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Single-shot determination of quantum phases via continuous measurements
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We propose that weak continuous probing may be exploited to determine and define quantum phases of
complex many-body systems based on the measurement record alone. We test the resulting phase criterion in
numerical simulations of measurements on the Bose-Hubbard model and the quantum Ising chain. This yields
a phase transition point in reasonable agreement with the quantum phase transition in the ground state of the
closed system in the thermodynamic limit, despite the system being highly excited through the measurement
dynamics. At high measurement strengths, the system’s response enters a Zeno regime suppressing transitions
between eigenstates of the measurement operator.
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I. INTRODUCTION

Quantum phases allow descriptions of complex systems
in simpler terms than a microscopic description [1]. Distinct
phases span wide areas in parameter space characterized by
the fundamental excitations, which govern the system’s equi-
librium properties and response to perturbations. They are
used to characterize a wide range of physical phenomena,
including electronic, magnetic, and optical properties of solid-
state systems [2,3], nuclear physics [4], and cosmological
topological defects [5,6].

We consider a closed system described by a Hamiltonian

Ĥ = Ĥ0 + αĤ1 (1)

that exhibits a single quantum phase transition with an abrupt
change in the order parameter at the critical value α = αc.
The change is often due to an avoided crossing in the energy
spectrum, and the location is uncovered by a change of the
ground-state expectation value of an appropriate order pa-
rameter that becomes infinitely sharp in the thermodynamic
limit.

In dynamical phase transitions [7–12], the situation is
considerably richer than the exploration of ground-state prop-
erties since the entire spectrum contributes to the dynamics.
This leads to intricate questions about excited-state phase
transitions [13,14] and accidental dynamical phase transitions
[15]. Rather than suddenly changing the Hamiltonian, another
way to quench a quantum system is to perform a measurement
[16–19].

When studying phase transitions experimentally, a mea-
surement typically destroys the system. One performs the
experiment several times to acquire a signal or statistics. Such
averaging introduces variances into otherwise well-defined
parameters, e.g., particle number [20]. Although modifica-
tions of complex systems by measurement have been studied
[21–24], the fundamental question—if the quantum phase of
a complex system can be determined from the measurement

record alone—remains, to the best of our knowledge, unan-
swered.

In this article, we propose a criterion for the determina-
tion of quantum phases based solely on the measurement
record of a single experimental run. This proposal relies
on continuous dispersive measurements. It is well-known
that even weak and continuous measurements induce a back
action through the noisy measurement record that builds
up to a substantial perturbation of the system [17]. Here,
we exploit this to disturb the system and simultaneously
record its response. Similar to dynamical phase transitions,
the entire spectrum contributes to the response. The mea-
surement strength sets the magnitude of the disturbance.
At low measurement strength, we numerically demonstrate
that we can extract information about the system’s phase
transition.

After introducing our criterion, we apply it to the Bose-
Hubbard model and the quantum Ising chain. We show that
our criterion agrees reasonably with the known phase transi-
tion in the thermodynamic limit, despite the system not being
in the ground state. We also demonstrate how the measure-
ment strength itself becomes a parameter in the open system’s
phase diagram, revealing (potentially controllable) properties
of strongly probed systems.

II. PHASE DETERMINATION

Let M̂0 be a Hermitian operator satisfying [Ĥ0,M̂0] = 0
and [Ĥ1,M̂0] �= 0, where Ĥ0 and Ĥ1 are the noncommuting
Hamiltonians in Eq. (1). Consider a probe that dispersively
measures M̂0 with strength γ . The probe yields a mea-
surement record I (t ) and disturbs the system through the
measurement back action. The experimental setup is shown
in Fig. 1.

For concreteness, we assume a homodyne measurement
signal given by

I (t ) = 2γ 〈M̂0〉 + √
γ dW/dt, (2)
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FIG. 1. The experimental setup shows a balanced homodyne
measurement setup, realizing the signal and dynamics represented by
Eqs. (2) and (3). The cavity (the gray shaded box) contains strongly
interacting Hamiltonians engineered using cold atoms in optical lat-
tices. We depict the 50:50 beam splitter as the slanted straight line.

where 〈·〉 denotes the expectation value and dW is a Wiener
increment. The state of the system conditioned on the mea-
surement outcome evolves according to the Itô stochastic
Schrödinger equation (SSE)

d|ψ̄ (t )〉 =
[
−iĤ − γ

2
M̂2

0 + I (t )M̂0

]
dt |ψ̄ (t )〉, (3)

where h̄ = 1 and |ψ̄〉 denotes a non-normalized state [18,25–
27]. The first term in Eq. (3) describes the unitary evolution.
The second and third terms include the dissipation associated
with the measurement. This approach is experimentally ap-
pealing, since it allows extracting phase information from a
single continuous measurement.

Here we do a simulation of such an experiment. We calcu-
late the power spectral density (PSD)

S(ω) = (2πT )−1E

[∣∣∣∣
∫ T

0
e−iωt I (t )dt

∣∣∣∣2]
(4)

by numerically integrating the SSE; see Appendices F and H.
To sample the typical behavior away from the initial state,
we discard the initial part of the quantum trajectories. We
divide the considered quantum trajectory into several parts
and calculate the average PSD to obtain the noise average E.

The average dynamics, on the other hand, over dif-
ferent Wiener increments with dW 2 = dt , is given by
the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) master
equation ρ̇ = L[ρ] = −i[Ĥ, ρ] + γD[M̂0]ρ with D[Ô]ρ =
ÔρÔ† − 1

2 {Ô†Ô, ρ} [25–30]. Our goal is to relate the phase
properties of the system to the measurement signal’s auto-
correlation function F (1)

hom(t, t + τ ) = E[I (t )I (t + τ )], where
E denotes a classical expectation value over the noise
realizations. This correlation is given by the quantum regres-
sion theorem as F (1)

hom(t, t + τ ) = 2γ 2 Tr[M̂0eLτ {M̂0, ρ
st}],

where ρst is the stationary state, such that L[ρst] = 0 [31];
see also Appendix D for details. The identity is always a
stationary state since M̂0 is Hermitian. To verify this, one
replaces ρst = 1/N in the GKLS master equation and uses
D[M̂0]1 = 0. Here N is the dimension of the Hilbert space.
This can be understood as the measurement back action acting
as an infinite temperature heat bath in the long-time limit
[32,33].

