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Quantum feedback control in quantum photosynthesis
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A model of charge separation in quantum photosynthesis as a model of quantum feedback control in a system
of interacting excitons and vibrons is introduced. In this approach quantum feedback induces a nonlinear evolu-
tion equation which describes the Landau-Zener transition with decoherence and can be considered a quantum
ratchet. It explains both the irreversibility in the process of charge separation for quantum photosynthesis (for
this model direct transitions have probabilities close to 1, and reverse transitions have probabilities close to zero)
and coincidence of the energy of the vibron paired to the transition and the Bohr frequency of the transition.

DOI: 10.1103/PhysRevA.106.032218

I. INTRODUCTION

Quantum effects in photosynthetic systems attract a lot of
attention [1]. In particular, the irreversibility of charge sepa-
ration in quantum photosynthesis has been discussed [2]. One
of the key observations is the presence of vibrons (vibrations
of nuclear degrees of freedom of chromophores with a life-
time of the order of several picoseconds) in photosynthetic
systems [3]. The following phenomenon has been observed:
typically, energy of the vibron is close to the Bohr frequency
(i.e., the difference of energies between the levels) for elec-
tronic states which interact with the vibron; moreover, one
vibron can interact with several transitions with the same Bohr
frequency [3,4]. Another important phenomenon in quantum
photosynthesis is the coincidence of the lifetime of electronic
coherences and the duration of the Landau-Zener transition in
the reaction center. In this work, we describe charge separa-
tion in quantum photosynthesis as a quantum feedback control
in the Landau-Zener system modeling interacting excitons and
vibrons, which explains both the irreversibility in the process
of charge separation and the coincidence of the energy of the
vibron paired to the transition and the Bohr frequency of the
transition. The approach of this paper can be considered an
attempt to describe the charge-separation process discussed
in [4–6] using a classical model for vibrons and a quantum
model for excitons; this will help us to understand better the
mechanism of exciton-vibron interaction.

Exciton-vibron interaction works as follows. The inter-
action of electrons at chromophores with light generates
excitons. Excitons generate vibrons as vibrations of nuclei in
the field of the exciton according to the Franck-Condon prin-
ciple in its semiclassical form—the landscape of the potential
energy for nuclei (which corresponds to Coulomb interaction)
changes abruptly when the exciton is excited, and for this
new energy landscape the positions of the nuclei are not in
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equilibrium, and nuclei begin to oscillate around new minima
of the potential energy. Transitions between potential-energy
surfaces for electronic states happen via the Landau-Zener
mechanism in the vicinity of the avoided-crossing point,
where the potential-energy surfaces are close. Experimen-
tal observations of photosynthetic complexes have revealed
many vibrons paired to different transitions between elec-
tronic states [4,7].

It is interesting to compare the process of charge separation
in the PSII-RC (reaction center of photosystem II) [3–5,8]
and in the bacterial reaction center [6,9] [reaction center of
the purple bacterium Rhodobacter (Rba.) sphaeroides]. For
PSII-RC, charge separation is controlled by the interaction
with a vibron with an energy of 340 cm−1 which gives a
resonance with the energy difference of the energy levels. The
process of charge separation in the bacterial reaction center
utilizes the interaction of electronic states with two vibrons
with energies of 115 and 35 cm−1, which are quite far from
the resonance. A vibron with an energy of 115 cm−1 is gener-
ated when an exciton state is created and oscillates along the
reaction coordinate for the transition between the exciton state
and the charge-separation state, causing a transition to the
charge-separation state. A vibron with an energy of 35 cm−1

is generated after this transition. It prevents recombination
of the charge-transfer state, providing directionality of the
charge-separation process.

For both photosystems it was observed [5,6] that the
lifetime of the electronic coherences, which is important
for the Landau-Zener mechanism, is close to the transition
time between the energy levels for the process of charge
separation in photosynthesis. This motivates the necessity
to consider a Landau-Zener system with decoherence. The
Landau-Zener system, including with decoherence, has been
extensively studied to describe various phenomena in many
works [10–15], and quantum control in the Landau-Zener sys-
tem has been studied for different values of coupling strength,
temperature, and driving force [16–20].

