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Nonlocality under uncertainty-disturbance relations and self-duality
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We exploit the interplay between uncertainty, disturbance, nonlocality, and self-duality within the framework
of generalized probabilistic theories (GPTs). We first introduce an operational uncertainty-disturbance relation
that reveals the discrepancies of GPTs in uncertainty and disturbance exhibited by one single measurement.
We then apply the relation to Bell’s scenarios and derive upper bounds for the basic spatial Clauser-Horne-
Shimony-Holt and the temporal Leggett-Garg inequalities with and without the assumption of strong self-duality,
respectively. It turns out that self-duality, though being thought of as one pillar of the axiomatization of quantum
theory and implying additional constraints, is insufficient to explain the quantum violations. These insights may
serve as a seed for a universal understanding of these basic properties in GPTs.
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I. INTRODUCTION

Quantum theory shows many counterintuitive features,
such as intrinsic uncertainty, measurement-disturbance rela-
tion, self-duality, and nonlocality. In a wider framework of
generalized probabilistic theories (GPTs) [1–7], these features
may also be shared by theories having dramatically different
mathematical structures [8–13]. A fundamental topic is find-
ing physical principles that can single out quantum theory
and provide an interpretation for it [2,6,7,13–19]. This topic
greatly depends on how well one can understand these non-
classical features.

The investigation of this topic often starts with finding
information-theoretic principles for interpreting the quantum
violations of Bell’s inequality [10,20–25]. It is motivated by
an essential observation that, whereas quantum correlations
can violate Bell’s inequality, they do not reach the maximum
extent allowed by the nonsignaling principle [26]. Taking the
basic spatial Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [27], for example, the maximum quantum violation is
known as the Tsirelson bound (2

√
2) [28], which is strictly

less than the maximum violation (4) by the Popescu-Rohrlich
(PR) box [26]. This gap can be interpreted with the restricted
capability of quantum correlations in communication and
computation [10,20–25]. From a different perspective, the gap
can also be accounted for with the local properties exhibited
by an individual subsystem, such as the uncertainty principle
[29–32], local quantum mechanics [33], and self-duality [12].
While these results have provided valuable insights, we still
lack a universal understanding of many aspects. For exam-
ple, current efforts are commonly devoted to accounting for
the quantum bounds for spatial Bell inequalities. It is not
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known what principle can prohibit quantum violations from
reaching the maximum algebraic violation for the temporal
Bell inequalities, such as the Leggett-Garg (LG) inequality
[34]. Another aspect, one important conjecture that bridges
the Tsirelson bound and self-duality, stating that the latter
ensures the former, is based on an analysis of the polygon
model [12]. It is not known what the case is for other GPTs.
Still, although there is much evidence indicating a universal
understanding of nonclassical properties [4,12,29–33], their
interplay remains elusive.

In this paper we pursue such a universal understanding.
As is known, any nonlocal GPT must exhibit intrinsic un-
certainty and a measurement-disturbance relation [35]. This
motivates us to introduce an uncertainty-disturbance relation
(UDR). The relation states that, up to a factor referred to as
an uncertainty-disturbance factor (UDF), the uncertainty of a
maximal measurement is no less than its disturbance effect in
a following measurement. The UDF is defined as a constant
for one specific GPT, but may vary depending on theories.
Thus, it can distinguish GPTs from each other and acts as a
benchmark parameter. The UDR implies a strong constraint
on the correlations and ensures upper bounds for the famous
CHSH and temporal LG inequalities in terms of the functions
of the UDF. The derivations allow us to consider the constraint
of self-duality. We find that self-duality is insufficient for
explaining the quantum violations. Our results thus provide an
alternative perspective allowing one to universally investigate
uncertainty, disturbance, strong self-duality, and violations of
Bell’s inequalities.

II. FRAMEWORK OF GPTS

The framework of GPTs [1,2,4–7] provides a standard
background that enables one to operationally investigate
physical properties without using a specific mathemati-
cal structure. It employs the essential concepts with clear
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operational meaning, such as state, measurement, and trans-
formation, which are prerequisites for any theory.