Considering ρst = 1/N , the stationarity of the noise pro-
cess, and making use of the quantum regression theorem, we

obtain

S(ω) = 4γ 2

N

∫ ∞

−∞
Tr[M̂0eLτM̂0]e−iωτ dτ

= 8γ 2

N
Re

[∫ ∞

0
Tr[M̂0eLτM̂0]e−iωτ dτ

]
, (5)

where Re is the real part. The front factor is particular to
homodyne measurements [25]; see also Appendices D and E
for details. Since D[M̂0]M̂0 = 0, we have

L[M̂0] = −i[Ĥ,M̂0]. (6)

After expanding eLτ in Eq. (5) and utilizing Eq. (6), we con-
clude that the PSD is determined by the commutation relations
of Ĥ and M̂0.

Assuming L is diagonalizable with eigenvalues λm and
right (left) eigenmatrices rm (lm), Eq. (5) is decomposed as
S(ω) = Sd (ω) + S0(ω), with

Sd (ω) = 8γ 2

N

∑
Re(λm )<0

−Re(λm)Re(tm)+[ω−Im(λm)]Im(tm)

[ω − Im(λm)]2 + [Re(λm)]2 ,

(7a)

S0(ω) = 8γ 2

N

∑
Re(λm )=0

[
πRe(tm)δ(ω − Im(λm))

+P
(

Im(tm)

ω − Im(λm)

)]
, (7b)

where tm = Tr[M̂0rm]Tr[l†
mM̂0], Im the imaginary part, P

the Cauchy principal value, and δ the Dirac-delta function;
see Appendix E. Here Sd (ω) (S0(ω)) is the part from all of the
decaying (decay-free) eigenvalues of L. We observe that the
peaks in the spectra will be located at Im(λm). If Im(tm) = 0,
the eigenvalue λm will contribute with a Lorentzian to the
spectrum. The eigenmatrices with nonvanishing Im(tm) give
rise to non-Lorentzian contributions in the spectrum.

As we change the parameter α, the system (1) undergoes
a phase transition at α = αc. For second-order quantum phase
transitions, this is attributed to the level crossings at α = αc

[1]. If γ = 0, the unperturbed L has eigenvalues and vectors
λi j = −i(Ei − Ej ) = −iωi j and rm = lm = |ψi〉〈ψ j |, where
Ĥ|ψi〉 = Ei|ψi〉. For a weakly probed system, the eigenvalues
and eigenvectors of L are obtained perturbatively. Therefore,
the PSDs—which are related to the level statistics via λi j, rm,

and lm, cf. Eqs. (7a) and (7b)—for the two different phases
are also qualitatively different. Using this, one can identify
the two distinct phases in Figs. 2 and 5. Note we have plotted
the normalized PSD S̃(ω) = S(ω)/

∫ ∞
−∞ S(ω)dω in the afore-

mentioned panels for numerical convenience.
One can use two different choices of measurements, M̂0

and M̂1, that commute with different parts of Ĥ. The PSD
corresponding to one phase for the M̂0 measurement is qual-
itatively similar to the PSD corresponding to the other phase
for the M̂1 measurement. In particular, we obtain from Eq. (5)
that S(ω) ∝ δ(ω) when the measured operator commutes with
the Hamiltonian.

The criterion for determining a phase transition, therefore,
is detecting changes in the PSD corresponding to a particular
measurement M̂i. Using different M̂i, one can also detect
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FIG. 2. We plot normalized PSDs S̃(ω) for the Bose-Hubbard model, where we measure two observables: M̂pop = mpop
∑

j b̂†
2 j b̂2 j and

M̂coh = mcoh
∑

j b̂†
j b̂ j+1 + H.c. The spectra in (a) and (c) are obtained by simulating the SSE (indicated as SSE in the figures), whereas (b) and

(d) (indicated as GKLS) are obtained with Eq. (5), where L is the Liouvillian appearing in the GKLS master equation—see also Appendices D
and E for details. For the SSE calculations, we considered six sites with six particles and measurement strength γ = 0.01 for the measurement
of M̂coh and γ = 0.1 for the measurement of M̂pop. The computations based on the master equation are harder to do and hence we have used
four sites and four particles and kept the same γ values in (b) and (d). The figures shown as insets in (b) and (d) are rotated versions of the
main plots and show the abrupt change near 1 < U/J < 10. Compare this with the order parameter versus U/J plot in Fig. 3(a).

multiple phase transitions. Assuming nα phase transitions in
a Hamiltonian Ĥ(α), one obtains representative Hamiltoni-
ans Ĥ(αi ) with i = 1, 2, . . . , nα + 1, where αi is a parameter
value corresponding to a particular phase. We consider nα +
1 distinct measuring operators satisfying [Ĥ(αi ),M̂i] = 0.
Note that since [M̂i, Ĥ(α)] �= 0, our continuous measure-
ment scheme is not a quantum nondemolition measurement
[34,35].

In the following, we implement this scheme to study the
phase transitions in an ergodic (Bose-Hubbard) system and in
an integrable (transverse-field Ising chain) Hamiltonian.

