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Photon cooling: Linear versus nonlinear interactions
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Linear optics imposes a relation that is more general than the second law of thermodynamics: For modes
undergoing a linear evolution, the full mean occupation number, i.e., the photon number for optical modes, does
not decrease, provided the evolution starts from a (generalized) diagonal state. This relation connects to noise
increasing (or heating) and is akin to the second law and holds for a wide set of initial states. Also, the Bose
entropy of modes increases, though this relation imposes additional limitations on the initial states and on linear
evolution. We show that heating can be reversed via nonlinear interactions between the modes. They can cool,
i.e., decrease the full mean occupation number and the related noise, an equilibrium system of modes provided
their frequencies are different. Such an effect cannot exist in energy cooling, where only a part of an equilibrium
system is cooled. We describe the cooling setup via both efficiency and coefficient of performance and relate the
cooling effect to the Manley-Rowe theorem in nonlinear optics.
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I. INTRODUCTION

Cooling is needed for noise reduction and for capturing
quantum degrees of freedom. It has been studied during the
past 100 years in various setups [1–3]. Cooling processes
are also fundamental for thermodynamics: They sharpen the
understanding of the second law and are instrumental for
the third law [4]. An interesting example of this is the laser
cooling of solids via the anti-Stokes effect, which has both
quantum and thermodynamic nature [1]. Much attention is
currently devoted to cooling processes in quantum thermo-
dynamics [5–20]. It is known that only a part of a thermally
isolated (initially equilibrium) system can be cooled in terms
of energy (or temperature), that cooling such systems costs
high-grade energy (work) [hence the definition of the coeffi-
cient of performance (COP)], and that cooling is limited by
energy spectra and complexity costs.

Here we consider bosonic (for clarity photonic) degrees of
freedom (modes) and show that linear transformations (e.g.,
linear optics) always increase the full photon number of the
system. This statement holds for a wide class of initial states.
For such states, increasing the mean photon number relates to
increasing the noise (heating). The heating is more general
than the second law. To confirm this point, we studied the
full Bose entropy of modes. This coarse-grained entropy is
conditionally maximal at equilibrium and can change under a
unitary evolution, in contrast to the fine-grained von Neumann
entropy. We show that the Bose entropy can increase, but this
relation (a formulation of the second law) demands additional
limitations on both the initial states and linear evolution.

*Corresponding author: armen.allahverdyan@gmail.com

Heating can be reversed by nonlinear interactions. One
can cool in this sense an initially equilibrium system, which
consists of two or more modes. This is not possible for energy
cooling, where, as demanded by the second law, only the sub-
system’s energy can be decreased (cooled). Our cooling setup
is characterized by two efficiencylike parameters: the COP
and the efficiency. The former refers to the energy costs of
cooling, while the latter normalizes the cooling result over the
total changes introduced in the system. Nonlinear interactions
achieve cooling in near-resonance regimes, where there is an
effective conservation law in the number of photons (Manley-
Rowe theorem) [21,22]. Thus, this cooling scenario uncovers
the thermodynamic role of nonlinear optical processes. We
work in terms of photons, but our results hold for other bosons
(e.g., phonons).

This paper is organized as follows. Section II shows that
the mean boson (photon) number increases in linear evolution
if the evolution starts from a certain class of generalized diag-
onal initial states. This class is sufficiently large and includes
the usual diagonal states (in the Fock basis), independent
states (over the modes), etc. This section also relates the
increase of the mean number to noise and formulates this
as a heating (no-cooling) principle for linear evolution. In
Sec. III we study the Bose entropy for modes and explain
under what additional restrictions (compared with the mean
photon number increase) this entropy grows. This section also
addresses the physical meaning of the Bose entropy. Sec-
tion IV describes the optimal cooling setup for two modes and
introduces the basic characteristics of cooling, viz., efficiency
and the COP. This section emphasizes the key feature of this
cooling setup, namely, the global cooling of an equilibrium
system in terms of the mean photon number (and noise)
is possible. Section V demonstrates that cooling is possible
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also via a feasible nonlinear two-mode interaction, works out
a simple example of such interactions, and establishes the
relation to the Manley-Rowe theorem, a known result in non-
linear physics. Section VI summarizes our results.

II. NO COOLING FOR LINEAR INTERACTIONS

A. A single bosonic mode

Linear processes, which are described with Hamiltonians
quadratic in creation and annihilation operators, describe the
lion’s share of boson dynamics [23,24]. Consider the simplest
example of such processes: a single mode that undergoes
a linear evolution governed by a quadratic Hamiltonian. In
the Heisenberg picture, the general form of this evolution
connects the initial a = a(0) and final b = a(t ) annihilation
operators of the mode

b = Sa + Ra† + f , (1)

where S, R, and f are complex c-numbers that characterize
the evolution. The initial state (density matrix) ρ of the mode
satisfies

〈a〉 ≡ tr(aρ) = 〈a†〉 = 0. (2)

The commutation relation [b, b†] = [a, a†] = 1 imposes
|S|2 − |R|2 = 1 in (1). Then we get, from (1) and (2),

〈b†b〉 − 〈a†a〉 = 2|R|2〈a†a〉 + |R|2 + | f (t )|2 � 0, (3)

i.e., the mean photon number difference defined on the
left-hand side of (3) can only increase. In particular, this
conclusion holds for linear amplifiers [23]. According to (1),
also the dispersion of the photon number increases:

〈(b†b)2〉 − 〈b†b〉2 � 〈(a†a)2〉 − 〈a†a〉2. (4)

We emphasize that the analog of (1) and (3) for a fermion
mode does not generally hold. One heuristic reason for this is
that only for the bosonic mode can the mean (photon) number
be arbitrary large.

B. Many modes, relations with noise, and heating

1. Linear Heisenberg evolution

Importantly, Eq. (3) extends to the completely general
N-mode situation, where instead of (1) we write for initial
ai = ai(0) and final bi = ai(t ) Heisenberg operators

bi =
N∑

j=1

(Si ja j + Ri ja
†
j ) + fi, i = 1, . . . , N, (5)

where Si j , Ri j , and fi are c-numbers [cf. (1)]. We write (5) in
block-matrix form(

b
b†

)
= E

(
a
a†

)
+

(
f
f ∗

)
, E =

(
S R
R∗ S∗

)
, (6)

where a = (a1, . . . , aN )T ; a†, b, b†, f , and f ∗ are N-columns;
and T and ∗ denote transposition and complex conjugation,
respectively. Below † =∗T will denote Hermitian conjugation.

Now commutation relations [bi, b†
j] = [ai, a†

j ] = δi j ,
where δi j is the Kronecker delta, and [bi, bk] = [ai, ak] = 0
lead, from (6), to

SS† − RR† = I, SRT = RST , (7)

respectively, where I is the N × N unit matrix. Equations (7)
imply

E−1 =
(

S† −RT

−R† ST

)
. (8)

The reasoning that led to (7) is now applied to (8), since the
same commutation relations hold. Then we get, in addition to
(7), the new relations

S†S − RT R∗ = I, S†R = RT S∗. (9)

2. Initial state

Now assume that the initial state ρ of N modes fulfills the
two conditions

〈a j〉 ≡ tr(ρa j ) = 0, (10)

〈aia j〉 ≡ tr(ρa jai ) = 0, (11)

where i, j = 1, . . . , N . Two interesting examples of (10) and
(11) are as follows. First, Eq. (10) can refer to initially in-
dependent modes in states with 〈ai〉 = 0. Then (11) holds
automatically due to the independence

〈aia j〉 = 〈ai〉〈a j〉 = 0. (12)

Second, we can consider diagonal states ρdiag that read, in the
Fock basis,

ρdiag =
∞∑

ν1,...,νN =0

rν1,...,νN |ν1, . . . , νN 〉〈ν1, . . . , νN |, (13)

a†
i ai|μ1, . . . , μN 〉 = μi|μ1, . . . , μN 〉. (14)

Equation (14) defines the Fock basis and (13) ensures the
conditions (10) and (11). It should be clear that neither inde-
pendence nor diagonality is necessary for the validity of (10)
and (11); for example, a nondiagonal state maintaining (10)
and (11) can be easily constructed starting from (13). To be
concise, we will refer to the states ρ satisfying (10) and (11)
as generalized diagonal states.