State. Physical state S is a description of one system that
can give one prediction for any potential measurement. The
collection of all possible states defines one state space �s, and
the collection of unnormalized states λS with λ � 0 defines a
frequently useful concept of state cone �+

s . It is reasonable to
assume that the spaces are convex. Because of that, preparing
one system in S1 with probability p and in a different state S2

with 1 − p definitely leads to another valid mixed state pS1 +
(1 − p)S2. Conversely, the state that cannot be written as a
convex combination of different states is called one pure state.

Measurement. Information of a physical state can be ex-
tracted by performing a measurement. A measurement M is
described with a set of effects {ei} and each effect corresponds
to an outcome. Acting an effect ei on state S yields a probabil-
ity p(ei|S ), namely, the occurrence probability of the outcome
i. The set of all the possible effects defines an effect space
�e, and the set of unnormalized effects assuming the form
λe with λ � 0 defines an effect cone �+

e . An effect is said to
be extremal if it cannot be decomposed as a convex combi-
nation of different ones. If all the effects of a measurement
are normalized extremal effects, the measurement is called a
maximal measurement [6,7], where normalized means there
exists at least one state such that the effect can occur with a
probability of unity.

Pure states and extremal effects define the state and the
effect spaces and are the building blocks of a GPT. One
popular assumption about them is the logical sharpness (LS)
assumption [6,7]

Logical sharpness. For each pure state there is one and only
one normalized extremal effect such that one can get unity
probability.

With this assumption, one can naturally define the post-
measurement state for each extremal effect as the correspond-
ing pure state. This LS assumption ensures weak self-duality,
namely, the state and the effect cones are isomorphic, with the
isomorphism being defined as � : �+

s → �+
e :

∑
i pi · S i

A →∑
i pi · Ai, where � simply maps the ith pure element state S i

A
to the corresponding extremal effect Ai. Strong self-duality is
stronger than the weak self-duality as it requires additionally
that the cones are canonically isomorphic [12,36].

Strong self-duality. A system is strongly self-dual if and
only if there exists an isomorphism T : �+

s → �+
e which is

symmetric and positive semidefinite, namely, p(ei|T (e j )) =
p(e j |T (ei )) � 0 for all effects ei and e j .

Letting T = �, the symmetry in the strong self-duality is
equivalent to a symmetric condition concerning pure states
and extremal effects

p
(
Ai

k

∣∣S j
Al

) = p
(
A j

l

∣∣S i
Ak

)∀i, k, j, l, (1)

where Am
n specifies the mth extremal effect of a maxi-

mal measurement An and Sm
An

the corresponding pure state.
This equivalence can be readily verified by decomposing the
concerned effects and states into pure element states and
extremal effects. Strong self-duality is one pillar of the ax-
iomatization of quantum theory [15,16,36]. It is found that
finite-dimensional homogeneous, strongly self-dual cones are
precisely the cones of positive elements of formally real Jor-
dan algebras, which comes very close to quantum theory

[15,16]. It is worth stressing that there are still other strongly
self-dual models going beyond quantum theory, such as the
polygon model [12].

In quantum theory, pure states and extremal effects are rep-
resented as rank-1 projectors. The strong self-duality immedi-
ately follows from the Born rule p(Ai

k|S j
Al

) = p(A j
l |S i

Ak
) =

|〈Ai
k|Aj

l 〉|2, where |Am
n 〉 specifies the mth eigenstate of observ-

able An. The set of {|〈Ai
k|Aj

l 〉|2} is more restrictive as the
elements formulate a unistochastic matrix [37].

III. UNCERTAINTY AND DISTURBANCE

Classical theory rests on the assumptions of realism and
locality, which imply constraint on correlations in terms of
Bell’s inequalities [38]. Besides quantum theory, a wide range
of GPTs can violate Bell’s inequalities and exhibit nonlocality
and they all ensure the presentation of the intrinsic uncertainty
and disturbance effect [35]. In this section, we first provide a
UDR to capture their connection.