III. PROBED BOSE-HUBBARD MODEL

The 1D Bose-Hubbard model provided a demonstration of
a quantum phase transition in ultracold atoms [36] and is a
powerful tool for the experimental study of quantum phases
[37–41], including studies of driven-dissipative quantum sys-
tems [22,23,42]. The Hamiltonian reads

Ĥ = −J
∑
〈 j,k〉

(b̂†
j b̂k + b̂†

kb̂ j ) + U

2

∑
j

b̂†
j b̂ j (b̂

†
j b̂ j − 1), (8)

where the bosonic field operators are expanded in Wannier
functions �̂(x, t ) = ∑

j b̂ j (t )w j (x), and J and U are the hop-
ping and the on-site interaction, respectively. For α = U/J

below the critical value, the system’s ground state exhibits
long-range phase coherence and is a superfluid. Above that
critical value, the ground state features Fock states on each
site and the system is in the Mott-insulator phase.

Let us now dispersively probe this system with an op-
tical cavity field aligned with the trapping lattice. The
probe light is described as â(t ) fa(x, ωL)e−iωLt , with ωL the
probe frequency and fa(x, ωL) the spatial mode func-
tion. Here we treat the system in 1D. For a Fabry-Pérot cavity,
we have fa(x, ωL) ∝ cos(kLx), with kL being the wave number
for the probe light.

We focus on two relevant cases, namely, where the probe
has twice the period of the trapping potential and when the
probe and the lattice have the same periodicity, but a π/2
phase shift. In the former case, this leads to a measurement
operator M̂pop = mpop

∑
j b̂†

2 j b̂2 j , where mpop is a constant
calculated from the Wannier functions, see Appendix G. This
operator commutes with the interaction term in (8) but not
with the hopping. In the second case, we measure the sum
over coherences, M̂coh = mcoh

∑
j b̂†

j b̂ j+1 + H.c. (see Ap-
pendix G), which commutes with the hopping term but not
the interaction.

We numerically calculate the PSDs for both M̂pop and
M̂coh. To perform the numerical integrations of the SSE (3)
in Figs. 2(a) and 2(c), we considered a system with six sites
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FIG. 3. We show the order parameters versus the parameter α in the Hamiltonian (1) for the Bose-Hubbard and the transverse-field Ising
model in (a) and (b), respectively. The order parameter for the transverse-field Ising model is |〈ψ0|

∑
i σ

z
i /N |ψ0〉|, with |ψ0〉 being the ground

state, whereas for the Bose-Hubbard model we plot the condensate fraction (9). For the Bose-Hubbard model in (a), the parameter α is the
ratio between the interaction strength U and the hopping strength J , whereas α is the transverse-field strength λ for the transverse-field Ising
model in (b). We have also included the plot of |〈ψ0|

∑
i σ

x
i /N |ψ0〉| versus λ as an inset of (b). Since this is not the order parameter of the

transverse-field Ising model, it does not show any abrupt change similar to the main plot in (b).

and six particles. We used a system with a smaller Hilbert
space—four sites and four particles—to obtain the PSDs using
Eq. (5) in Figs. 2(b) and 2(d). For all the PSDs, the spectral
range is rescaled to 20 in dimensionless units. The PSDs for a
particular measurement—e.g., Figs. 2(a) and 2(b)—obtained
from Eqs. (3) and (5) appear similar. This is because of the
ergodicity of the Bose-Hubbard model.

We observe large values of the PSD at ω = 0 (ω �= 0)
when the measurement operator and Hamiltonian is (is not)
compatible with the quantum phase. The M̂coh PSDs in the
superfluid (Mott-insulator) part is qualitatively similar to the
Mott-insulator (superfluid) part of the M̂pop PSDs. The mea-
surement for both operators gives the transition within the
same order of magnitude, which is also in agreement with its
value in the thermodynamic limit [43–45]. Additionally, we
point out that the phase transition points from the PSDs are
consistent with the behavior of the order parameter (conden-
sate fraction [46])

fc = λ1/N (9)

in Fig. 3(a), where λ1 is the largest eigenvalue of the single-
particle density matrix ρ (1) and N is the number of particles.
The matrix elements of ρ (1) are given by

ρ
(1)
i j = 〈ψ0|b̂†

i b̂ j |ψ0〉, (10)

where |ψ0〉 is the ground state of the Hamiltonian (8). While
comparing with the above critical value of the parameter, one
needs to, however, keep in mind the significant finite-size
effects [46], see also Fig. 3(a). The numerical results for
the thermodynamic limit [44,45] are obtained by calculating
the energy gap between the ground state and first excited state
for different system sizes, and extrapolating to the infinite
system.

A. Strong measurement

The measured system has phase transitions defined and/or
controlled by the measurement itself. That transition due to
strong measurement is also witnessed by the record. The
measurement strength is considered a free parameter and an

additional dimension of the phase diagram, which then de-
pends on the operator being measured. Figure 4 shows the
PSD for measuring M̂coh with γ � 1 in the Bose-Hubbard
model using Eq. (5). The figure shows that the measurement
forces the system to evolve into eigenstates of the probed op-
erator over a broad range of U/J . Since M̂coh commutes with
the Bose-Hubbard hopping term, the PSD implies a superfluid
phase throughout. This has been identified previously as a
dynamical phase transition into a Zeno regime [47–50]. In the
given example, we demonstrate how a strong measurement of
coherence turns a Mott insulator into a superfluid. Perform-
ing strong measurements with other operators yields similar
results.