3. Increase of the mean photon number

Using (10) and (11) together with the first of Eqs. (9), we
find that the change of the total occupation number is non-
negative,

N∑
i=1

(〈b†
i bi〉 − 〈a†

i ai〉) =
N∑

i=1

| fi|2 +
N∑

i, j=1

|Ri j |2

+ 2
N∑

i=1

tr(YiρY †
i ) � 0, (15)

where we define

Yi ≡
N∑

k=1

R∗
ikak . (16)

When deducing (15), the condition (10) is needed to nullify
terms proportional to fi〈ak〉 in (15), while (11) is needed to
nullify terms proportional to (R†S)kl〈akal〉.

Equation (5) can describe absorption (attenuation) of pho-
tons from a few selection target modes, at the expense of their
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overall increase. For the particular case of Gaussian initial
states, Eq. (15) follows from the result of Ref. [25] on the
maximal work. Thus, according to (15), the full mean photon
number can only increase under linear evolution.

Where do these additional photons come from? Answering
this question is contingent on realization of the linear trans-
formation. For example, the genesis of additional photons
is relatively clear when the increase of the mean number of
photons is accompanied by an increase in the overall mean
energy [cf. (3)]. This energy increase comes from external
sources that realize the linear dynamics. In particular, this
is the case when the N modes start their evolution from
the overall vacuum state, because then the mean energy can
only increase. More generally, the relation between the mean
energy increase and the mean photon number increase in a
linear dynamics is absent: The latter is more general than the
former [see (31) for clarification]. In such cases the genesis
of additional photons should be prescribed to the general fact
that the mean photon number is not conserved within linear
dynamics.

4. Noise increase and heating

We emphasize that (15) can be interpreted as uncertainty
increase. To this end, let us note, for a mode with annihilation
operator a, that 〈a†a〉 characterizes the dispersion 〈�a2〉 of a
[23],

〈�a2〉 ≡ 1
2 〈aa† + a†a〉 − |〈a〉|2 = 〈a†a〉 + 1

2 − |〈a〉|2(17)

= 〈x2〉 − 〈x〉2 + 〈y2〉 − 〈y〉2, a = x + iy, (18)

where x = (a + a†)/2 and y are Hermitian operators. Equa-
tion (17) is the definition of dispersion for non-Hermitian a,
while (18) shows how it can be measured via its Hermitian
components x and y. Note from (17) that for 〈a〉 = 0, the
dispersion 〈�a2〉 reduces to the mean photon number 〈a†a〉.1

For initial states (10) considered, we have 〈ai〉 = 〈bi〉 = 0
and then (15) and (18) imply that also the sum of uncertainties
(17) increases together with the photon number

N∑
i=1

(〈
�b2

i

〉 − 〈
�a2

i

〉) =
N∑

i=1

(〈b†
i bi〉 − 〈a†

i ai〉) � 0, (19)

i.e., as the mean photon number rises, so does the total
dispersion. Equation (19) holds due to initial conditions
(10) and (11) and will be interpreted as heating. Likewise,
the decrease of both quantities in (19), which is possible
due to nonlinear interactions, will mean cooling (discussed
below).

We close this section by stressing that the relation between∑N
i=1(〈�b2

i 〉 − 〈�a2
i 〉) and

∑N
i=1(〈b†

i bi〉 − 〈a†
i ai〉) is not au-

tomatic. For example, the linear dynamics for a particular
condition fi = 0 in (5) will hold (15) for the condition (11)
only, i.e., Eq. (10) is now not needed. If 〈ai〉 �= 0, then
generically also 〈bi〉 �= 0 and

∑N
i=1(〈�b2

i 〉 − 〈�a2
i 〉) � 0 does

not hold, though
∑N

i=1(〈b†
i bi〉 − 〈a†

i ai〉) � 0 still holds due
to fi = 0.

1This quantity also controls the shot noise in photodetection [24].

III. ENTROPIC FORMULATION OF THE SECOND
LAW FOR BOSONS

A. When Bose entropy increases for a linear dynamics

1. Definition of Bose entropy

Equation (15) shows that for the initial conditions (10) and
(11) the total mean number of photons can only increase. In
the context of this unidirectional change it is natural to ask
whether one can find a suitable entropy function that also
increases under linear dynamics. As we show below, the an-
swer to this question is positive provided the initial states and
the type of the linear dynamics are restricted.

First of all, we need to define the entropy function: As
always with the unitary dynamics the von Neumann entropy
−tr(ρ ln ρ) (with ρ the density matrix) is not suitable for
defining the second law, since it is conserved. We need a more
coarse-grained (i.e., less microscopic) definition of entropy. A
good choice is the time-dependent Bose entropy

S(t ) =
N∑

k=1

s(nk (t )), nk (t ) ≡ 〈a†
k (t )ak (t )〉, (20)

s(nk ) ≡ (1 + nk ) ln(1 + nk ) − nk ln(nk ). (21)

Equation (20) is deduced for an ideal Bose gas from the mi-
crocanonic distribution [22]. If s(nk ) from (21) is maximized
for a fixed mean energy h̄ωknk of the mode k with frequency
ωk , one obtains the thermal expression for the mean occupa-
tion (photon) number. Indeed, making the Lagrange function
s(nk ) − β h̄ωknk , where β is the Lagrange multiplier (inverse
temperature), one obtains nk = (eβ h̄ωk − 1)−1. Equation (20)
also increases in time within kinetic equations for weakly
interacting bosons (see [26] for a recent discussion).

2. Increase of Bose entropy

To study the behavior of S in time for our situation, we
need to add an additional initial condition to (10) and (11),

〈a†
i a j〉 = δi j〈a†

i ai〉, (22)

where (22) holds for the examples (12) and (13). Without (22),
i.e., staying with (10) and (11) only, we cannot express nk (t )
via nk (0). Together with (22) this task is possible from (5),

ni(t ) = 〈b†
i bi〉 =

N∑
k=1

(|Sik|2 + |Rik|2)nk (0)

+
N∑

k=1

|Rik|2 +
N∑

i=1

| fi|2, (23)

where (7) and (9) imply

N∑
k=1

(|Sik|2 + |Rik|2) = 1 + 2
N∑

k=1

|Rik|2 � 1, (24)

N∑
i=1

(|Sik|2 + |Rik|2) = 1 + 2
N∑

i=1

|Rik|2 � 1. (25)
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Let us assume that [consistently with (24) and (25)] there
exists a double stochastic matrix �ik , i.e., a matrix holding

�ik � 0,

N∑
i=1

�ik = 1,

N∑
k=1

�ik = 1, (26)

such that2

|Sik|2 + |Rik|2 � �ik . (27)

Matrices |Sik|2 + |Rik|2 that satisfy (27) are called double su-
perstochastic [27,28]. Once (26) and (27) are assumed, the
derivation of the second law in the Bose-entropic formulation
becomes straightforward from noting that s(nk ) from (21) is a
positive, increasing, and concave function:

S(t ) =
N∑

i=1

s(ni(t )) �
N∑

i=1

s

(
N∑

k=1

�iknk (0)

)

�
N∑

i,k=1

�iks(nk (0)) =
N∑

k=1

s(nk (0)) = S(0). (28)

Thus the initial conditions (10), (11), and (22) and dynamic
restriction (27) are sufficient for the second law (28).