The UDR considers one basic measurement scenario: A
system is prepared in state S , which is subject to a sequen-
tial measurement scheme A0 → A1, where the measurements
are maximal. The previous measurement A0 gives outcomes
with a distribution p := {p(Ai

0|S )} and outputs an averaged
postmeasurement state S̄ , which then is subject to another
following maximal measurement A1 and a disturbed distri-
bution q′ := {p(A j

1|S̄ )} is obtained. If not disturbed, directly
measuring A1 on S yields a distribution q = {p(A j

1|S )}.
Uncertainty. We quantify the uncertainty of A0 by

�A0 = ‖p‖1/2 − 1, (2)

where ‖p‖1/2 := [
∑

i

√
p(Ai

0|S )]2 is the 1
2 -norm of the dis-

tribution p and relates to 1
2 Rényi entropy via H1/2(p) =

log ‖p‖1/2, which is a well-established uncertainty measure
that has been used to investigate uncertainty principle [39]
quantum randomness [40]. In addition, �A0 is Schur con-
cave and equivalent to H1/2(p) in the sense that H1/2(p) =
log(�A0 + 1) and thus defines a legitimate uncertainty mea-
sure.

Disturbance effect. The distribution of q may be different
from the disturbed distribution q′. The difference quantifies
the disturbance effect caused by A0 in A1. One popular dis-
turbance measure is classical trace distance [31,41]

DA0→A1 =
∑

j

∣∣q(
A j

1

∣∣S) − q′(A j
1

∣∣S̄)∣∣. (3)

Uncertainty and disturbance are two distinct features of one
single measurement, which may relate to each other. As some
instructive illustration, we first consider classical theory and
quantum theory. Classically, measuring a quantity does not
disturb a system’s state but may show nontrivial uncertainty
as the physical system can be prepared in a mixed state. In
quantum theory, uncertainty is a prerequisite for the non-
trivial disturbance effect. Because of that, zero uncertainty
implies that the system is in the eigenstate of the measurement
that would not be disturbed. Within GPTs, we capture the
connection by introducing an operational UDR in terms of �A

and DA0→A1 , where a parameter of the UDF is incorporated
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such that one can define a UDR for any theory allowing the
definition of maximal measurement.

Uncertainty-disturbance relation. Up to a factor α, which
is referred to as a UDF, one maximal measurement’s uncer-
tainty is no less than its disturbance effect

�A0 � αDA0→A1 , (4)

where α is the maximal modification allowed such that the
logic still holds:

α = sup{α′ � 0|�A0 � α′DA0→A1∀A0,A1,S}. (5)

A GPT can violate the UDR for another theory having a
greater UDF. The UDF thus serves as a benchmark parameter
revealing the discrepancy of GPTs in terms of the relation
between uncertainty and disturbance. Now we give the UDFs
for some theories off the shelf.

Classical theory. In classical theory, a classical and
maximal measurement introduces zero disturbance while it
may exhibit nontrivial uncertainty. Therefore, �A0 � 0 and
DA0→A1 = 0, which implies αc = ∞.

Quantum theory. The UDF of quantum theory is αqm = 1
(see the Appendix for the proof).

Popescu-Rohrlich box. [26] The PR-box can violate the
CHSH inequality to the maximum extent. It is defined in the
basic Bell scenario, where a bipartite system is distributed to
spacelike separated observers, say, Alice and Bob, who can
randomly measure one of {A0, A1} and {B0, B1}, respectively,
on the received particles and obtain outcome a, b ∈ {0, 1} with
a joint probability p(a, b|Aμ, Bν ) (μ, ν ∈ {0, 1}). The PR box
reads

p(a, b|Aμ, Bν ) = 1 + (−1)a+b+μν

4
. (6)