IV. PROBED TRANSVERSE-FIELD ISING CHAIN

We now show that the change in the PSD reveals the phase
transition in the transverse-field Ising chain, which is exactly
solvable using the Jordan-Wigner transformation and is a
paradigm for quantum phase transitions [1]. This model was

FIG. 4. Quantum Zeno regime for the M̂coh measurement in the
Bose-Hubbard model. We derive the spectrum using Eq. (5). When
the measurement strength is very high (γ = 100.0), the nature of
the PSD does not change over a broad range of U/J . This is unlike
Figs. 2(a) and 2(b).
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FIG. 5. We plot normalized PSDs S̃(ω) for the transverse-field Ising model, where we measure the observables M̂X = ∑N
i=1 σ x

i and
M̂ZZ = ∑N

i=1 σ z
i σ z

i+1. As in Fig. 2, the spectra in (a) and (c) are obtained by simulating the SSE, whereas (b) and (d) are obtained with Eq. (5).
The PSDs for the transverse-field Ising model were obtained for N = 10 spins for the SSE calculations and N = 6 spins for the ones with
Eq. (5). For all these four PSDs, we kept γ = 0.01. The insets in (b) and (d) are rotated versions of the main plots. The abrupt change—cf. the
order parameter versus λ plot in Fig. 3(b)—in the PSDs near 10−2 < λ < 10−1 is clearly visible. The height of the peak at ω = 0, however,
changes continuously near 10−1 < λ < 1.

implemented with trapped ions [51,52], where a dynamical
phase transition was observed [53]. The Hamiltonian is

Ĥ = −
N∑

i=1

σ z
i σ z

i+1 − λ

N∑
i=1

σ x
i , (11)

where σ x,z
i are Pauli operators, we use periodic boundary

conditions, and λ is a dimensionless parameter. As λ is
varied, the system exhibits a quantum phase transition at
λc = 1 in the thermodynamic limit from a ferromagnetic λ <

λc to a paramagnetic λ > λc phase. We consider a homo-
dyne measurement of the coupling M̂ZZ = ∑N

i=1 σ z
i σ z

i+1 and
transverse-field M̂X = ∑N

i=1 σ x
i .

The PSDs obtained by numerically integrating the SSE (3)
for a system with N = 10 and measurement operators M̂X

and M̂ZZ are shown in Figs. 5(a) and 5(c), respectively. We
also obtain the PSDs using Eq. (5) for a system with N = 6
spins for the same measurement operators in Figs. 5(b) and
5(d). To compare the PSDs for different values of λ, we always
rescale the Hamiltonian such that its spectrum spans the same
frequency range (20 in dimensionless units).

Similar to the Bose-Hubbard PSDs, the qualitative nature
of the PSDs change when we go from the ferromagnetic to
the paramagnetic phase. We note that the M̂X PSDs in the
ferromagnetic part is qualitatively similar to the paramagnetic
part of the M̂ZZ PSDs. This is true for all the PSDs. The
ferromagnetic part of M̂ZZ PSD obtained using Eq. (5) in
Fig. 5(d) is similar to the paramagnetic M̂X PSDs.

To obtain the PSDs using the SSE (3), we start with the
ground state of the Hamiltonian (1) at t = 0. Moreover, if
[Ĥ,M̂i] = 0—e.g., when λ = 0 (1/λ = 0) in the M̂ZZ (M̂X)
measurement in the transverse-field Ising model—the mea-
surement process does not change the initial wave function.
This leads to a flat PSD with no features. This is unlike
the GKLS PSDs, assuming ρst = 1/N , where [Ĥ,M̂i] = 0
results in S(ω) ∝ δ(ω).

We have [Ĥ,M̂i] �= 0 for the parameter ranges consid-
ered in Figs. 2 and 5. Therefore, the measurement process
is equivalent to an exploration of the phase space even if we
start with an eigenstate of Ĥ. However, we believe that the
integrability of the transverse-field Ising model is responsible
for the absence of any peaks in the ferromagnetic M̂ZZ PSD
Fig. 5(c) obtained using Eq. (3). Since we start with a mixed
state ∝ 1 while using Eq. (5), the M̂ZZ PSD still has a peak
even in the ferromagnetic phase.

V. CHANGE IN PSD DUE TO THE COMMUTATION
RELATION [Ĥ,M̂0]

In the foregoing analysis, we considered a Hamiltonian that
depended on a single parameter α. The measurement operator
M̂0 is chosen such that it commutes with one part of the
Hamiltonian Ĥ0 while not commuting with the other: Ĥ1.
Writing the commutation relation between the Hamiltonian
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FIG. 6. We plot |〈ψ0|
∑

i σ
z
i /N |ψ0〉| and |〈ψ0|

∑
i σ

x
i /N |ψ0〉| versus the parameter λ for the Hamiltonian (13) that does not have a phase

transition in (a) and (b), respectively. Here |ψ0〉 is the ground state of the Hamiltonian. Unlike the abrupt transition (albeit in the log scale) in
the order parameter for the transverse-field Ising model in Fig. 3(b), here we observe a continuous change. Moreover, as we change the system
size, the plots do not change as much as they did for the order parameter in Fig. 3(b). In fact, the behavior of these expectation values is more
akin to the inset of Fig. 3(b).

and the measurement operator as

[Ĥ,M̂0] = [Ĥ0,M̂0] + α[Ĥ1,M̂0], (12)

we observe that M̂0 evolves from commuting with Ĥ to not
commuting as we change α. However, it is important to note
that [Ĥ,M̂0] �= 0 for the range of α considered in Sec. III
with the identification α ≡ U/J and in Sec. IV with α ≡ λ.

Nevertheless, one needs to be careful while discerning the
changes in PSDs due to phase transitions since, in the finite-
sized systems, one expects to see some changes in the PSDs
simply because of the commutation properties (e.g., [Ĥ,M̂0]
being equal or unequal to zero). To illustrate this, we consider
the Hamiltonian

Ĥ = −
N∑

i=1

σ z
i − λ

N∑
i=1

σ x
i , (13)

which does not go through a phase transition. The ground state
of Ĥ0 = −∑N

i=1 σ z
i is connected to the ground state of Ĥ1 =

−∑N
i=1 σ x

i by continuous rotations. This is demonstrated by
the ground-state expectation values of

∑
i σ

z
i /N and

∑
i σ

x
i /N

in Figs. 6(a) and 6(b), both of which are similar to the inset of
Fig. 3(b).