3. Validity of inequality (27)

Note that (27) trivially holds for |Rik|2 = 0. We emphasize
that (27) implies (24) and (25), but the converse does not
hold. To avoid confusion note that

∑N
k=1(|Sik|2 + |Rik|2) � 1

and
∑N

i=1(|Sik|2 + |Rik|2) � 1 imply |Sik|2 + |Rik|2 � �ik for
some double stochastic matrix �ik [27,28].

The inequality (27) holds for N = 2 [see Appendix A,
which also discusses the simplest counterexample of (27) for
N = 3]. A constructive necessary and sufficient condition for
the validity of (27) was found in [29],∑

i∈I, k∈J
(|Sik|2 + |Rik|2) � |I| + |J | − N, (29)

where (29) should hold for all subsets I and J of {1, . . . , N}
and where |I| and |J | are the numbers of elements in I and
J , respectively. The conditions (29) are straightforward to
check at least for not very large N . The physical meaning of
(29) is that sufficiently small values of |Sik|2 + |Rik|2 are to be
excluded.

More general (but less constructive) sufficient dynamical
conditions for (28) can be stated as well. For example, when-
ever (27) does not hold, but still

s

(
N∑

k=1

(|Sik|2 + |Rik|2)nk (0) +
N∑

k=1

|Rik|2 +
N∑

i=1

| fi|2
)

�
N∑

k=1

(|Sik|2 − |Rik|2)s(nk (0)) (30)

2For the validity of (28) we in fact need instead of (26) a seem-
ingly weaker condition, where

∑N
i=1 �ik = 1 in (26) is replaced by∑N

i=1 �ik � 1. However, this condition together with
∑N

k=1 �ik = 1
and �ik � 0 leads to

∑N
i=1 �ik = 1.

holds for all i, we sum both parts of (30) over i, employ (25),
and find S(t ) � S(0).

B. Similarities and differences with the standard
formulation of the second law

We found two unidirectional relations inherent in linear
dynamics for bosons: The inequality (15) shows an increase
of the mean photon number, while (28) is about the increase
of the Bose entropy. It is useful to compare these relations
with the standard (Thomson) formulation of the second law
[30,31]: A unitary dynamics does not decrease the mean en-
ergy of a quantum system that started its evolution from a
Gibbsian equilibrium (or at least passive) state. The unitary
dynamics is realized via a time-dependent cyclically changing
Hamiltonian; the cyclic condition is needed to ensure that the
initial and final Hamiltonians are equal [30,31].

The following are the similarities.
(i) Equations (15) and (28) and Thomson’s formulation

refer to unidirectional changes inherent in a unitary evolution.
All of them hold for specific initial states.

(ii) For the single-mode situation Eq. (15) [i.e., (3)] refers
to basically the same quantity as the Thomson formulation,
since the mean photon number is proportional to the mean
energy.

(iii) Equation (15) relates to a noise increase [cf. (17) and
(18)]. The same holds for the entropic formulation (28) that
refers to the Bose entropy (20). Thomson’s formulation has a
similar bridge, since it also tells about the broadening of the
energy distribution in the final state compared to the initial
state. This broadening is quantified by the entropy of the
energy probability distribution [30,31].

The following are the differences.
(a) The second law holds for any unitary evolution, while

(15) is restricted to a linear evolution of boson modes. The
inequality (28) assumes even more restriction [see (27) and
(22)].

(b) The direct relation between the energy and photon
number is broken for the multimode situation, i.e., the analog
of (15) for energy does not hold: The mean energy change

N∑
i=1

ωi(〈b†
i bi〉 − 〈a†

i ai〉) (31)

need not have a definite sign for the initial conditions (10) and
(11). For (31), the derivation that led to (15) breaks down at
the point when after the summation over index i, one needs to
employ the first of Eqs. (9). The same holds for (30): It does
not apply to the mean energy. In other words, Eq. (30) states
that the Bose entropy must increase without simultaneously
increasing the mean energy (or at least keeping it constant).

(c) In the applicability domain the second law demands
equilibrium (e.g., Gibbsian) or at least a passive initial state
[30,31], while (10), (11), and (2) allow initial states that need
not be equilibrium or passive [cf. (13)]. Recall that a passive
state has a density matrix ρ that is a nonincreasing function of
the Hamiltonian H [30,31]. For a (Gibbsian) equilibrium state
this function is specific: ρ = e−βH/tre−βH , where β > 0 is the
inverse temperature [30,31]. Thus, Eq. (15) is more general
than the second law in the context of initial states, but at the
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same time it is less general in the context of dynamics, as it
is restricted to linear evolution. The inequality (28) assumes
more restriction on the initial state [see (22)].

IV. COOLING TWO EQUILIBRIUM MODES

A. Setup

Once (19) is understood to define heating for linear dynam-
ics with the initial conditions (10) and (11), it is natural to ask
whether nonlinear processes can cool, i.e., decrease the initial
number of photons. To facilitate the thermodynamic mean-
ing of this question, we will consider two initially Gibbsian
equilibrium bosonic modes at the same temperature T . Now
a single equilibrium mode cannot be cooled by any unitary
(generally nonlinear) operation, since the mean occupation
number is proportional to the energy, and the energy decrease
for such a situation is prohibited by the second law. However,
two initially equilibrium modes at different frequencies can
be cooled, in terms of the mean full occupation number, via
specific nonlinear interactions. Hence, we will first determine
the optimal cooling and then turn to a nonoptimal but feasi-
ble scenario from the viewpoint of experimentally realizable
nonlinear interactions.

Consider the initial state of two modes with frequencies ω1

and ω2 at temperature T ,

ρ = ξ exp

(
−β

2∑
i=1

ωin̂i

)
, ξ = (1 − e−βω1 )(1 − e−βω2 ),

(32)

n̂i ≡ a†
i ai, i = 1, 2, n̂ ≡

2∑
i=1

a†
i ai, (33)

where h̄ = 1, β = 1/kBT , and n̂i is the occupation number
operator for each mode. The two-mode system undergoes a
unitary process that aims at cooling:

ρ(t ) = Uρ U †, UU † = 1. (34)

B. COP and efficiency

Besides targeting the mean occupation number, we char-
acterize the cooling via two efficiencylike quantities. Since ρ

in (32) is an equilibrium state, the final average energy found
from (34) is larger than the initial one, which is the second
law:

2∑
i=1

ωi�ni � 0, �ni ≡ tr[ρ(U †n̂iU − n̂i )]. (35)

Equation (35) defines the energy cost of cooling and it
motivates the usual definition of the COP [20], where the
achieved cooling −∑2

i=1 �ni > 0 is divided over the energy
cost

∑2
i=1 ωi�ni.

