ρm,m+1, Km ⊗ Im+1) [7,14]. Coincidentally,
after a calculation according to Eq. (10), we find that the
analytical expressions of the σx and σy coherence are also the
same and the analytical expression of the σz coherence only
contains the matrix element z. Therefore, we will consider the
σx (σy) coherence of the single-spin and two-spin system in
the following investigation.

Second, Radhakrishnan and co-workers introduced a basis-
independent coherence measure by means of the quantum
version of Jensen-Shannon divergence and the maximally
mixed state, which can be expressed as [30,31]

QCQSJD(ρ) =
√

S
(ρ + ρI

2

)
− S(ρ) + S(ρI )

2
, (11)

where ρI ≡ 1
d

∑d
i=1 |i〉〈i| is the maximally mixed state in a

d-dimensional Hilbert space. It is a basis invariant state. The
maximally mixed state will become a 4 × 4 identity matrix for
a bipartite system. S denotes the von Neumann entropy. The
basis-independent coherence is also called the total coherence
in the following paragraphs.

The total coherence in multipartite systems, originates
from the collective participation of several subsystems and the
individual subsystem. In the two-spin system, the collective
coherence may exist due to the collective participation of two
subsystems. It is defined as the distance from a bipartite state
to the closest product state [31],

QCC(ρ) ≡ D(ρ, πρ )

=
√

S
(ρ + πρ

2

)
− S(ρ) + S(πρ )

2
, (12)

where πρ = ρm ⊗ ρm+1 is the closest product state. The local-
ized coherence can be attributed to coherence located within
the subsystem. It is defined as the distance from the closest
product state to the maximally mixed state [31],

QCL(ρ) ≡ D(πρ, ρI )

=
√

S
(πρ + ρI

2

)
− S(πρ ) + S(ρI )

2
, (13)

III. QUANTUM COHERENCE OF THE CENTRAL
SPIN SYSTEMS

Based on the trace distance of quantum states, Mahmoudi
et al. have studied the non-Markovianity of the XX spin chain
with three-spin interaction [47]. They found that there was a
critical point αc = J ′

J � 0.5 between the Markovian and the
non-Markovian regime. The properties of the system must be
affected by the unidirectional or bidirectional flow of informa-
tion between the system and environment, so the Markovian
and non-Markovian dynamics are indispensable for a further
understanding of open quantum system physics. Therefore,
we mainly investigate the coherence dynamics of the cen-
tral spin systems in the Markovian and the non-Markovian
regimes, and the impact of three-spin interaction on the static
behaviors of quantum coherence is also discussed in the fol-
lowing section.

(b)

(d)(c)

(a)

FIG. 1. The single-spin coherence (a and (b) and two-spin
coherence (c) and (d), quantified, respectively, by quantum Jensen-
Shannon divergence (QCQJSD) and quantum skew information
(QCQSI) as a function of the time t are given in (a)–(d) under the
different values of α.

A. Markovian dynamics of quantum coherence

The physical model possesses Markovian features as α =
J ′
J � αc � 0.5. For the single-spin and two-spin systems in
the Markovian environment, we can obtain their coherences
by use of corresponding coherence measures [Eqs. (9)–(13)].
Thus, the Markovian dynamics of the single-spin coherence,
two-spin coherence, and its distribution (collective and lo-
calized coherence) will be studied in this section. For the
single-spin system, we can calculate the quantum coherences
based on the quantum Jensen-Shannon divergence and the
quantum skew information. Figures 1(a) and 1(b) shows the
Markovian dynamics of single-spin coherences with respect
to the time under the different values of α. First, two kinds
of quantum coherence with different values of α are zero at
the beginning. Then, they increase sharply in a short timeand
reach the maximum values in a slow way. This is an inter-
esting phenomenon that the single-spin coherence does not
decrease but increases with the time and finally reaches its
maximum value. For an open quantum system, it is important
and convenient for us to perform quantum information pro-
cessing. Furthermore, we also find that the quantum coherence
becomes smaller for a larger value of α. The larger value
of α means the stronger next-nearest-neighbor interaction,
which may speed up the information flow from the system to
surrounding environment and lower the single-spin coherence.