Similar to Sec. IV, we show the PSDs obtained for the
measurements M̂Z = ∑N

i=1 σ z
i and M̂X = ∑N

i=1 σ x
i in Fig. 7

for the Hamiltonian (13) by using Eq. (5). Here we see a
continuous change in the PSDs between λ ≈ 0.1 and λ ≈ 1.
Interestingly, this change appears at the same interval in λ for
six as well as for four spin PSDs. The position of the peaks
in ω are slightly different in the four and the six spin PSDs,
whereas the heights remain almost unchanged.

We note that the changes in the PSDs due to the commu-
tation relations are not as abrupt as the ones caused by the
change in the Hamiltonian spectrum due to a phase transition.
We believe that the commutation relations change the PSDs
trivially compared to the changes occurring due to a phase
transition, and these two types of changes in the PSDs can
indeed be differentiated. However, to confirm this hypothesis
peremptorily, one either needs to independently verify with an
experiment or to perform numerics on a thermodynamically
large system.

VI. SUMMARY AND OUTLOOK

We show that it is possible to detect phase transitions in the
1D Bose Hubbard model and the transverse-field Ising model
by discerning the qualitative changes in the measurement
signals of weak continuous measurements. To observe these
changes, one need not prepare the state in a particular way or
be confined to the ground state. We believe that this method
of detecting the phase transition can be applied to various
strongly interacting systems for a range of experimentally
realizable measurement operators.

We have focused on the situation where the system Hamil-
tonian is known. In other situations of interest, this might
not be the case. It will be interesting to investigate what can
be deduced about a system’s Hamiltonian from measurement
records. Furthermore, our criterion may be generalized to
topological [54] and dynamical phase transitions [53], which
have also been implemented successfully. Further exploration
and, in particular, experiments will be needed to assess the
broader applicability of continuous measurements as a probe
of phase transitions.
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APPENDIX A: ORGANIZATION OF THE APPENDICES

We start by reviewing a few important properties of the
Liouvillian and vectorization (the latter is also known as
the Choi-Jamiłkowski isomorphism [55,56]), which is used
extensively in the following calculations. We then write
the stochastic master equation (SME), keeping terms up to
order

√
dt . In the process, we compare the notations of

Refs. [25–27,49]. We go over the derivation for the autocor-
relation function of the measurement record F (1)

hom(t, t + τ ).
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FIG. 7. We plot normalized PSDs S̃(ω) for the Hamiltonian (13) with no phase transitions, where we measure the observables: M̂X =∑N
i=1 σ x

i and M̂Z = ∑N
i=1 σ z

i . In (a) and (b), we consider six spins, whereas in (c) and (d), we consider four spins. All the PSDs are obtained
with Eq. (5). Similar to Figs. 5(b) and 5(d), the heights of the three peaks change continuously near 10−1 < λ < 1.

Starting from the expression for F (1)
hom and making use of the

quantum regression theorem, we derive the expression for the
PSD – Eq. (5) in the main text. We further simplify this using
the Choi-Jamiłkowski isomorphism and obtain Eqs. (7a) and
(7b) of the main text. We describe the numerical procedure
for obtaining the PSDs in Figs. 2(b), 2(d), 4, 5(b), and 5(d)
in the main text. We provide an expression and examples of
pictorial representations of the matrix elements Mjk necessary
for constituting the measurement operator M̂0. Finally, we
describe the numerical integration procedure for obtaining the
PSDs in Figs. 2(a), 2(c), 5(a), and 5(c).

APPENDIX B: LIOUVILLIAN AND VECTORIZATION

Markovian dynamics of a linear and completely positive
open quantum system can be described by a GKLS master
equation [25–30]

ρ̇ = −i[Ĥ, ρ] +
∑

i

γiD[L̂i]ρ(t ), (B1)

where

D[L̂]ρ = L̂ρL̂† − 1
2 (L̂†L̂ρ + ρL̂†L̂). (B2)

The GKLS master equation is linear in ρ, which allows us
to associate it with the so-called Liouvillian superoperator L
satisfying ∂tρ = Lρ. The superoperator L is trace preserving
and generates the following completely positive trace preserv-
ing map eLt describing the time evolution of the system:

ρ(t ) = eLtρ(0) =
∑

i

K̂i(t )ρ(0)K̂†
i (t ), (B3)

such that ∑
i

K̂†
i (t )K̂i(t ) = 1, (B4)

where the set of operators {K̂i} are called Kraus operators.
The above way of representing the completely positive trace
preserving map is called the operator-sum representation.

Superoperators such as L act on the Liouville space B(H)
consisting of all the linear operators acting on the Hilbert
space. This space can itself be treated as a Hilbert space with
the Hilbert-Schmidt inner-product 〈〈Â|B̂〉〉 = Tr(Â†B̂). We use
the notation |ρ〉〉 for a vectorized state that is created by
stacking the columns of ρ. In order to ease the calculations,
we apply this vectorized notation here [57]. The vectorized
representation of L is

L = − i(1 ⊗ Ĥ − ĤT ⊗ 1)

+
∑

i

γi

2

(
2L̂∗

i ⊗ L̂i − 1 ⊗ L̂†
i L̂i − L̂T

i L̂∗
i ⊗ 1

)
, (B5)

where AT denotes the transpose. Note that generally L is a
non-Hermitian matrix.