Let us define the frequency ratio as

α ≡ ω2

ω1
< 1. (36)

We use the dimensionless COP conventionally defined as

K = − �n1 + �n2

�n1 + α�n2
, (37)

where a larger K means, e.g., a better cooling with a smaller
energy cost. In (37) we take α < 1 without loss of generality.
Hence, the fact of cooling −∑2

i=1 �ni > 0 implies, via (35)
and α < 1,

0 � α(−�n2) � �n1 � −�n2. (38)

Now (38) motivates us to define �n1 − �n2 = |�n1| + |�n2|
as the total number of occupation changes introduced in the
system. This is consistent with thinking about the cooling
as photon conversion: Some amount of low-energy photons
(�n2 < 0) transforms into a smaller amount of higher-energy
photons (�n1 > 0). The sum of low-energy photons given
and high-energy photons received will be the total number of
occupation changes. Only a fraction η of those lead to cooling:

η = −�n1 + �n2

�n1 − �n2
. (39)

We call η the efficiency of cooling. It is similar to other
quantum efficiencies employed in optics [3,24]. Using (35)
and (38), we get a bound where temperatures are replaced by
frequencies

η � �n1 + �n2

�n2
� 1 − min[ω1, ω2]

max[ω1, ω2]
, (40)

i.e., cooling is impossible for ω1 = ω2. Note that (40) is more
similar to the Otto efficiency than to the Carnot efficiency of
heat engines [32].

C. Optimal cooling

Given (34) and (33), we look for the unitary which mini-
mizes the mean of n̂ in the final state:

Uopt = argminU [tr(UρU †n̂)]. (41)

Noting the eigenresolutions [cf. (32) and (33)]

ρ =
∞∑

k=0

rk|rk〉〈rk|, n̂ =
∞∑

l=0

νl |νl〉〈νl |, (42)

we get, from (34), (42), and (41),

tr(UρU †n̂) =
∞∑

k,l=0

rkνl zkl , zkl = |〈νl |U |rk〉|2, (43)

where ∑
k

zkl =
∑

l

zkl = 1, (44)

i.e., zkm is a doubly stochastic matrix [cf. (26)]. Such matrices
form a compact convex set with vertices being permutation
matrices [28]. As (43) is linear over zkm, it reaches the mini-
mum value on the vertices, i.e., on permutation matrices zkl .
This implies, from (43), that Uopt can be chosen as a permuta-
tion matrix.

Thus Uopt is a permutation matrix and its form is seen from
(43) and (42):

minU [tr(UρU †n̂)] =
∞∑

k=0

ν
↑
k r↓

k , (45)

ν
↑
1 � ν

↑
2 � ν

↑
3 � · · · , r↓

1 � r↓
2 � r↓

3 � · · · . (46)

032214-5



HOVHANNISYAN, STEPANYAN, AND ALLAHVERDYAN PHYSICAL REVIEW A 106, 032214 (2022)

In (46) [cf. (42)] the ordered (antiordered) eigenvalues of
n̂ (ρ) refer to the final state in (34). We visualize the

orderings of eigenvalues in the initial state of (32) and
(33),

n̂ 0 1 2 3 · · ·
(0, 0) (0, 1), (1, 0), (0, 2), (1, 1), (2, 0) (0, 3), (1, 2), (2, 1), (3, 0) · · ·

ρ 1 yα, y y2α, yα+1, y2 y3α, y2α+1, yα+2, y3 · · ·
, (47)

where y ≡ e−βω1 . The first, second, and third rows in (47)
show the eigenvalues of n̂, (n̂1, n̂2), and ρ, respectively, with
the prefactor ξ omitted [cf. (32)]. The unitary process of
(34) and (45) permutes the eigenvalues of ρ. Using (47), we
calculate the averages of n̂ and n̂i = a†

i ai:

〈n̂〉 = ξ (1yα + 1y + 2y2α + 2yα+1 + 2y2 + · · · ),

〈n̂1〉 = ξ (0yα + 1y + 0y2α + 1yα+1 + 2y2 + · · · ),

〈n̂2〉 = ξ (1yα + 0y + 2y2α + 1yα+1 + 0y2 + · · · ). (48)

The eigenvalues of ρ in (47) are organized in columns. When-
ever the maximal element ykα of the kth column is larger
than the minimal element yl of the lth column (l < k), we
interchange them and achieve some cooling. Formally, we
should iterate until all elements in the third row are arranged
in descending order [cf. (46)]. Thus the optimal cooling in-
creases the probability of eigenstates of n̂ with lower photon
number. Note from (47) and (48) that we can interchange
elements within each column without changing �n.

When �n is fixed, the descending order of ρ’s eigenvalues
in the final state yields simultaneously the minimum value
of �n1 and the maximum value of �n2. This is because
the eigenvalues of n̂1 (n̂2) in (47) are arranged in ascending
(descending) order. Equations (37) and (39) show that thereby
also η and K reach their maximal values at the optimal �n.
The rule (48) stays intact and can be used after permutations.

The exact calculation of (45) is out of reach, since ρ has
an infinite number of eigenvalues. However, we can develop
a useful bound for it by focusing on permutations between
nearest-neighbor columns. We define, from (36),

m ≡
⌈ α

1 − α

⌉
, (49)

where �c� is the smallest integer greater than or equal to c.
Looking at (47) we see that for k � m, the maximal element
of the (k + 1)th column is larger than the minimal element of
the kth column. Permuting them will contribute to �n calcu-
lated via (45). Likewise, for k � m + 2, the next to maximal
element of the (k + 1)th column is larger than the next to
minimal element of the kth column. To visualize this situation,
consider a part of (47) between columns m + p and m + p + 1
(p � 0):

n̂ m + p m + p + 1
ρ . . . , yα+m+p−1, ym+p y(m+p+1)α, y(m+p)α+1, . . .

,

(50)

where we omitted the second row of (47). Continuing this
logic, we see that a new permutation appears for each even
p and that we can cover all nearest-neighbor permutations.

Hence a bound [cf. (32) and (45)]

0 < −�nopt ≡
∞∑

k=0

(nkrk − n↑
k r↓

k )

� ξ

∞∑
l=0

yl (α+1)
∞∑

k=m

(y(k+1)α − yk )

= (1 − y)yα(m+1) − (1 − yα )ym

1 − yα+1
. (51)

According to (51), cooling is possible for any 0 � α < 1, i.e.,
Eq. (51) is positive and grows with y = e−βω1 changing from
0 (at y = 0) to 1−α

1+α
at y = 1. Appendix B studies the optimal

cooling numerically. In particular, it shows numerical plots for
the optimal Kopt (COP) and ηopt (efficiency).

Now assume that m given by (49) satisfies m  1. Then
the bound (51) gets small and becomes nearly exact, since
the relative error between �nopt and (51) scales as O(y2m).
This estimate follows from the contribution of next-nearest-
neighbor permutations and is confirmed in Appendix C. We
report here the limiting values of K and η only, which are
obtained as described above [cf. (37), (39), and (40)]:

Kopt → ∞, ηopt → 0 for α → 1, (52)

Kopt → ∞, ηopt → 1 for α → 0. (53)

In (53) α = ω2/ω1 → 0 is understood in the sense of a large
ω1 and a small ω2. It is also important to note that both �n1

and �n2 are functions of α and in the limit of α → 1 both
tend to zero. In the second limits of (52) and (53) η coincides
with the Otto bound. In both limits the energy costs of cooling
are negligible: Kopt → ∞. In the more general case of large
ω1 and fixed ω2, we study ηopt and Kopt in Appendix D.

V. FEASIBLE INTERACTION HAMILTONIAN
FOR COOLING

How is a permutation unitary Uopt realized? This relates to
one of the major questions of quantum control (see, e.g., [33]).
Any Hamiltonian that is a polynomial of a fixed degree over
a1, a†

1, a2, and a†
2 can be realized via sufficiently many linear

operations plus a single-mode nonlinearity [34]. However,
realizing the permutation Uopt should be difficult in practice,
since it refers to a Hamiltonian that is highly nonlinear over
a1, a†

1, a2, and a†
2.