For the two-spin system, we also calculate the quantum
coherence based on the quantum Jensen-Shannon divergence
and the quantum skew information. By the way, in order to get
a compact solution, we use the simplified version of quantum
skew information to calculate the quantum coherence of two-
spin system. The Markovian dynamics of two-spin coherence
with the different values of α is shown in Figs. 1(c) and 1(d).
It is found that two kinds of two-spin coherence decrease
sharply in a short time (t � 1.8), then, they gradually increase
with time. They all have the minima at time t � 1.8. Mah-
moudi et al. have demonstrated that the quantum correlations
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FIG. 2. The total coherence (CT), collective coherence (CC), and
localized coherence (CL) as a function of the time t . The ratio of
next-nearest-neighbor interaction to nearest-neighbor interaction is
set to α = J ′

J = 0.1.

of the two-spin system decrease with the time and finally dis-
appear in the Markovian environment [47]. Therefore, we can
conclude that the two-spin coherence (total coherence) has a
better capability of withstanding the decoherence mechanism
of the Markovian environment. Furthermore, we also find that
the two-spin coherence becomes smaller with a larger value
of α. It means that a stronger three-spin interaction can make
the system environment more connected, and the faster infor-
mation flow from system to environment may lead to a loss
of quantum coherence. Whereas, the concurrence becomes
smaller with the weaker three-spin interaction [47]. According
to above investigations, we find that the two-spin coherence
is more robust than quantum correlations (entanglement and
quantum discord) in Markovian dynamics. Motivated by the
Markovian dynamics of the single-spin coherence, we attempt
to explain the dynamic performances of two-spin coherence
by discussing the Markovian dynamics of coherence dis-
tribution (collective and localized coherence). The two-spin
coherence (total coherence), collective coherence, and lo-
calized coherence can be calculated by the Eqs. (11)–(13),
respectively. We display the total (CT), collective (CC), and
localized coherence (CL) as a function of the time in Fig. 2. It
is found that the localized coherence first undergoes a rapid
rise in a short time and increases in a slow way. It is not
surprising that the dynamics of localized coherence is the
same as the single-spin coherence because both coherences
exist in the individual spin. Second, we find that the collective
coherence always decreases with the time, and the rate of de-
cay goes from high to low. It is well known that the collective
coherence is the distance from a quantum state to the closest
product state, and is equal to the total mutual information of
the systems, including both quantum and classical correlation
between the two subsystems [49]. Therefore, the dynamic per-
formances of collective coherence are similar with the mutual
information studied by Mahmoudi et al. [47]. Lastly, it is
found in Fig. 2 that three kinds of quantum coherence obey
two fundamental relations during their Markovian dynamics.
They are the triangle inequality CC(ρ) + CL(ρ) � CT(ρ) and
the trade-off relation (the collective coherence decreases, but
the localized coherence increases with respect to the time).

Therefore, the trade-off relation between the collective and
the localized coherence can explain fully the reason for the
dynamic performances of two-spin coherence. In other words,
the dynamic performance of two-spin coherence is dominated
by the collective coherence at the beginning, and it is soon
replaced by localized coherence.

In a word, the two-spin coherence is more robust than
quantum correlations in Markovian dynamics due to the con-
tribution from localized coherence. Here, we note that there
are two factors through which the localized coherence (or
single-spin coherence) becomes larger: One is by interacting
with the spin-chain environment, and the other is through a
transformation of the collective coherence into localized co-
herence. Second, the three-spin interaction may strengthen the
relationship between the central spin system and spin-chain
environment, accelerate the flow of coherence information
from the system to surrounding environment, and finally
lead to the loss of the single-spin and two-spin coherence.
Furthermore, we also find that the two-spin coherence and
its distribution (collective and localized coherence) obey the
triangle inequality and the trade-off relation in Markovian
dynamics. Lastly, the quantum coherences quantified by two
coherence measures show the same Markovian dynamics
regardless of the single-spin and two-spin system, which guar-
antees the accuracy of our results. Whereas, the coherence
measure based on the quantum Jensen-Shannon divergence
reveals more properties of the Markovian dynamics due to the
coherence decomposition.