Various approaches for describing vibrons in quan-
tum photosynthesis have been discussed, such as treating
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excitons and vibrons as collective eigenstates of the Hamil-
tonian [3,4], master equations in the polaron frame [21–23],
and master equations with nonsecular terms [24], where vi-
brons are considered coherences of the vibrational degrees
of freedom generated by interaction with populations of elec-
tronic states and are treated by nonsecular terms. Decoherence
in the exciton-vibron interaction has been treated by using
master equations [25,26]. The formation of collective po-
lariton states in artificial photosynthesis has been studied
[27]. Control-based models have been considered for similar
problems, including the coherent control protocol for separat-
ing energy-transfer pathways for the Fenna-Matthews-Olson
(FMO) photosynthetic complex [28], coherent open-loop op-
timal control of photosynthetic molecules for verification of
coherent transport mechanisms in natural and artificial light-
harvesting complexes under realistic conditions [29], coherent
control of excitonic states in a light-harvesting complex with
phase and phase-amplitude control of the electronically ex-
cited state populations in the FMO complex [30], controlled
excitations induced by entangled photons in photosynthetic
complexes to target excitation of specific states [31], and
measurement-based incoherent control of retinal isomeriza-
tion in rhodopsin [32]. Modeling the photosynthetic reaction
center as a quantum heat engine has been considered [33].
These works exploit applications of open-loop control, i.e.,
control without feedback, which is different from the feed-
back (closed-loop) approach of the present work. Quantum
feedback control, which has various applications in quan-
tum technologies [34], has not been applied to this problem.
An introduction to quantum feedback control can be found
in [35]. An abstract formulation for controlling observable
quantum systems was provided in [36]. The development
of the formalism for models of quantum optics was given
in [37–39]. The use of nonselective quantum measurements
for controlling quantum systems and quantum feedback was
studied in [40–52]. Quantum feedback control was used to
describe the quantum Maxwell’s demon in [53] based on the
work in [54] (a model of the classical Maxwell’s demon was
considered by Smoluchowski [55] and discussed by Feynman
in his lectures [56]; the demon was based on a ratchet which
performs separation of molecules).

In this paper we construct a model of charge separation
in quantum photosynthesis based on quantum feedback con-
trol and a quantum rachet in the Landau-Zener system. This
model is different from other control models considered for
photosynthesis in that it takes into account quantum feed-
back which induces nonlinearity of the evolution equation and
leads to decoherence of electronic degrees of freedom dur-
ing the Landau-Zener transition, which is described by the
quantum measurement procedure or the collapse of electronic
wave function and forces this transition to be directed. We
describe the irreversible transition using a model of the quan-
tum ratchet which is related to the notion of the quantum
Maxwell’s demon. Charge separation in the photosynthetic
reaction center in our model utilizes this quantum ratchet,
which performs irreversible transitions between potential-
energy surfaces of electronic states using the oscillations of
vibrons. The advantage of the considered model is that it
allows us to explain both the irreversibility of the charge sep-
aration and the coincidence of the energy of the vibron paired

FIG. 1. Schematic picture of charge separation in the pho-
tosynthetic reaction center of the purple bacterium Rhodobacter
sphaeroides. The reaction center contains a pair of strongly exci-
tonically coupled bacteriochlorophylls, PA and PB; two monomeric
BChl, BA and BB; two bacteriopheophytins, HA and HB; and two
ubiquinone molecules symmetrically arranged in two branches (A
and B branches; the A branch is not shown, and only part of the B
branch is shown; BB, HA, HB, and two ubiquinone molecules are not
shown). Charge separation takes place in PA and PB (schematically
shown by the yellow arrow), and then the electron is transported
through the A branch of the reaction center (shown by the red arrow).

to the transition and Bohr frequency of the transition. It is also
simpler than common master-equation approaches with tai-
lored parameters. A model of this kind can be considered for
the process of avoiding trapping in quantum photosynthesis as
described in [7]. In this regard, quantum feedback control can
be considered an important mechanism for efficient operation
of photosynthetic systems.

We consider as an example a model of charge separa-
tion in the reaction center of the purple bacterium Rba.
sphaeroides, as schematically shown in Fig. 1; see [6] for a
discussion of electron transfer in this system. The reaction
center contains a pair P of strongly excitonically coupled bac-
teriochlorophylls, PA and PB; two monomeric BChl, BA and
BB; two bacteriopheophytins, HA and HB; and two ubiquinone
molecules symmetrically arranged in two branches (the A
and B branches). In Fig. 1, the A branch is not shown, and
only part of the B branch is shown. Charge separation takes
place in P and is schematically shown by the yellow arrow.
Then the electron is transported through the A branch of the
reaction center, as schematically shown by the red arrow. The
structures of all photosynthetic reaction centers are generally
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similar, and in particular, PSII-RC has a similar structure,
although the energies of the vibrons paired to transitions are
different.

The structure of this paper is as follows. In Sec. II, a
quantum feedback model for a two-level system modeling the
vibron is provided, and simulations are performed (we use
parameters for the PSII reaction center since in this case a
resonance between the energy of the vibron and the energy
difference of the levels is observed). In Sec. III, a simple
and intuitively more clear model with the Schrödinger equa-
tion and collapse of the wave function is discussed. In Sec. IV,
a model of the quantum ratchet is considered. In Secs. III and
IV we discuss the bacterial reaction center, where two vibrons
are involved in the charge separation. Section V summarizes
the results.