Now we focus on a feasible nonlinear interaction and deter-
mine its cooling ability. The feasibility comes at a cost: Now
cooling will be possible mostly next to nonlinear resonances
ω2 � 2ω1 or 2ω2 � ω1. This will also connect to the Manley-
Rowe theorem, a known relation of nonlinear optics [21,22].
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The simplest χ2 nonlinear interactions can be realized in
an anisotropic (e.g., crystalline) medium. Here the medium
polarization �P is quadratic in the electric field �E [3,22,35,36]:
�P = χ (1) �E + �Eχ (2) �E , where χ (1) and χ (2) are susceptibilities.
Neglecting the polarization degree of freedom for the elec-
tric field, its quantum operator representation is �E → a† + a
[3,36]. Hence, the nonlinear interaction can be written as

HI = (a†
1 + a1)(a†

2 + a2)2 + (a†
1 + a1)2(a†

2 + a2), (54)

with the full Hamiltonian of the system being

H = ω1a†
1a1 + ω2a†

2a2 + gHI = H0 + gHI , (55)

where g is the interaction constant.
Yet another scenario for (55) is realized in the optomechan-

ics. In addition to its applications in quantum technologies
[37], this field emerged as a potential basis for quantum
gravity and foundations of quantum mechanics [38,39]. In
the optomechanical setting, the interaction between a laser
and a mechanical oscillator is such that the resonance fre-
quency ω1(x) of the laser depends on the position x of the
mechanical oscillator. Hence their joint Hamiltonian reads
H = ω1(x)a†

1a1 + ω2a†
2a2 [37]. Here a1 and a2 are the anni-

hilation operators for the laser and the mechanical oscillator,
respectively. Keeping up to the linear term of the Taylor ex-
pansion of ω1(x) and using x = a†

2 + a2, we get

H = ω1a†
1a1 + ω2a†

2a2 + (∂xω1)a†
1a1(a†

2 + a2), (56)

which closely relates to (55).
To employ (54) and (55) in (35) we introduce the free

Heisenberg interaction Hamiltonian HI (t ) = eiH0t HI e−iH0t and
represent ρ(t ) = e−itHρeitH in (34) via chronological expo-
nent ←−exp:

ρ(t ) = e−iH0tŨρ Ũ †eiH0t , Ũ = ←−exp

(
−i

∫ t

0
ds gHI (s)

)
.

(57)

Now we expand Ũ into a Dyson series

Ũ = 1 − ig
∫ t

0
ds HI (s)

− g2
∫ t

0
ds1

∫ s1

0
ds2HI (s1)HI (s2) + · · · . (58)

Using eiH0sake−iH0s = e−iωk sak (k = 1, 2) in HI (t ), we can
show that the order of magnitude estimate of the kth term in
(58) reads

gk�−k sink (�t/2), (59)

� = min[ω1, ω2, |2ω1 − ω2|, |2ω2 − ω1|]. (60)

Thus, for a suitable g, ω1 and ω2 we can keep in (58) the
first three terms. Within this weak-coupling approximation we
calculate (35) in Appendix E, showing that sufficiently large
cooling �n < 0 is possible only for

ω2 � 2ω1 or 2ω2 � ω1, (61)

i.e., for two possible near-resonance conditions. Restricting
ourselves to the latter case α ≡ ω2/ω1 � 0.5, we note that
terms a1a†2

2 + a†
1a2

2 in (54) oscillate much slower than other

terms. Hence, within the rotating-wave approximation we can
take, in (54),

HI � HI ≡ a1a†2
2 + a†

1a2
2. (62)

The approximation is studied in Appendix E, where we also
work out (54). Now HI in (62) leads to an exact operator
conservation

2n̂1 + n̂2 = const, n̂k = a†
kak, k = 1, 2. (63)

This conservation is the Manley-Rowe theorem for the con-
sidered nonlinear system [21,22]. The theorem does not
generally hold for the complete interaction Hamiltonian (54).
However, the cooling necessitates α � 0.5 (or α � 2) and is
accompanied by an approximate conservation law (63) (or
n̂1 + 2n̂2 = const). Using (62) and (63), we get from (58),
(57), and (35), keeping there the first three terms only (the
order of g2),

�n1 = 8g2 sin2
( (2ω2−ω1 )t

2

)
(2ω2 − ω1)2

eβω1 − e2βω2

(eβω1 − 1)(eβω2 − 1)2
, (64)

�n2 = −2�n1, �n = −�n1. (65)

Hence the cooling at α � 0.5 is described via η = 1
3 and K =

1
1−2α

[cf. (37) and (39)]. Once η is finite and K is large, we
achieve cooling with a small energy cost.

Equation (64) shows that a sizable cooling is achieved for
sufficiently long times, because sin2( (2ω2−ω1 )t

2 ) is maximized
for |2ω2 − ω1|t ∼ π , while |2ω2 − ω1| is small [cf. (61)].
This relation resembles the third law for the ordinary (energy)
cooling, though more efforts are needed for its systematic
investigation; e.g., we need a more complete understanding
of the evolution generated by (55).

VI. SUMMARY

Our starting point was that linear transformations on bo-
son modes (linear optics) increase the overall mean photon
number provided the initial state is (generalized) diagonal [see
(10), (11), and (15)]. This unidirectional relation refers to the
linear evolution, but applies for a wider set of initial states
(10) and (11) than the second law does. Its similarities and
differences with respect to the second law were discussed
in Sec. III B. We formulated this relation in full generality.
The literature was close to such a formulation several times
[23,25]. Given that the lion’s share of boson dynamics is
linear, this general result will hold for a number of fields
including optics and phononics. Importantly, we showed ex-
plicitly that the relation (15) connects to increasing the overall
noise in the system (though its subsystems can get a noise
reduction as happens, e.g., in squeezing [24]). Hence we in-
terpret it as heating.

It is interesting to ask how specifically the increase (15) of
the overall mean photon number for initial states (10) and (11)
relates to the second law. To answer this question, we studied
the behavior of the Bose entropy (20) for linear dynamics
and for the same class of initial states (10) and (11). The
Bose entropy is conditionally maximized at equilibrium and
it can change during unitary evolution in contrast to the (fine-
grained) von Neumann entropy. We showed in Sec. III that for
a subclass of linear evolution the Bose entropy (20) increases

032214-7



HOVHANNISYAN, STEPANYAN, AND ALLAHVERDYAN PHYSICAL REVIEW A 106, 032214 (2022)

and this increase also demands more restricted initial states
(10), (11), and (22) than the validity of (15). A precise def-
inition of this subclass relates to certain nontrivial problems
in linear algebra. We thus confirm that for linear evolution the
increase (15) of the overall mean photon number is a more
general unidirectional relation than the second law.

We showed that the inverse of the heating in terms of the
mean photon number (i.e., cooling) is possible within non-
linear (intermode) interactions. The cooling interpretation is
not arbitrary and is characterized by efficiency and coefficient
of performance. The former holds Otto’s bound of the heat-
engine efficiency (i.e., Carnot efficiency with temperatures
replaced by frequencies). For the COP we anticipated, but so
far have not identified, a general relation similar to Carnot’s
bound for the refrigeration COP [20].

We studied feasible nonlinear processes (e.g., χ2

[3,22,35,36]) on two modes with different frequencies ω1 and
ω2. Then the cooling in terms of the mean photon number
happens (mostly) in the vicinity of nonlinear resonances. We
also studied the optimal cooling, which is possible for any
ω1 �= ω2 but is demanding from the viewpoint of dynamic
realization.
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APPENDIX A: EXAMPLES AND COUNTEREXAMPLES
FOR INEQUALITY (26)

We are given any 2 × 2 matrix(
a b
c d

)
, (A1)

with non-negative elements and

a + b � 1, c + d � 1, a + c � 1, b + d � 1. (A2)

We define

c = min[a, b, c, d] (A3)

and note that only c < 1 is nontrivial, since otherwise (26)
holds for (A1) and any double stochastic matrix. Now(

a b
c d

)
�

(
1 − c c

c 1 − c

)
= �, (A4)

where the latter matrix is double stochastic. Thus (26) holds
for N = 2.