In this paper, we are only concerned with diagonalizable
Liouvillians. For nondiagonalizable Liouvillians, one needs to
consider the Jordan normal form. Unlike the Hamiltonian, the
Liouvillian is generally not Hermitian, i.e., the adjoint super-
operator L† is not equal to L. For this reason, the eigenvalues
of L are generally complex and it has different right and left
eigenstates satisfying

L|rm〉〉 = λm|rm〉〉, (B6a)

L†|lm〉〉 = λ∗
m|lm〉〉. (B6b)
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We fix the normalization such that the left and right eigen-
states are orthonormal 〈〈rm|ln〉〉 = δmn, which is called the
biorthogonality. Enumerating the eigenstates according to
Eqs. (B6a) and (B6b), we obtain the following completeness
relation: ∑

m

|rm〉〉〈〈lm| = 1. (B7)

We assume that the open system dynamics are due to a
continuous weak measurement of a single Hermitian operator
L̂ = M̂0. At long times, the unmonitored system will reach a
steady state of L defined by L[ρst] = 0, i.e., a member of the
kernel of the operator L. For a Hermitian operator, we make
the simple observation that

L[1] = − [Ĥ,1] + γM̂01M̂0 − γ

2

(
M̂2

01 + 1M̂2
0

) = 0,

(B8)

which shows that 1/N is always a stationary state where N
is the dimension of the Hilbert space. In general, there is no
guarantee that this is the only stationary state, but we assume

ρst = 1/N (B9)

for simplicity.

APPENDIX C: STOCHASTIC MASTER EQUATION

We write the SME corresponding to the SSE considered
in the main text. In the SME, we only keep the terms up to

order
√

dt . In the process, we reconcile the derivations and
notations of Refs. [25–27,49].

The definition of homodyne current in Refs. [26,27,49] is
as follows:

λt [Ô] = 〈Ô〉ρdt + dWt√
8K

. (C1)

The corresponding SSE is

d|ψ̄ (t )〉 = {−iHdt − KÔ2dt + 4KÔλt [Ô]}|ψ̄ (t )〉, (C2)

where |ψ̄ (t )〉 symbolizes the non-normalized wave function.
We obtain the homodyne current and the SSE of the main text
from Eqs. (C1) and (C2) as follows:

define: I (t )dt = γ

2
λt [Ô]; (C3a)

replace: Ô → 4M̂0, K → γ

32
. (C3b)

While applying the prescription (C3b) in Eq. (C2), one does
not change the wave function |ψ̄ (t )〉.

We now apply the prescription (C3b) to the SME of
Ref. [49]. Before we do so, we clarify the different definitions
of the Lindblad superoperator appearing in different refer-
ences. We list all the definitions below as

References [25–27] and the current paper: D[Ô]ρ = ÔρÔ† − 1
2 {Ô†Ô, ρ}, (C4a)

Ref. [50]: D[Ô]ρ = 2ÔρÔ† − {Ô†Ô, ρ}. (C4b)

For the rest of the discussion, we will be using the definition (C4a). The SME conditioned on the random measurement outcome
(C1) is

dρ = − i

h̄
[H, ρ] dt + 2KD[Ô]ρ dt + 4KH[Ô]ρ(λt [Ô] − 〈Ô〉ρdt )︸ ︷︷ ︸

=√
2KH[Ô]ρdWt

, (C5)

where H[Ô]ρ = Ôρ + ρÔ† − 〈Ô + Ô†〉ρρ. All the references agree on the definition of H[Ô]ρ. Here, we consider the detector
to be 100% efficient. Also, since we are using the definition (C4a), the coefficient of the second term is 2K instead of K (cf.
Eq. (5) of Ref. [49]).

Using the prescription (C3b), we replace
√

2K by
√

γ /4 and Ô by 4M̂0. Additionally, we write 〈· · · 〉ρ as 〈· · · 〉 for notational
convenience. Finally, we obtain

ρ(t + dt ) = ρ(t ) +
(
− i

h̄
[H, ρ] + γD[M̂0]ρ

)
dt + √

γH[M̂0]ρ dWt

≈ ρ(t ) + √
γ (M̂0ρ(t ) + ρ(t )M̂†

0)dWt − √
γ 〈M̂0 + M̂†

0〉dWt , (C6)

where we have retained terms only up to order
√

dt . Later in this paper, we consider ρ(t ) is a priori known to be ρst = 1/N . In
the above equation, ρ(t + dt ) is conditioned on the homodyne current until time t .

APPENDIX D: OUTPUT FIELD CORRELATION FUNCTION

We revisit the derivation for the autocorrelation function of the measurement record F (1)
hom(t, t + τ ) = E[I (t + τ )I (t )]. Note

that we write the autocorrelation function as F (1). This is because of its relation to Glauber’s first-order coherence function. Here
we follow Ref. [25] closely. The steps are as follows:

F (1)
hom(t, t + τ )(dt )2 = E[I (t + τ )I (t )](dt )2

= γ 2

4
E[λt+τ [Ô]λt [Ô]]
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= γ 2

4
E

[(
4〈M̂0〉(t + τ ) dt + dWt+τ√

γ /4

)(
4〈M̂0〉(t ) dt + dWt√

γ /4

)]

= 2γ 2

√
γ

E[〈M̂0〉(t + τ ) dWt ]dt + γE[dWt+τ dWt ]︸ ︷︷ ︸
=γ δ(τ )(dt )2

+4γ 2E[〈M̂0〉(t + τ )]〈M̂0〉(t )(dt )2. (D1)

While obtaining 〈M̂0〉(t + τ ), the trace is calculated with the density operator of Eq. (C6) and by identifying dt with τ . The
factorization in the last term of the last line is justified because ρ(t ) is given. Using a similar argument, we have

E[dWt+τ 〈M̂0〉(t )] = E[dWt+τ ]︸ ︷︷ ︸
=0

〈M̂0〉(t ) = 0. (D2)

We explicitly calculate the first term of the last line in Eq. (D1) as follows:

E[〈M̂0〉(t + τ ) dWt ]dt = Tr[M̂0eLτE[{1 + √
γ dWtH[M̂0]}ρ(t ) dWt ]]dt

= √
γ Tr[M̂0eLτ (M̂0ρ(t ) + ρ(t )M̂0)](dt )2 − 2

√
γ Tr[M̂0eLτ ρ(t )]〈M̂0〉(t )(dt )2. (D3)

In the first line, eLτ provides the noise averaged time evolution between t + dt and t + τ . In the final line, we used the Itô rule.
While expanding the superoperator H[M̂0], we also used the fact that M̂0 is self-adjoint. Substituting Eq. (D3) into Eq. (D1),
we obtain

F (1)
hom(t, t + τ )(dt )2 = 2γ 2 Tr[M̂0eLτ (M̂0ρ(t ) + ρ(t )M̂0)](dt )2 − 4γ 2 Tr[M̂0eLτ ρ(t )]〈M̂0〉(t )(dt )2

+ γ δ(τ )(dt )2 + 4γ 2E[〈M̂0〉(t + τ )]〈M̂0〉(t )(dt )2. (D4)

To simplify the last term of Eq. (D4), we note the following:

E[〈M̂0〉(t + τ )]〈M̂0〉(t ) = Tr[M̂0eLτE{(1 + √
γ dWtH[M̂0])ρ(t )}]〈M̂0〉(t )

= Tr[M̂0eLτ ρ(t )]〈M̂0〉(t ) + √
γ Tr

⎡
⎣M̂0eLτ E(dWtH[M̂0]ρ(t ))︸ ︷︷ ︸

=0

⎤
⎦〈M̂0〉(t )

= Tr[M̂0eLτ ρ(t )]〈M̂0〉(t ), (D5)

where in the second-to-last line while performing the E operation, we recall that dWt and H[M̂0]ρ(t ) are statisti-
cally independent. Using Eq. (D5) into Eq. (D4) and substituting ρ(t ) = ρst = 1/N , we finally obtain the autocorrelation
function as

F (1)
hom(t, t + τ ) = γ 2 Tr[(M̂0 + M̂†

0)eLτ (M̂0ρ
st + ρstM̂†

0)] + γ δ(τ ) = 4γ 2

N
〈〈M̂0|eLτ |M̂0〉〉 + γ δ(τ ), (D6)

where we have used vectorization and that M̂0 is self-adjoint to write the final expression. The δ function in this formula arises
due to the local oscillator shot noise or vacuum noise.

APPENDIX E: HOMODYNE SPECTRUM: EXACT ANALYTICAL RESULT

The PSD is the Fourier transformation of F (1)
hom(t, t + τ ) with the δ function dropped. First, note that the result of eLτ acting

on the Hermitian operator M̂0ρ
st + ρstM̂†

0 can be written using the operator-sum representation, see Eq. (B3). As a result, the
autocorrelation function (without the δ function) is the trace of a Hermitian operator, which is real. Moreover, the autocorrelation
function is an even function in τ . Using these properties, we obtain

S(ω) = 8γ 2

N
Re

[∫ ∞

0
〈〈M̂0|eLτ |M̂0〉〉e−iωτ dτ

]
= 8γ 2

N
h(ω,M̂0,M̂0), (E1)

where

h(ω, Â, B̂) = Re

[∫ ∞

0
〈〈Â|eLτ |B̂〉〉e−iωτ dτ

]
= Re

[∑
m

〈〈Â|rm〉〉〈〈lm|B̂〉〉
∫ ∞

0
e[Re(λm )+i(Im(λm )−ω)]τ dτ

]
. (E2)

Here we have inserted unity (B7) and used that |rm〉〉 is a right eigenstate.
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FIG. 8. Entries of Mjk . On the left, we have M̂pop when the probe wavelength is twice the lattice one and there is no phase difference
between the probe and the optical lattice. A π/2 phase shift between the probe and the lattice, while keeping the periodicity the same, leads to
M̂coh on the right. The lattice depth equals five recoil energies.

For calculating the integral, we must consider two special cases,∫ ∞

0
e[Re(λm )+i(Im(λm )−ω)]τ dτ = 1

iω − λm
for Re(λm) < 0, (E3a)∫ ∞

0
ei(Im(λm )−ω)τ dτ = πδ(ω − Im(λm)) + P

(
1

iω − iIm(λm)

)
for Re(λm) = 0, (E3b)

where P denotes the Cauchy principal value. We do not need to consider the case for Re(λm) > 0 since L cannot have eigenvalues
with positive real part. Notice the Cauchy principal value is similar to the result in Eq. (E3a) but there is an additional δ-function
contribution in the second integral. Plugging this into Eq. (E2) gives the result

h(ω, A, B) =
∑

Re(λm )<0

−Re(λm)Re(tm) + [ω − Im(λm)]Im(tm)

[ω − Im(λm)]2 + [Re(λm)]2 +
∑

Re(λm )=0

[
πRe(tm)δ(ω − Im(λm)) + P

(
Im(tm)

ω − Im(λm)

)]
,

(E4)

where tm = Tr[A†rm]Tr[l†
mB]. This is also the result given in the main text in Eqs. (7a) and (7b).

APPENDIX F: HOMODYNE SPECTRUM:
NUMERICAL COMPUTATION

In this Appendix, we describe how we compute S(ω) nu-
merically. In principle, we could diagonalize L and utilize
Eqs. (7a) and (7b) of the main text. However, this is not
feasible due to the large dimensionality of the Liouville space.
Instead, from Eq. (E2) we observe that

S(ω) = 8γ 2

N
Re[〈〈M̂0|(iω1 − L)−1|M̂0〉〉]

= 8γ 2

N
Re[〈〈M̂0|ξ̂〉〉]. (F1)

For numerical convenience, we have introduced |ξ̂〉〉 as the
solution to the linear equation system

(iω1 − L)|ξ̂〉〉 = |M̂0〉〉. (F2)

This equation must be solved for each value of ω. The
matrix (iω1 − L) preserves the sparsity of the original Hamil-
tonian. Even then, we could only compute the numerical
spectrum for the 1D Bose-Hubbard model with four sites and
four particles, and for the transverse-field Ising model with
N = 6 spins. Recall that we could simulate the SSE for the
1D Bose-Hubbard model with six sites and six particles, and
for the transverse-field with N = 10 spins.