II. VIBRONS AND QUANTUM FEEDBACK CONTROL

A. Master equation for a quantum system with feedback control

The mathematical theory of quantum nonlinear filtering
was developed by Belavkin [52], and that for physical mod-
els was developed by Carmichael [57] and Wiseman [38].
The dynamics of the density matrix ρ of a quantum system
evolving under continuous measurement of an observable X (a
Hermitian operator) with strength κ and feedback is described
[38,58,59] by the stochastic Schrödinger equation,

dρ = −i[H, ρ] − κ[X, [X, ρ]]dt

+ 4κ[Xρ + ρX − 2〈X 〉ρ](dr − 〈X 〉dt ), (1)

where r(t ) is the observer’s measurement record, which satis-
fies

dr = 〈X 〉dt + 1√
8κ

dW. (2)

Here W is the Wiener process, dW 2 = dt . Generalization
to non-Hermitian X can be performed, for example, for an
indirect quantum measurement which is achieved by causing
the measured system to interact with a bath via a system oper-
ator L and then making a measurement of the bath [60]. The
master equation for the evolution of the qubit density matrix
during the measurement process within Bayesian formalism
was studied [61,62]. Geometric tools for the quantum filtering
equation with examples of one- and two-qubit system were
applied [63]. A quantum Fokker-Planck master equation de-
scribing joint dynamics of a quantum system and a detector
with finite bandwidth for feedback control was recently con-
sidered [64–66].

The control Hamiltonian H is a function of the measure-
ment record r(t ′) at t ′ < t , H = H (r). The function H (r) can
be nonlinear in general. In the case of a strong measurement
(κ � 1) one has dr ≈ 〈X 〉dt and, approximately,

dρ

dt
= −i[H, ρ] − κ[X, [X, ρ]], (3)

where H = H (〈Xt ′<t 〉). In the case of a negligible time de-
lay in the feedback loop, one can consider in particular
H = H (〈Xt 〉), where 〈Xt 〉 = Trρt X . The term −[X, [X, ρ]] =
2XρX − X 2ρ − ρX 2 for the Hermitian observable X = X †

has a standard Lindblad form and describes the collapse of the

wave function of the system due to measurement back-action
or interaction with the environment. Hence, Eq. (3) is a (in
general, nonlinear) Markovian master equation. Below we
explicitly write terms with observable X , which is a combi-
nation of |1〉〈2| and conjugated and Hamiltonian H for the
Landau-Zener transition with dissipation and feedback for the
description of the quantum photosynthetic system.

B. Master equation with vibrons

We describe the process of charge separation in quantum
photosynthesis using the master equation for the 2 × 2 density
matrix ρ(t ) with quantum feedback, dissipation, and sink,

d

dt
ρ(t ) = −i[H (ρ, t ), ρ(t )] + L(ρ(t )) + S (ρ(t )), (4)

H (ρ, t ) =
(

E1 + u · q(ρ, t ) J
J E2 + v · q(ρ, t )

)
, (5)

where u · q and v · q describe the interaction with the vibrons
with feedback in q,

q(ρ, t ) = ρ11(t )q1(t ) + ρ22(t )[q1(t ) + q2(t )]. (6)

The vibrons q1(t ) and q2(t ) can be compared with the vibron
observed in PSII-RC with an energy of 340 cm−1 [5] and
with vibrons observed in the bacterial reaction center of Rba.
sphaeroides with energies of 115 and 35 cm−1 [6].

Decoherence and dissipation during the transition are de-
scribed by the Lindblad term

L(ρ) = γ +
(

〈2|ρ|2〉|1〉〈1| − 1

2
{ρ, |2〉〈2|}

)

+ γ −
(

〈1|ρ|1〉|2〉〈2| − 1

2
{ρ, |1〉〈1|}

)
,

|1〉 =
(

1
0

)
, |2〉 =

(
0
1

)
. (7)

Here γ +/γ − = e−β(E1−E2 ), E1 and E2 (E1 > E2) are the en-
ergies of levels |1〉 and |2〉, respectively, β is the inverse
temperature for this transition (β−1 ≈ 300 K at room temper-
ature), and {A, B} := AB + BA denotes the anticommutator of
operators A and B.