The simplest counterexamples for (26) at N = 3 is the
following matrix with non-negative elements:⎛

⎝a11 a12 a13

0 a22 a23

0 a32 a33

⎞
⎠. (A5)

Here a21 = a31 = 0. We assume

3∑
i=1

aik � 1,

3∑
k=1

aik � 1, (A6)

FIG. 1. Optimal COP Kopt versus α = ω2/ω1 < 1 for the optimal
cooling. Here yα = e−βω2 = 0.6 and numerical calculations are done
up to the block number 300 [see (47)].

and additionally

a22 + a32 < 1. (A7)

If a double stochastic matrix holding (26) exists, then we have⎛
⎝a11 a12 a13

0 a22 a23

0 a32 a33

⎞
⎠ �

⎛
⎝1 0 0

0 �22 �23

0 �32 �33

⎞
⎠. (A8)

Now the latter matrix cannot be double stochastic and hold
(26), as the condition (A7) is violated, if we take, in (29),
I = 2, 3 and J = 1, 2.

APPENDIX B: NUMERICAL RESULTS FOR
OPTIMAL COOLING

Recall our discussion after (47). There we explained that
the optimal cooling, with respect to all involved quantities
�nopt (photon number difference), Kopt (COP), and ηopt (effi-
ciency), is achieved once all eigenvalues of the final density
matrix are arranged in descending order [see the third row
in (47)]. Numerically, this means that we need to take a
sufficiently long but finite sequence of eigenvalues (starting
from the largest one) and ensure that the results are stable with
respect to the increasing length of this block.

Our numerical results are shown in Figs. 1–3. First, recall
that in K = − �n1+�n2

�n1+α�n2
, the achieved photon number decrease

�n = �n1 + �n2 < 0 is divided over the dimensionless en-
ergy cost �n1 + α�n2 [cf. (37)]. It is seen from Fig. 1 that
Kopt as a function of α [cf. (36)] has (singular) local minima
at points α = k

k+1 , where k ∈ N is an integer. We checked
that these local minima of K come mostly from the singular
behavior of the energy cost �n1 + α�n2 (see Fig. 2). Now
�n (not shown in figures) shows weak singularities at those
points α = k

k+1 , but these singularities are much weaker than
those of the energy cost �n1 + α�n2.

The origin of these singularities for Kopt (and �n1 + α�n2)
can be clarified as follows. Recall that [cf. (49)]

m ≡
⌈ α

1 − α

⌉
(B1)
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FIG. 2. Same as in Fig. 1, but for the optimal dimensionless
energy cost �n1 + α�n2 versus α defined via (36).

refers to the the group of eigenvalues of the initial state ρ

starting from which the eigenvalues of ρ are not arranged
in descending order [see the discussion after (47)]. At points
α = k

k+1 the index of the block from which the permutations
start undergoes a jump discontinuity of increasing by one.

Figure 3 presents the numerical behavior of ηopt as a
function of α. It is seen that ηopt also shows singularities at
α = k

k+1 , though these singularities are weaker than those for
Kopt (cf. Fig. 1). In particular, these singularities do not change
the monotonic behavior of ηopt as a function of α.

APPENDIX C: ASYMPTOTIC RESULTS FOR OPTIMAL
COOLING: THE LIMIT α → 1

Equation (51) provides the nearest-neighbor approxima-
tion for �n. There we also indicated that (51) becomes close
to its exact value whenever m defined via (B1) is sufficiently
large or, equivalently, α → 1. The precision of this approx-
imation relates to the necessity of next-nearest-neighbour
permutations. The largest value of p in (50), where such per-
mutations are necessary, can be estimated from the following

FIG. 3. Same as in Fig. 1, but for the efficiency ηopt versus α.

FIG. 4. Here �n is calculated in a numerically exact way by
directly arranging all eigenvalues of the final density matrix ρ(t ) in
descending order [cf. (47)]. We take yα = e−βω2 = 0.8 and numerical
calculations are done up to block number 100, which is greater than
5m [cf. (B1)] for all those α values included in the graph. This
quantity is denoted by �nexact . We denote by �nNN the nearest-
neighbor approximation given by (51). The blue curve shows the
relative error |�nexact−�nNN |

�nNN
and the red curve | y2m(α)

�nNN
|. The red curve

is kinked because m(α) is [see (B1)]. It can be seen that the relative
error is well within the announced range | O(y2m(α) )

�nNN
|.

diagram:

n̂ 2m 2m + 1 2m + 2
ρ . . . , y2m · · · y(2m+2)α, . . .

. (C1)

Now note from (B1) that y2m < y(2m+2)α , i.e., a next-nearest-
neighbor permutation is necessary. Hence the contribution
from next-nearest-neighbor permutation scales as O(y2m) and
for m  1 this is smaller than what was retained in (51). This
estimate is crude, since it does not account for permutations
that already occurred (within the nearest-neighbor approach)
between columns 2m and 2m + 1. However, it is sufficient
for our purposes. Indeed, Fig. 4 shows the relative error of
numerically exact calculation of �n and compares it with
(51), showing that it is well within the above bound O(y2m).

COP in the limit α → 1

To study the COP K , we can write the mean changes of n̂1

and n̂2 in the approximation of nearest-neighbor permutations
[cf. (50)]

�n1 = ξ

∞∑
i=ñ

(yα(i+1) − yi )
∞∑
j=0

y j(1+α)(i + j),

�n2 = −ξ

∞∑
i=ñ

(yα(i+1) − yi )
∞∑
j=0

y j(1+α)(i + j + 1), (C2)

where ξ = (1 − e−βω1 )(1 − e−βω2 ) is the normalization factor
[cf. (32)]. Note that to obtain (C2) we do not make any permu-
tation within columns with the same eigenvalue of n̂ [cf. (47)
and (D4)]. Doing such permutations will make the estimates
in (C2) closer to the minimal value of �n1 and the maximal

032214-9



HOVHANNISYAN, STEPANYAN, AND ALLAHVERDYAN PHYSICAL REVIEW A 106, 032214 (2022)

FIG. 5. Numerical results for the COP K . Here yα = 0.8 and
numerical calculations are done up to block number 5m for all those
α values included in the graph.

value of �n2 (both for a fixed �n). Hence (C2) suffices for
bounding K from below,

K � 1

(1 − α)( y1+α

1−y1+α + 1
1−yα )

⇒ lim
α→1

K → ∞, (C3)

which is also observed numerically; see Fig. 5.

APPENDIX D: ASYMPTOTIC RESULTS FOR OPTIMAL
COOLING: THE LIMIT α → 0

1. Error estimation

For α finite and sufficiently close to 0, the action of an
optimal unitary results in

N 0 1 · · · a′ · · ·
R 1 yα, y2α · · · . . . , ym1α, y, y(m1+1)α, . . . · · ·

a′ + i · · ·
. . . , y(m2−1)α, y2, y(m2+1)αy(m2+2)α, . . . · · · ,

(D1)

where m1 = �1/α�, m2 = �2/α� � 2m1, and a′ is determined
from

a′(a′ + 1)/2 � m1 � (a′ + 1)(a′ + 2)/2 (D2)

and i from

(a′ + i)(a′ + i + 1)/2 � m2 � (a′ + i + 1)(a′ + i + 2)/2.