We observe from Eqs. (E1) and (E4) that S(ω) is singu-
lar if Re(λm) = 0 and Im(λm) = ω. The system cannot be
solved for ω = 0, since L is singular. In the transverse-field
Ising (Bose-Hubbard) model, we solve Eq. (F2) for 204 (818)
linearly spaced values of ω between 0.04 (0.01) and 8.00 in
dimensionless units. We do not encounter any singularities for
these frequency grids. However, in our numerical experience,
the system becomes much harder to solve as ω → 0.

APPENDIX G: THE MEASUREMENT OPERATORS
IN THE BOSE-HUBBARD MODEL

We writea dispersive measurement operator as

M̂0 =
∑

j,k

Mjkb̂†
j b̂k, (G1)

TABLE I. Numerical values of tin, tfin, and l .

Model tin tfin l

Bose-Hubbard 1.9 × 105 2.0 × 105 50
Transverse-field Ising 4.0 × 104 5.0 × 104 50
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FIG. 9. The dependence of a PSD on the noise averaging. We show the PSDs for the Bose-Hubbard model, where we measure M̂coh. The
value of l is 1, 20, and 50 in (a)–(c), respectively. In the inset of (a), we restrict the S̃(ω) range to [0, 4 × 10−3] for the l = 1 PSD to have a
better comparison with the PSDs in (b) and (c) All the PSDs predict similar values for the transition point.

where b̂†
i creates a boson at the ith optical lattice site. One

obtains the matrix elements in terms of the Wannier functions
as

Mjk = g2

�

∫
| fa(x, ωL )|2w∗

j (x)wk (x)dx, (G2)

where g denotes the coupling strength between the probe laser
and the ultracold atomic system, fa(x, ωL ) is the spatial mode
function, and � is the detuning of the probe from the atomic
transition Refs. [58–60]. For the two measurement operators
considered in the main text, the entries of the matrices are
displayed as images in Fig. 8. From there, we have

M̂pop : Mjk ≈ mpopδ j,kδmod( j,2),0, (G3a)

M̂coh : Mjk ≈ mcoh(δ j,k−1 + δ j,k+1) + dcohδ j,k, (G3b)

where mod() denotes the modulo operation. We ignore the
term dcohδ j,k in our numerical integration. This is because
this term leads to a constant shift Ĉ = dcohNb in M̂coh, with
Nb = 6 being the total number of bosons in the system, and
the normalized Itô SSE

d|ψ (t )〉 =
[

− iĤ − γ

2
(M̂0 − 〈M̂0〉)2dt

+ √
γ (M̂0 − 〈M̂0〉)dW

]
|ψ (t )〉 (G4)

remains unchanged under the transformation M̂0 → M̂0 +
Ĉ, where Ĉ is a constant operator.

APPENDIX H: NUMERICAL INTEGRATION
OF THE STOCHASTIC SCHRÖDINGER EQUATION

We start with the Itô SSE

d|ψ̄ (t )〉 =
[
−iĤ − γ

2
M̂2

0 + I (t )M̂0

]
dt |ψ̄ (t )〉 (H1)

that describes the time evolution of a non-normalized wave
function |ψ̄〉. We have written the homodyne measurement
signal I (t ) as

I (t ) = 2γ 〈M̂0〉 + √
γ dW/dt . (H2)

To obtain the PSDs in Figs. 1(b), 1(d), 1(f), and 1(h) of the
main text, we use the Stratonovich form of the SSE [25,61]:

d|ψ̄ (t )〉 = [−iĤ − γM̂2
0 + I (t )M̂0

]
dt |ψ̄ (t )〉. (H3)

We need this form because the chain rule for Stratonovich
equations is equivalent to the chain rule of conventional cal-
culus.

Discretizing the full time interval (0, tfin], we write the
wave function at the ( j + 1)th step as

|ψ̄ (t j+1)〉 ≈ |ψ (t j )〉 + eĜ(t j )|ψ (t j )〉, (H4)

where

Ĝ(t j ) = [
1 − iĤδt + γ

(
2M̂0〈ψ (t j )|M̂0|ψ (t j )〉 − M̂2

0

)
δt

+ √
γM̂0

√
δtS j

]
, (H5)

δt = t j+1 − t j is the infinitesimal time increment, and S j is
a random number drawn from a standard normal distribu-
tion. To compute eĜ(t j )|ψ (t j )〉, we use a Krylov subspace
projection technique. Instead of computing the matrix ex-
ponential in isolation, this technique directly computes the
action of the exponential operator on the wave function. Al-
though we used the normalized wave function |ψ (t j )〉 on
the right-hand side of Eq. (H4), we need to normalize the
wave function again at the ( j + 1)th step using |ψ (t j+1)〉 =
|ψ̄ (t j+1)〉/

√
〈ψ̄ (t j+1)|ψ̄ (t j+1)〉.

After numerically obtaining the trajectories {|ψ (t j )〉, I (t j )}
for all the time steps in the interval (0, tfin], we discard the
initial transients corresponding to the part (0, tin]. To obtain
a noise averaged smoother PSD, we divide the considered
quantum trajectory into l parts and calculate the average
PSD. The values of tin, tfin, and l for Bose-Hubbard and the
transverse-field Ising model are given in Table I. We have
considered the infinitesimal time increment δt to be 0.01 for
all the trajectories. We also show how the PSD depends on l
in Fig. 9.
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