The physical meaning of this model is as follows: excita-
tions are created by absorption of light; excitation is level |1〉
of the system. Charge separation corresponds to the transition
from level |1〉 to level |2〉 and is described by the first two
terms in (4). The term

S (ρ) = −s1〈1|ρ|1〉|1〉〈1| − s2〈2|ρ|2〉|2〉〈2|, s1, s2 > 0,

(8)
describes the sink of the electronic states. The physical mean-
ing is that the second term, −s2〈2|ρ|2〉|2〉〈2|, describes the
transport of the electron from the special pair of chromophores
in the reaction center along the charge-transfer chain and the
first term, −s1〈1|ρ|1〉|1〉〈1|, describes the recombination of
excitons.

Master equations with nonsecular terms (terms which de-
scribe interaction between populations and coherences, i.e.,
diagonal and off-diagonal elements of the density matrix)
were discussed for quantum photosynthesis, in particular in
[24], where the nonsecular term was called the “laser-like
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FIG. 2. The time dependence of the matrix element ρ11(t ) of
the density matrix ρ(t ) which is the solution of Eq. (4) with the
parameters described in Sec. II C. Time is in units of 100 fs. To
decrease recombination, one has to minimize the area under the
curve, which is the effective exciton recombination time T̄ .

driving” term which maintains electronic coherences. In the
approach of the present paper we make this nonsecular term
dependent on the electronic state through interaction with the
vibron (6); this makes the above master equation a model of
the quantum feedback control.

In order to make the operation of quantum photosynthesis
more effective one has to minimize recombination through the
first term of the sink operator (8). Exciton recombination is
proportional to the effective time the system spends in state
|1〉, i.e., to

T̄ =
∫ ∞

0
ρ11(t )dt, (9)

where ρ(t ) is a solution of (4) with the initial condition |1〉〈1|.
The goal is to find the regime which minimizes T̄ . This

minimization can be achieved if the charge-separation tran-
sition |1〉 → |2〉 is as fast and irreversible as possible; see
the discussion in [5]. We have performed a simulation of
the evolution governed by the dynamical equation (4) for the
parameters (10), as shown in Fig. 2. This simulation shows
that the recombination time (9) is small if the energy of the
vibron (as discussed below) matches the difference E1 − E2

of the energy levels of the system and if the time of transition
|1〉 → |2〉 is close to the decoherence time for the correspond-
ing system state defined by the dissipative operator (7). Both
these conditions are satisfied in nature and have been exten-
sively discussed in the literature (see, for example, [3–6]).

C. Simulation

For the simulation, we consider Eqs. (4), (5), (7), and (8)
with the vibron (6) chosen as follows: we ignore the second
vibron q2(t ) = 0 and choose the first vibron q1(t ) in the form
2 sin(3.35t ); that is, the parameters are [in the notation of (5)

and (14)]

u =
(

1
0

)
, v =

(
0
1

)
, q0 = 0, v1 =

(
0
1

)
,

E1 = 3, E2 = 0, ω1 = 3.35, J = 0.75. (10)

With these parameters the Hamiltonian (5) takes the explicit
form

H (ρ, t ) =
(

3 0.75
0.75 2 sin(3.35t )[ρ11(t ) + ρ22(t )]

)
.

Due to the sink the trace of the density matrix is not conserved.
We also choose

s2 = 0.1, γ − = 0.5, γ + = 0.22, γ − = 0.11.

These parameters describe the PSII reaction center; values
are given in hundreds of cm−1 (i.e., E1 − E2 = 300 cm−1,
J = 75 cm−1) [4,5]. The energy of the vibron ω1 is chosen to
be 335 cm−1 [the exact resonance is 2

√
(E1 − E2)2/4 + J2 =

335, and the experimental value is 340 cm−1]. The ratio
γ +/γ − = exp[−(E1 − E2)/kT ] = 0.22 corresponds to E1 −
E2 = 300 cm−1 and T = 300 K. The decoherence is strong
enough to make the direct transition |1〉 → |2〉 coherent and
the reverse transition |2〉 → |1〉 incoherent, as discussed in [5]
(the decoherence time is close to the half period of the transi-
tion). We choose the parameters of the PSII reaction center for
the simulation because for this case the exact resonance with
the vibron is observed [4,5].

The result of the simulation for the matrix element ρ11(t )
of the density matrix which is a solution of the master equa-
tion (4) with the initial condition ρ(0) = |1〉〈1| is shown in
Fig. 2 (for simplicity we choose s1 = 0 in the simulation for
this solution; the time axis unit is 100 fs). With the parame-
ters chosen, the system performs the fast transition |1〉 → |2〉
(with the help of the oscillation of the vibron, which reduces
the difference in energies of the energy levels), and the reverse
transitions will be suppressed [when the system arrives at
level |2〉, the vibron oscillates in the reverse direction, and the
energy difference increases; moreover, decoherence reduces
transitions by the action of the first term in (4)].