B. Non-Markovian dynamics of quantum coherence

The physical model possesses non-Markovian features
as α = J ′

J > αc � 0.5. Based on the corresponding coher-
ence measure from Eqs. (9)–(13), the single-spin coherence,
two-spin coherence, and its distribution can be obtained, re-
spectively. We will investigate the non-Markovian dynamics
of the quantum coherence in the following section.

The non-Markovian dynamics of the single-spin coherence
under different values of α is displayed in Figs. 3(a) and 3(b).
It is found that the single-spin coherences are initially zero for
all values of α, but they increase to their maximum values in a
short time and begin to change in an oscillating way. Although
the dynamic performances of single-spin coherence are the
damped oscillation, the maximum values of coherence in each
period remain unchanged. In addition, we also find that the
single-spin coherence under a larger value of α increases to
the maximum value at an earlier time, and its oscillation fre-
quency becomes higher. The oscillating behavior of coherence
dynamics depends on the memory effects of the information
flow from the environment back to the single-spin system.
The stronger three-spin interaction (larger value of α) makes
system environment more connected, speeds up the informa-
tion exchange between system and environment, and finally
heightens the oscillation frequency of non-Markovian dynam-
ics. The non-Markovian dynamics of the two-spin coherence
under different values of α is displayed in Figs. 3(c) and 3(d).
Here, we use the simplified version of quantum skew informa-
tion to obtain the compact solution of coherence (QCQSI). The
two-spin coherences with different values of α are initially
at the same maxima (QCQJSD = 0.7408, QCQSI = 0.5), and
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(a)

(c) (d)

(b)

FIG. 3. The single-spin coherence (a) and (b) and two-spin
coherence (c) and (d), quantified, respectively, by quantum Jensen-
Shannon divergence (QCQJSD) and quantum skew information
(QCQSI) as a function of the time t are given in (a)–(d) under the
different values of α.

oscillate with different frequencies and amplitudes, respec-
tively. The dynamic performances of two-spin coherence are
the damped oscillation, but the maximum values of coherence
in each period remain unchanged. Again, we find that the
coherence with the larger values of α has the higher frequency
due to faster information exchange between the system and
environment. In contrast to the time evolution of quantum
correlations (concurrence and quantum discord) in Ref. [47],
the two-spin coherence is more robust because the quantum
correlations oscillate between the zero and a lower value (i.e.,
the revival of the quantum correlations).

In order to better understand the non-Markovian dynamics
of two-spin coherence, we investigate the dynamic evolu-
tion of the coherence distribution (collective and localized
coherences). The two-spin coherence (total coherence CT),
collective coherence (CC), and localized coherence (CL) as
a function of the time are displayed in Fig. 4. It is found
that the collective coherence first drops sharply with time and

FIG. 4. The total coherence (CT), collective coherence (CC), and
localized coherence (CL) as a function of the time t . The ratio of
next-nearest-neighbor interaction to nearest-neighbor interaction is
set to α = J ′

J = 1.3.

almost reduced to zero, and later on the collective coherence
undergoes a damped oscillation in time. The mentioned be-
haviors are similar to the mutual information, concurrence,
and quantum discord studied by Mahmoudi et al. [47] because
the collective coherence mainly contains the contributions
from the classical and quantum correlations [47,49]. Both
the localized coherence and single-spin coherence depict the
coherence properties of the individual qubit, so they have the
similar non-Markovian dynamics shown in Figs. 3(a), 3(b)
and 4. Again, two fundamental properties about the relations
among the total, collective, and localized coherence are found.
They are the triangle inequality CC(ρ) + CL(ρ) � CT(ρ) and
the trade-off relations (the localized coherence increases when
the collective coherence decreases with the time and vice
versa). Furthermore, we find that the dynamic evolution of
the total coherence initially follows the collective coherence,
and is quickly contrary to it. Then, the localized coherence
takes the dominant role in the following evolution of the total
coherence.