(D3)
We see that i < 3a′. Now we show that for the calculation of
averages of photon numbers we can use

N 0 1 2 3 · · ·
R 1 yα, y2α y3α, y4α, y5α y6α, y7α, y8α, y9α · · ·

(D4)
instead of (D1), as in the limit α → 0 corresponding error
terms vanish. We denote by n(0)

1 and n(∗)
1 the average n̂1 calcu-

lated with (D1) and (D4), respectively, and by �n1e the error
term n(0)

1 − n(∗)
1 . First, we write the contribution from the a′th

block to the error term

�na′
1e = (y − y(m1+1)α )(m1 + 1 − u)

+ (y(m1+1)α − y(m1+2)α )(m1 + 2 − u) + · · ·
+ (y(u+a′−1)α − y(u+a′ )α )a′, (D5)

where u = a′(a′ + 1)/2. The term �na′
1e can be estimated from

above,

�n(a′ )
1e � (y − y(m1+1)α )a′ + (y(m1+1)α − y(m1+2)α )a′

+ · · · + (y(u+a′−1)α − y(u+a′ )α )a′

= (y − y(u+a′ )α )a′. (D6)

Similarly, one can estimate the contribution from the (a′ +
1)th block

�n(a′+1)
1e � (y(u+a′ )α − y(u+2a′+2)α )(a′ + 1). (D7)

Summing up all contributions, we get

�n1e � (y + y(u+a′ )α + y(u+2a′+2)α + y(u+3a′+5)α + · · · )

+ [(y2 − y(m2+1)α )(a′ + i) + (y3 − y(m3+1)α )(a′ + i′)

+ (y4 − y(m4+1)α )(a′ + i′′) + · · · ], (D8)

where m3 = �3/α� � 3m1 and m4 = �4/α� � 4m1. In (D8) i′
and i′′ are determined from conditions similar to (D3),

(a′ + i′)(a′ + i′ + 1)

2
� m3 � (a′ + i′ + 1)(a′ + i′ + 2)

2
,

(a′ + i′′)(a′ + i′′ + 1)

2
� m4 � (a′ + i′′ + 1)(a′ + i′′ + 2)

2
,

(D9)

and result in i′ < 4a′ and i′′ < 5a′. Now we can estimate (D8)
further,

�n1e � (y + y2 + y3 + y4 + · · · )

+ (y23a′ + y34a′ + y45a′ + · · · )

� y(1 + y)

1 − y
+ a′ y ln y

(1 − y)2
. (D10)

Now note that in the limit α → 0, which is ω1 → ∞, a′

goes to infinity as
√

ω1
ω2

. As 0 � �n1e � y(1+y)
1−y + a′ y ln y

(1−y)2 we

conclude that (remember that y = e−ω1β)

lim
α→0

�n1e → 0. (D11)

2. Asymptotic expressions and their integral representations

In our further calculations we use (D4). Using the same
procedure as in (48), we find from (D4) the expressions for
�n1,2 (ε = αβω1),

�n1 = ξ

∞∑
a=0

e−εa(a+1)/2
a∑

b=0

e−εbb − ξ1

∑
a

ae−βω1a

= ξ

∞∑
a=0

e2ε

(eε − 1)2
e−(a/2+1)(a+1)ε[a(e−ε − 1) + eaε − 1]

− 1

eβω1 − 1
,
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FIG. 6. Numerically calculated efficiency η versus ε in the lim-
iting case ω1  ω2 using (D14) and (D15). Here we set βω1 = 10
and the smallest value of ε is 0.007.

�n2 = ξ

∞∑
a=0

e−εa(a+1)/2
a∑

b=0

e−ε(a−b)b − ξ2

∑
a

ae−εa

= ξ

∞∑
a=0

eε

(eε − 1)2
e−[a(a+1)/2]ε[a(eε − 1) + e−aε − 1]

− 1

eε − 1
, (D12)

where we define ξ1 = 1 − e−βω1 and ξ2 = 1 − e−βω2 ; hence
ξ = ξ1ξ2. Before studying (D12) numerically, we apply
Hubbard-Stratonovich transformation

e−(a2/2)ε =
√

1

2πε

∫ ∞

−∞
dv e−v2/2ε−iav (D13)

for faster and more accurate calculations:

∞∑
a=0

e−(a/2+1)(a+1)ε[a(e−ε − 1) + eaε − 1]

=
√

1

2πε
e−ε

∫ ∞

−∞
dv e−v2/2ε

(
(e−ε −1)

e−[iv+(3/2)ε]

(1 − e−[iv+(3/2)ε] )2

+ 1

(1 − e−[iv+(1/2)ε] )
− 1

(1 − e−[iv+(3/2)ε] )

)
, (D14)

∞∑
a=0

e−[a(a+1)/2]ε[a(eε − 1) + e−aε − 1]

=
√

1

2πε

∫ ∞

−∞
dv e−v2/2ε

(
(eε − 1)

e−[iv+(1/2)ε]

(1 − e−[iv+(1/2)ε] )2

+ 1

(1 − e−[iv+(3/2)ε] )
− 1

(1 − e−[iv+(1/2)ε] )

)
. (D15)

The results of numerical calculations for η and K are depicted
in Figs. 6 and 7. As seen from the figures, K → ∞ and η → 1
in the limit ε � 1. Below we show analytically that indeed K
and η reach these limits.

FIG. 7. Same as in Fig. 6 but for COP K .

3. Asymptotic results via the Euler-Maclaurin formula

To study the asymptotics of η and K in the limit ε � 1 we
apply the Euler-Maclaurin formula for the sums in (D12),

∞∑
a=0

e2ε

(eε − 1)2
e−(a/2+1)(a+1)ε[a(e−ε − 1) + eaε − 1]

≡
∞∑

a=0

f1(a) =
∫ ∞

0
dx f1(x) + I1 = S1 + I1, (D16)

where

I1 = f1(0) + f1(∞)

2

+
�p/2�∑
k=1

B2k

(2k)!

[
f (2k−1)
1 (∞) − f (2k−1)

1 (0)
] + Rp, (D17)

Rp �
2ζ(p)

(2π )p

∫ ∞

0
dx

∣∣ f (p)
1 (x)

∣∣. (D18)

Here B2k are Bernoulli numbers, ζ(p) is the Riemann zeta
function, and f (p)(x) is the pth-order differential. In (D16)
p takes different integer values p � 2 and we use p = 2,
because this is the simplest case amenable to estimates.
Similarly,

∞∑
a=0

eε

(eε − 1)2
e−[a(a+1)/2]ε[a(eε − 1) + e−aε − 1]

≡
∞∑

a=0

f2(a)

=
∫ ∞

0
dx f2(x) + I2 = S2 + I2. (D19)

The leading diverging terms in (D16) and (D19) when ε → 0
are S1 and S2 and we omit I1 and I2. Using (D16) and (D19)
for the efficiency and COP, we get the relations

K ≈ − ξS1 − n1i + ξS2 − n2i

ξS1 − n1i + α(ξS2 − n2i )
,

η ≈ −ξS1 − n1i + ξS2 − n2i

ξS1 − n1i − ξS2 + n2i
, (D20)
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where n1i and n2i are initial average occupation numbers. The
limits limα→0 ξS1,2/n2i can be studied analytically and we get

lim
α→0

ξS1,2

n2i
= 0.

Thus, for Kopt and ηopt we obtain

Kopt → ∞, ηopt → 1. (D21)

APPENDIX E: PERTURBATIVE TREATMENT
OF THE FULL NONLINEAR HAMILTONIAN

Let us return to the full, i.e., without the rotating-wave
approximation, nonlinear Hamiltonian given by (54).