III. MODEL WITH SCHRÖDINGER’S EQUATION

In this section we analyze an intuitively simpler model with
quantum feedback which utilizes pure states, where instead
of dissipation we consider the collapse of the wave function.
This model allows us to understand on the physical level of
rigor how the above quantum feedback equation generates
irreversible transitions. The idea is as follows: instead of an
investigation of the quantum open system with a sink con-
sidered above one can discuss only the transition between
levels |1〉 and |2〉, using pure states and the collapse of wave
functions to describe the decoherence. This should allow us,
on the physical level of rigor, to explain the nonsymmetry
of the transition between |1〉 and |2〉 (although it should be
symmetric using the Landau-Zener formula).
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A. Landau-Zener formula

The model by Landau and Zener investigates the dynamics
of a two-level quantum system with Schrödinger’s equation,

d

dt
ψ (t ) = −iH (t )ψ (t ), ψ (t ) =

(
ψ1(t )
ψ2(t )

)
,

where the time-dependent Hamiltonian acts in the basis of
states |1〉 and |2〉 as

H (t ) =
(

ut J
J vt

)
, |1〉 =

(
1
0

)
, |2〉 =

(
0
1

)
.

States |1〉 and |2〉 are called diabatic energy levels, whereas
the eigenlevels of the time-dependent Hamiltonian H (t ) are
called adiabatic levels. For this system, the probability of a
transition between diabatic states at large times was computed
analytically [67–70] to be equal to 1 − P, where

P = e−2πγ , γ = J2

|u − v| . (11)

This transition occurs in the vicinity of the avoided-
crossing point, where matrix elements at the diagonal of the
generator are equal, i.e., in the vicinity of the point t = 0. The
value of 1 − P is large either for a large interaction J or for
a low difference |u − v| between the velocities of the passage
through the avoided-crossing point at different slopes of the
transition.

B. Landau-Zener transition with dissipation

The Landau-Zener theory with dissipation was considered,
e.g., in [10–15]. In all these papers the assumption u = −v

for the velocities of the transition (sweep velocity) was made.
This assumption describes the general situation for the case
without dissipation since in this case it reduces to subtraction
of a term wt times the unity matrix from the Hamiltonian
(where 2w = u + v), but for the case with dissipation it is not
general—coherences in the system decay in the process of the
transition, which makes different sides of the avoided crossing
point (with velocities u and v) unequal. This is especially
important in the adiabatic case, where the system spends a
considerable time in the vicinity of the avoided crossing and
decoherence in the process of the transition cannot be ignored.
We will consider a model in which decoherence of the wave
function is described by a projection operator applied at the
avoided-crossing point.

Without decoherence the electronic wave function feels
both sides of the transition due to quantum nonlocality, which
gives the contribution |u − v| in the Landau-Zener formula

P = e− 2πJ2

|u−v| , and the probabilities of direct and reverse transi-
tions are equal, but if this wave function is collapsed in the
avoided-crossing point between slopes u and v, then the prob-
abilities of the direct and reverse transitions become different
(with |u| and |v| instead of |u − v|). It is natural to choose
the avoided crossing as the point of collapse of the wave
function for the regime when the vibron is slow in the avoided
crossing—the vicinity of the avoided crossing is small, but the
system spends a lot of time there, as discussed below.

The analysis of Landau [67] involved quasiclassical argu-
ments, in which the transition probability P1→2 is given by

integration over complex time, where t1 is real and t2 is the
branch point where the two eigenvalues of the Hamiltonian
are equal,

P1→2 = exp

(
−2

h̄
Im

∫ t2

t1

[E2(t ) − E1(t )]dt

)
.

The difference of eigenvalues E2(t ) − E1(t ) arises from the
integral over a loop in a contour in the complex plane where
the integral on the left side of the loop contains E1(t ) and the
integral on the right side of the loop contains E2(t ).

If the wave function collapses at the branch point t2, then
only half of the integral remains, and we obtain, for the tran-
sition probability |1〉 → |2〉, the expression

P1→2 = exp

(
2

h̄
Im

∫ t2

t1

E1(t )dt

)
.

An analogous expression with the integral of E2(t ) exists for
the probability of transition |2〉 → |1〉,

P2→1 = exp

(
−2

h̄
Im

∫ t2

t1

E2(t )dt

)
.

That is, transition probabilities of the direct and reverse tran-
sitions for the case with the collapse of the wave function are
different; generally, P1→2 
= P2→1, and the transition becomes
directed.

Landau-Zener transitions with decoherence induced by
measurement-assisted transitions were considered in [46].
This approach is not valid if projection occurs at the avoided
crossing. It might seem that the probability of the collapse of
a wave function in the vicinity of an avoided crossing is rather
low, but important regimes exist where this probability cannot
be neglected.