In brief, we find that the contribution from localized co-
herence prompts the two-spin coherence to become more
robust in non-Markovian dynamics. The stronger three-spin
interaction can speed up the information exchange of the
system environment and increase the oscillation frequency
of the single-spin and two-spin coherence in non-Markovian
evolution. Moreover, the coherence measure, based on the
quantum Jensen-Shannon divergence, displays richer dynamic
characteristics due to its coherence decomposition. Thanks
to the coherence trade-off, we find that the leading role in
dominating the dynamics of the two-spin coherence is taken
from collective coherence to localized coherence.

C. Impact of three-spin interaction on static behaviors
of two-spin coherence

In this paper, the larger value of α = J ′
J means the stronger

next-nearest-neighbor interaction with respect to the nearest-
neighbor interaction. When the two-spin system evolves from
the initial state (t = 0) to the target state at a fixed time,
i.e., t = 1, t = 2, t = 4, or t = 10, we study the impact
of three-spin interaction on static behaviors of two-spin co-
herence. The two-spin coherence based on the quantum
Jensen-Shannon divergence and quantum skew information as
a function of α under different values of time are displayed
in Fig. 5. It is found that two-spin coherence possesses a
maximum around α = 1.0 as the time t = 1. The static be-
havior of quantum coherence is the same as entanglement
studied by Mahmoudi et al. [47]. However, with the increase
in time, the maximal coherence becomes the minimum, and
the position of the minimum gradually moves to a smaller
value of α in the left side of the Fig. 5 (0 < α � 1.3). When
α � 1.3, the static behavior of two-spin coherence gradually
is changed from a monotonic decrease to a damp oscillation
with respect to α. The premise behind the discussion about the
static behaviors of entanglement and quantum discord is that
the time is less than disentangled time tr in Ref. [47]. Whereas,
the two-spin coherence never disappear in the Markovian
or non-Markovian dynamics due to the contribution from
the localized coherence. Therefore, the dynamic properties
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(a)

(b)

FIG. 5. The two-spin coherences quantified by quantum Jensen-
Shannon divergence (QCQJSD) and quantum skew information
(QCQSI) as a function of the parameter α are given in (a) and (b) under
the four fixed times, respectively.

of localized coherence may lead to these different behaviors
between the quantum coherence and the quantum correlations.

The parameter α denotes the ratio of three-spin interaction
to two-spin interaction. The three-spin interaction is assumed
to be stronger than the two-spin interaction when we discuss
the non-Markovian dynamics of the quantum coherence. Even
0 < α < 3 when we investigate the static behaviors of quan-
tum coherence as a function of α. Some researchers may cast
doubt on the parameter setting, i.e, the next-nearest-neighbor
interaction is larger than nearest-neighbor interaction. Actu-
ally, this parameter configuration is often used in experimental
and theoretical researches recently. Peng et al. has investi-
gated the three-spin Ising model without two-spin interaction
in a transverse magnetic fieldand predict a novel transition.
With the help of a NMR quantum simulator, they simulated
such a system and observe the quantum phase transition [50].
People have also theoretically studied the topological quan-
tum phase transition in spin chains with such a parameter
configuration [24,34,35,51]. Therefore, the parameter setting,
three-spin interaction is stronger than the two-spin interaction,
has both theoretical and practical significances.

IV. CONCLUSIONS

Based on the coherence measures of quantum Jensen-
Shannon divergence and quantum skew information, the
Markovian and non-Markovian dynamics of quantum coher-
ence, including single-spin coherence, two-spin coherence,
and its distribution, are investigated in the XX spin chain
with three-spin interaction. It is interesting that the single-
spin coherence and localized coherence do not decrease but
increase with the time at the beginning. They finally reach
the maxima in Markovian dynamics and show the damp os-
cillation (but the maximum coherence in each period remains
unchanged) in non-Markovian dynamics. It is for this rea-
son that the Markovian and non-Markovian dynamics of the

two-spin coherence (total coherence) are more robust than the
quantum discord and entanglement, and the static behaviors of
two-spin coherence with respect to α = J ′

J are different from
the concurrence.