See (55) for the complete Hamiltonian. Here we will em-
ploy (54) in the second order of Dyson’s series given by (58)
[see in this context (57)]. For simplicity we will scale out the
factor β, i.e., we denote βg by g, βω1,2 by ω1,2, and t/β by t .

Using (58) and (57), we get

tr[ρ(t )n̂ − ρ(0)n̂] = O(g3) + g2

×
( ∫ t

0
ds HI (s)n̂

∫ t

0
ds HI (s)

−
∫ t

0
ds1

∫ s1

0
ds2HI (s1)HI (s2)n̂

− n̂
∫ t

0
ds1

∫ s1

0
ds2HI (s2)HI (s1)

)
.

(E1)

Formally, the same equation holds for n̂k = a†
kak , where

k = 1, 2 and n̂ = n̂1 + n̂2.
Substituting (54) into (E1), we get

�nk = tr[ρ(t )n̂k − ρ(0)n̂k]

= g2[Ak�(ω1 + 2ω2) + Bk�(ω1 − 2ω2) + Ck�(ω1)]

+ g2[Dk�(ω2 + 2ω1) + Ek�(ω2 − 2ω1) + Fk�(ω2)],
(E2)

where k = 1, 2,

�(x) ≡ 4 sin2 ( 1
2 xt )

x2
, (E3)

A1 = 2(eω1+2ω2 − 1)

(eω1 − 1)(eω2 − 1)2
, A2 = 4(eω1+2ω2 − 1)

(eω1 − 1)(eω2 − 1)2
,

B1 = 2(eω1 − e2ω2 )

(eω1 − 1)(eω2 − 1)2
, B2 = −4(eω1 − e2ω2 )

(eω1 − 1)(eω2 − 1)2
,

C1 = 4eω2

(eω2 − 1)2
, C2 = 0. (E4)

Now D1, E1, and F1 are obtained from A2, B2, and C2, respec-
tively, upon swapping ω1 and ω2. Likewise, D2, E2, and F2 are
obtained from A1, B1, and C1, respectively, upon swapping ω1

and ω2.
For a representative pair of frequencies ω1 and ω2, Fig. 8

demonstrates to what extent �n = �n1 + �n2 calculated via
(E2) predicts cooling, i.e., �n < 0. As stated in the main
text, cooling happens in near-resonance conditions ω2 � 2ω1

or 2ω2 � ω1, which is seen in Fig. 8 (see also Fig. 9 for
additional information).

FIG. 8. Photon number difference �n obtained from (E2) and
(E4) for ω1 = 0.35 and t = 10π , where α = ω2/ω1. It can be seen
that near the resonating frequencies α � 0.5 and α � 2 the interac-
tion Hamiltonian (54) results in cooling. We see that �n > 0 (no
cooling) for other values of α.

Now the essence of the rotating-wave approximation in
(E2) is that, e.g., for |2ω2 − ω1| � min[ω1, ω2, |2ω1 − ω2|],
we can take �(ω1 − 2ω2) in (E2) much larger than other
terms. This reverts to (65).

Estimation of the higher-order terms in Dyson’s series

Using (58), we can show that the terms O(gl ) in Dyson’s
series [cf. (E1)] are based on the structure

k∏
i=1

g
∫ si−1

0
dsiHI (si )ρ(0) ×

k′∏
i=1

g
∫ si−1

0
dsiHI (sk′−i+1)n̂,

(E5)

where k + k′ = l and s0 = t . To get from (E5) the term O(gl )
in Dyson’s series we should take the trace of (E5) and sum it
as

∑l
k=1, k′=1;k+k=l .

FIG. 9. Photon number difference �n obtained from (E2) and
(E4) for ω1 = 0.6 and t = 6π , where α = ω2/ω1. We see that at
the nonresonant point α ≈ 2.8 there are small values of �n < 0
(cooling). Hence, although very small, cooling can also be achieved
far from the resonant frequencies.
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To study (E5), let us take its leftmost multiplier

k∏
i=1

g
∫ si−1

0
dsiHI (si )

=
8∑

α1=1

· · ·
8∑

αk=1

k∏
i=1

g
∫ si−1

0
dsihαi (si ). (E6)

Here {hi}8
i=1 is the set of all monomials in the interaction

Hamiltonian (55):

{hi}8
i=1 ={

a1a2
2, a†

1a2
2, a1a†

2
2, a†

1a†
2

2, a2
1a2, a†

1
2a2, a2

1a†
2, a†

1
2a†

2

}
.

(E7)

Let us also define the frequency set {Wi}8
i=1,

{Wi}8
i=1 = {ω1 + 2ω2,−ω1 + 2ω2, ω1 − 2ω2,

− ω1 − 2ω2, 2ω1 + ω2,−2ω1 + ω2, 2ω1

− ω2,−2ω1 − ω2}. (E8)

Keeping in mind the equation a1,2(s) = a1,2e−isω1,2 , let us take
one term from the sum (E6) corresponding to some α1 · · · αk:

k∏
i=1

g
∫ si−1

0
dsihαi (si ) =

k∏
i=1

ghαi

×
∫ si−1

0
dsi exp(−isiWαi )

=
k∏

i=1

ghαi

1

k!

k∏
i=1

∫ t

0
dsi exp(−isiWαi ). (E9)

The last step uses the fact that we have k! ways to order k
different items and that after taking the operator part out of
the integration we get integration of complex-valued functions
which do not change with ordering. Similarly, for the right-
most multiplier of (E5),

k′−1∏
i=0

ghα′
k′−i

1

k′!

k′∏
i=1

∫ t

0
dsi exp(−isiWα′

i
). (E10)

Straightforward calculation shows that the integral terms in
(E9) and (E10) result in

k∏
i=1

1 − e−iWαi t

iWαi

,

k′∏
i=1

1 − e−iWα′
i
t

iWα′
i

. (E11)

Now we can write (E5) as

8∑
α1=1

· · ·
8∑

αk=1

8∑
α′

1=1

· · ·
8∑

α′
k′=1

gk

k!

gk′

k′!

×
(

k∏
i=1

hαi

k′−1∏
i=0

hα′
k′−i

×
k∏

i=1

1 − e−iWαi t

iWαi

k′∏
i=1

1 − e
−iWα′

i
t

iWα′
i

)
(E12)

and the equation for �n1,2 will be

�n1,2 =
∞∑

k=0

∞∑
k′=0

δ0
k+k′

8∑
α1=1

· · ·
8∑

αk=1

8∑
α′

1=1

· · ·
8∑

α′
k′ =1

gk

k!

gk′

k′!

×
k∏

i=1

1 − e−iWαi t

iWαi

k′∏
i=1

1 − e
−iWα′

i
t

iWα′
i

× tr

(
k∏

i=1

hαiρ(0)
k′−1∏
i=0

hα′
k′−i

n̂1,2

)
. (E13)

Here the sum
∑8

α1=1 · · ·∑8
αk=1

∑8
α′

1=1 · · · ∑8
α′

k′=1 will have 8l

elements for any l , so the number of terms of O(gl ) is 8l (l +
1). This may put doubt in the claim that the higher-order O(gl )
terms of �n can be neglected. However, we believe that it
can be done because 8l is a huge overestimation; for most
α1 · · ·αk, α

′
1 · · ·α′

k′ the trace

tr

(
k∏

i=1

hαiρ(0)
k′−1∏
i=0

hα′
k′−i

n̂1,2

)
(E14)

is zero. Moreover, direct algebraic calculation shows that
(E14) is nonzero only if the operator

� =
k∏

i=1

hαi

k′−1∏
i=0

hα′
k′−i

(E15)

is Hermitian. For example, for l = 2, from 192 terms we get
18 nonzero terms.
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