For the case of quantum photosynthesis the transition time
|1〉 → |2〉 of charge separation in [6] is approximately 100 fs,
which is close to the lifetime of electronic coherences. There-
fore, we obtain exactly the regime discussed above.

C. Exciton-phonon Hamiltonian

The Hamiltonian for interaction between excitons and
phonons has the form [71]

H = Hel + HCoul + Hph + Hel−ph + Hreorg,

where

Hel =
∑

n

εn|n〉〈n|, Hreorg =
∑
n,k

|n〉〈n|
∫

h2
nk (ξ )

ωk (ξ )
dξ,

Hph =
∑

k

∫
ωk (ξ )c+

k (ξ )c−
k (ξ )dξ,

Hel−ph =
∑
n,k

|n〉〈n|
∫

hnk (ξ )[c+
k (ξ ) + c−

k (ξ )]dξ,

HCoul = 1

2

∑
m,n, m 
=n

Jmn|m〉〈n|, Jnm = J∗
mn.

Here |n〉 are electronic states (excitons), c±
k are creation and

annihilation operators for phonons, and the values of Jmn

describe Coulomb interaction between excitons.
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D. Vibrons and quantum feedback control

An important observation in quantum photosynthesis is
that excitation of electronic states generates vibrons that de-
scribes self-interaction, which we will describe via a quantum
feedback control approach. To describe the process of charge
separation in quantum photosynthesis, we need three elec-
tronic states in the bacteriochlorophyll pair P: |0〉. the ground
state; |1〉. the exciton; and |2〉, the charge-separation state,
with energies such that E1 > E2 > E0. Charge separation,
which we discuss below, is the transition between |1〉 and |2〉.

The above Hamiltonian contains the transition term be-
tween states |1〉 and |2〉 (where J is real):

J (|1〉〈2| + |2〉〈1|).

We will consider vibrons classically as vector-valued func-
tions of time, so that to describe the interaction between
electrons and vibrons we will substitute the quantum operator
c+

k + c−
k in the above Hamiltonian Hel−ph by the classical

value qk ; it corresponds to the semiclassical Franck-Condon
principle. Then the interaction of the vibron with the pair of
electronic states will be described by the interaction Hamilto-
nian,

∑
n=1,2;k

|n〉〈n|hnkqk (t ) = |1〉〈1|u · q(t ) + |2〉〈2|v · q(t ).

Here the vibron is described by the vector q(t ) = [qk (t )] in
the scalar products with vectors u and v of the interactions
with electronic states.

We also have to take into account that vibrons are switched
on by transitions between electronic states: excitation of the

exciton |1〉 generates the vibron q1(t ), and the transition to
the charge-transfer state |2〉 generates the second vibron q2(t ).
Following the above discussion, we assume that at the mo-
ment of excitation of a vibron a collapse of electronic wave
functions occurs. To describe this behavior we will multiply
projectors Pn = |n〉〈n| for n = 1, 2 onto electronic states in
the above formula by populations ρnn(t ) of these states. This
procedure describes phenomenologically the effect of mea-
surement, i.e., decoherence of the electronic wave function
due to interaction with the environment; moreover, the mea-
surement occurs at the avoided-crossing point. Therefore,
we obtain feedback (the quantum dynamics controls itself):
the generation of vibrons is controlled by populations of cor-
responding electronic states, and vibrons initiate transitions
between electronic states.

The quantum ratchet contains two vibrons as in [6].
Vibron q1(t ), with an energy of 115 cm−1, moves the elec-
tronic state |1〉 to the avoided-crossing point, and vibron
q2(t ), with an energy of 35 cm−1, repels state |2〉 from the
avoided-crossing point after the transition. These two vibrons
together control the irreversible charge-separation transition.
They can be treated as the right and left hands of the quan-
tum Maxwell’s demon. State |ψ (t )〉 describes the electronic
degrees of freedom which correspond to the two potential-
energy surfaces for exciton |1〉 and charge-separation state
|2〉. In this section we construct a model of the quantum feed-
back control for the quantum photosynthetic system discussed
in [6].

For the dynamics of exciton-vibron interaction we get
the Landau-Zener Hamiltonian for quantum feedback control
master equations (1) and (3), which describe the collapse of
wave function:

H (ρ, t ) =
(

E1 + u · q1(t )ρ11(t ) J
J E2 + v · [q1(t ) + q2(t )]ρ22(t )

)
,

where all vibrons as a function of time should be continuous and should have continuous first derivatives since a vibron after
excitation starts moving from some initial position and zero velocity.