Second, the stronger three-spin interaction can make sys-
tem environment more connected. It can speed up the flow
of coherence information from the system to surrounding
environment in Markovian dynamics and force the single-
spin and two-spin coherence to become smaller. Meanwhile,
it can speed up the information exchange between system
and environment and heighten the oscillation frequencies of
the single-spin and two-spin coherence in non-Markovian
dynamics. Lastly, the two-spin coherence CT, and its distri-
bution (collective coherence CC, and localized coherence CL)
still obey the triangle inequality CC(ρ) + C(ρ) � CT(ρ) and
the trade-off relations in the Markovian and non-Markovian
dynamics. Thanks to the coherence trade-off, we find that
the dynamic performances of two-spin coherence are initially
dominated by the collective coherence, and it is soon replaced
by localized coherence. In a word, our research results make
us have deeper insights into the coherence dynamics of the
open quantum system.
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APPENDIX: THEORETICAL DERIVATION
OF THE PHYSICAL MODEL

In order to get a better understanding of the physical
model, we divide the total Hamiltonian [Eq. (1)] into three
parts, which are the two-spin system HS , the external envi-
ronment HE , and the interaction term HI . They can be written
as [47,48]

HS = J
(
Sx

mSx
m+1 + Sy

mSy
m+1

)
, (A1)

HE = −J ′
N∑

n �=m−2,m−1,m,m+1

(
Sx

nSx
n+2 + Sy

nSy
n+2

)
Sz

n+1

+ J
N∑

n �=m−1,m,m+1

(
Sx

nSx
n+1 + Sy

nSy
n+1

)
, (A2)

and

HI = J
(
Sx

m−1Sx
m + Sy

m−1Sy
m + Sx

m+1Sx
m+2 + Sy

m+1Sy
m+2

)
− J ′

m+1∑
n=m−2

(
Sx

nSx
n+2 + Sy

nSy
n+2

)
Sz

n+1. (A3)

This model is exactly solvable. We first use the Jordan-
Wigner transformation,
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Sz
n = c†

ncn − 1

2
,

S+
n = c†

n exp

(
iπ

∑
l<n

c†
l cl

)
,

S−
n = cn exp

(
−iπ

∑
l<n

c†
l cl

)
, (A4)

to map spins to one-dimensional spinless fermions with cre-
ation operators c†

l and annihilation operators cl . After a
straightforward deduction, the total Hamiltonian becomes

H = J

2

∑
n

(c†
ncn+1 + c†

n+1cn) − J ′

4

∑
n

(c†
ncn+2 + c†

n+2cn).

(A5)

Now by introducing the Fourier transformation,

cn = 1√
N

∑
k

ck exp(−ikn),

c†
n = 1√

N

∑
k

c†
k exp(ikn), (A6)

where ck is the momentum eigenstates. Then the fermion
operators are transformed to the momentum space. The total
Hamiltonian can be also diagonalized.

We assume that the central two-spin system is initially
disentangled with the spin-chain environment, i.e., at t = 0,
the two-spin system and the chain environment are supposed
to be described by the product state [47,48],

|ψ (0)〉 = 1√
2

(|↑↓〉 + eiφ|↑↓〉)S ⊗ (|↓↓↓ · · · ↓〉)E, (A7)

and the initial state can be rewritten as |ψ (0)〉 = 1√
2
(c†

m|0〉 +
c†

m+1eiφ|0〉) by means of the fermion operators. |0〉 denotes
the vacuum state, and φ is a phase factor. Using the time-
evolution operator, U (t ) = exp(−iHt ) (h̄ is taken to be 1), the
time evolution of the total system is determined by ρtot (t ) =
U (t )ρtot (0)U (t )†, where ρtot (0) = ρm,m+1(0) ⊗ ρE (0). Then,
one can obtain the evolved reduced density matrix of the
two-spin system by tracing over the environment, denoted by
ρm,m+1(t ) = TrE[ρtot (t)]. Due to the translation invariance of
spin-chain system, the reduced density ρm,m+1(t ) matrix is
always the same whatever m takes.
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