For the considered case of pure quantum states we have

ρ11(t ) = |〈1|ψ (t )〉|2, ρ22(t ) = |〈2|ψ (t )〉|2,
where ψ is the wave function of the electron. Experimental observations of photosynthetic complexes reveal many vibrons paired
to different transitions between electronic states [4,7]. Charge separation as a principal process is paired with two vibrons, which
allows us to make this transition directed. Other transitions are paired to a single vibron q(t ) with a corresponding quantum
feedback control equation. Thus, finally, we get the (phenomenological) quantum feedback control Hamiltonian,

H (ψ, t ) =
(

E1 + u · q1(t )|〈1|ψ (t )〉|2 J
J E2 + v · [q1(t ) + q2(t )]|〈2|ψ (t )〉|2

)
, (12)

and the corresponding Schrödinger equation with quantum
feedback.

d

dt
ψ (t ) = −iH (ψ, t )ψ (t ). (13)

Squared moduli of quantum amplitudes at the diagonal
of the generator H (ψ, t ) describe the collapse of the elec-
tronic wave function at the avoided-crossing point for the
Landau-Zener transition with friction. The quantum feedback
Hamiltonian (12) has cubic nonlinearity like for the nonlinear

Schrödinger equation. We claim that this model allows us to
obtain different probabilities for direct |1〉 → |2〉 and reverse
|2〉 → |1〉 transitions, and hence, it describes the quantum
ratchet, although the standard Landau-Zener formula predicts
equal probabilities for direct and reverse transitions. Below
we perform a rough estimate of probabilities of transitions for
the quantum ratchet with Hamiltonian (12).

First, we consider the direct move of the quantum ratchet,
that is, the transition |1〉 → |2〉, where 〈1|ψ (t )〉 = 1 and
〈2|ψ (t )〉 = 0. Then the generator of the transition takes the
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form (
E1 + u · q1(t ) J

J 0

)
.

The avoided-crossing point for the direct move of the quan-
tum ratchet is defined by the condition

E1 + u · q1(t ) = 0.

Since vibronic oscillations are at least an order of magnitude
slower than electronic oscillations, these oscillations can be
linearized in the vicinity of the avoided-crossing point. Then
the probability of the transition |1〉 → |2〉 between diabatic
states for one passage of the vibron through the avoided-
crossing point can be approximated by the Landau-Zener
formula with quantum feedback; that is, the electronic wave
function is collapsed in the avoided-crossing point: this prob-
ability equals 1 − P, where

P = e−2πγ , γ = J2

|u · w| ,

and w is the velocity of the vibron in the moment of passage of
the avoided-crossing point. By decelerating the vibron at the
moment of the passage, it is possible to make the transition
probability close to 1, 1 − P ≈ 1.

Now we consider the reverse move of the quantum ratchet,
that is, the transition |2〉 → |1〉, where 〈1|ψ (t )〉 = 0 and
〈2|ψ (t )〉 = 1. The generator of the transition (we again take
into account the quantum feedback) is(

0 J
J E2 + v · [q1(t ) + q2(t )]

)
.

For the reverse movement of the quantum ratchet the
avoided-crossing point satisfies

E2 + v · [q1(t ) + q2(t )] = 0.

Instead of a single vibron q1(t ) (which was the case for the
direct move) this transition is driven by the sum of vibrons
q1(t ) and q2(t ). Hence, it might be that the above equation has
no solutions and the transition probability is close to zero, 1 −
P ≈ 0.

In general, the problem of quantum control for the quan-
tum ratchet with the Hamiltonian (12) can be formulated as
follows: find parameters for vibrons q1(t ) and q2(t ) to make
the transition probability P1→2 for the direct move |1〉 → |2〉
of the ratchet close to 1 and the transition probability P2→1 for
the reverse move |2〉 → |1〉 of the ratchet close to zero.

IV. A MODEL OF THE QUANTUM RATCHET

Here we consider a solution for a model of vibrons and
show that the operation of the quantum ratchet described in
the previous section indeed takes place.

We take the following ansatz for the first vibron:

q1(t ) = q0 + v1 sin(ω1t ). (14)

That is, the vibron is switched on when the exciton is excited
and oscillates with frequency ω1 along the vector v1 starting
from the initial position q0. For the second vibron we take the
following ansatz:

q2(t ) = v2[sin(ω2t ) − 1]. (15)

That is, the vibron oscillates with frequency ω2 along
vector v2.

Then the equation for the avoided-crossing point for the
direct move of the quantum ratchet is

E1 + u · [q0 + v1 sin(ω1t )] = 0. (16)

This equation can be satisfied if the amplitude of oscillations
of the vibron is large enough. Let us assume, as in Sec. II, that
E1 = 1, E2 = 0, and u · q0 = 0.

To elevate the transition probability one has to make the
velocity of the vibron (14) in the moment of passage through
the avoided-crossing point (16) close to zero, i.e., to make
u · v1 = −1. Thus, it is the adiabatic regime. To amplify tran-
sitions to make the transition probability for the direct move
of the ratchet close to 1, one has to decrease the amplitude of
the vibron almost to the minimal value which still allows the
existence of a solution of Eq. (16) for the crossing point.

The energy difference between adiabatic levels (the eigen-
levels of the time-dependent Hamiltonian) at the initial time
point t = 0 is close to E1 − E2 = 1, and in the avoided-
crossing point it almost equals zero (since J is small); that is,
in the adiabatic regime the energy of the vibron matches the
energy difference between the levels. The approximate coin-
cidence of the energy of the vibron and the energy difference
of levels coupled to this vibron has widely been discussed in
the literature, in particular in [3,4,6].

The equation for the avoided-crossing point for the reverse
move of the quantum ratchet has the form

�E (t ) := E2 + v · {q0 + v1 sin(ω1t ) + v2[sin(ω2t ) − 1]}
= 0. (17)

The solvability of this equation can be easily broken; this
is obvious if we choose, as in (10), E2 = 0, v · q0 = −1, and
v · v1 = 0 and choose v · v2 > 0. Then this equation will not
have a solution. Let us consider a more complex case to
imitate the discussion in [4,6], where the first vibron was used
to put the system in the vicinity of the avoided crossing and the
second vibron was used to repel the system from the avoided
crossing and prevent reverse transitions.

Let us choose E2 = 0, v · q0 = −1, v · v1 = 1, and v · v2 =
1 (the exact value of this scalar product is not very important,
but it should be positive). Then to satisfy (17) we need si-
multaneously sin(ω1t ) = 1 and sin(ω2t ) = 1, which is a rare
event (even in the approximate sense). Hence, reverse tran-
sitions will be effectively reduced. The simulation with the
above parameters in Fig. 3 (we also choose ω1 = 2 and ω2 =
3.7) shows that due to the interference of the two vibrons
the energy difference in (17) is close to zero in comparably
infrequent cases.

Remark. The model of charge separation discussed in this
paper has the following feature: in order to make charge
transfer faster, the vibron (14) should operate in the adiabatic
regime; that is, the amplitude of the vibron has the minimal
value which allows us to satisfy Eq. (16) for the avoided-
crossing point. As mentioned above, in this regime the energy
of the vibron matches the energy difference between the lev-
els. Also in this regime the vibron is “fragile”—perturbations
of the parameters of the vibron related to mutations can break
the solvability of (16) and block the charge transfer. In [6],
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FIG. 3. Plot of �E (t ), which is defined by Eq. (17). Time is in
units of 100 fs. The energy difference �E (t ) is in units of 100 cm−1.

mutations in the photosynthetic reaction center were investi-
gated with the following observations: the YM210W mutation
which causes small changes in geometry and potential in the
reaction center modifies the operation of the vibron with an
energy of 115 cm−1 and slows the excitation transfer by two
orders of magnitude. One can consider this observation to be
proof that a vibron with energy of 115 cm−1 works in the
adiabatic regime (the velocity of the vibron in the avoided-
crossing point is slow). It is interesting that the GM203L
mutation which removes the second vibron (with energy of
35 cm−1) slows the excitations transfer by only one order
of magnitude [6]. The discussion in this and the previous
section uses the bacterial reaction center as in [6], while for
the simulation in Sec. II we use the PSII reaction center as in
[4,5].

V. CONCLUSIONS

We considered a model of charge-separation transition
in quantum photosynthesis based on the quantum feedback
control equation. This quantum feedback control model is
explained as follows: for a Landau-Zener transition with dis-
sipation that is close to adiabatic transitions, when the vibron
is slow at the avoided crossing, the collapse of the electronic
wave function should occur at the avoided-crossing point.
This process can be described by a quantum feedback control
model which allows to make the probabilities of the direct
and reverse transitions different so that the transition becomes
directed. Taking into account excitation of two vibrons, it
is possible to make this transition maximally irreversible,
i.e., to make the probability of the direct transition maxi-
mal and the probability of the reverse transition minimal.
The nonlinearity in this approach can be considered to be
an effect of the approximation of self-interaction as in the
method of self-consistent field. To make the probability of
the direct transition maximal, the energy of the vibron should
be close to the Bohr frequency of the transition. Another
indication of the regime of this quantum control model is
the coincidence of the lifetime of the electronic coherences
and the duration of the Landau-Zener transitions. Both of
these properties—resonance between energies of the vibron
and the Bohr frequency of the transition and the similarity
of the lifetime of the electronic coherence and the duration
of the transition—are observed in experiments. Numerical
simulations were performed for the parameters describing the
PSII and bacterial reaction centers.
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