Without any loss of generality, since the measurements are
spacelike separated and placed in some reference frame, one
may assume that Bob first performs a measurement Bν , ob-
tains b with probability pνb = ∑

a p(ab|Aμ, Bν ) (nonsignaling
condition), and then simultaneously a conditional state, de-
scribed by ωνb , is prepared on Alice’s side. By the definition
of the PR box, we have

p
(
Aa

μ

∣∣ωνb

) = δa,b+μν. (7)

Thus, the uncertainty of measurement on Alice’s side is al-
ways zero, namely, �Aμ

(ωνb ) = 0. However, measurement
disturbance should not be zero, i.e., DA0→A1 > 0. Otherwise,
the nonsingling principle is violated [35]. Therefore, αPR = 0,
i.e., the PR-box model, is in another extremal point opposite
to the classical theory.

It needs to be stressed that the PR box does not hold for the
LS assumption. Because of that, for the effect Aa

1 there are two
states ωνb with b + ν = a such that one gets a unit probability.

IV. BELL’S INEQUALITY AND
UNCERTAINTY-DISTURBANCE RELATION

In this section we explore the connection between the
UDR, self-duality, and nonlocality under the LS assumption.
We focus on the case of α � 1, which includes the quantum
case and the ones going beyond it. We will derive the upper
bounds for the CHSH and the LG inequalities.

A. Unbias assumption and strong self-duality

For a comparison with strong self-duality, we also consider
a weaker assumption, namely, the unbias assumption.

Unbias assumption. Subjecting a white state W =
1
d

∑
i S i

A0
, which is prepared by randomly mixing eigenstates

corresponding to an arbitrary maximal measurement A0, to
another maximal measurement A1 yields a uniform distribu-
tion

p
(
A j

1

∣∣W) = 1

d
∀A1,A0. (8)

This unbias assumption is strictly weaker than strong self-
duality. Note that the self-duality implies the unbiased
assumption p(A j

1|W ) = ∑
i

1
d p(A j

1|S i
A0

) = ∑
i

1
d p(Ai

0|S j
1 ) =

1
d , where we have used Eq. (1) in the second equality and
the normalization condition in the third equality. It is easy
to see that the “strictnesses” represented as p(Ai

0|S j
A1

) and

p(A j
1|S i

A0
) are independent under the unbias assumption,

while they are equal to each other for strong self-duality.
The unbias assumption enables us to recast the UDR

into an easily handled representation. We focus on the pri-
mary binary case and adhere to the notions γ = p(A0

1|S0
A0

) −
p(A1

1|S0
A0

) and τ = p(A0
0|S0

A1
) − p(A1

0|S0
A1

), with 〈Aμ〉 =
p(A0

μ|S ) − p(A1
μ|S ). Under the unbias condition, the UDR in

the scenario A0 → A1 is recast in the form (see the Appendix)

(1 + α2γ 2)〈A0〉2 + α2〈A1〉2 − 2γα2〈A0〉〈A1〉 � 1. (9)

Similarly, considering measurements in order A1 → A0, we
obtain a dual UDR as

(1 + α2τ 2)〈A1〉2 + α2〈A0〉2 − 2τα2〈A1〉〈A0〉 � 1. (10)

For the strong self-duality condition, the two inequalities are
subject to an additional constraint γ = τ .

We note that γ and τ are determined solely by the settings
of A0 and A1 and are irrelevant to the initial state. For given
γ and τ , the two inequalities put constraints on the statistics
of measurements A0 and A1 by bounding their expectation
values 〈A0,1〉 and thus capture the idea of the uncertainty rela-
tion. This implies that one can always define the uncertainty
relations of the forms (9) and (10) for a GPT allowing sharp
measurement and holding the LS and the unbias assumptions.

B. Violation of CHSH inequality under the UDR

The CHSH inequality deals with the simplest Bell scenario
and holds by the local and realism theory. It is given as

ICHSH :=
1∑

a,b,μ,ν=0

(−1)a+b+μν p(a, b|Aμ, Bν ) � 2. (11)

We can express p(a, b|Aμ, Bν ) = pνb · p(μa|νb), with pνb =∑
a p(a, b|Aμ, Bν ) the statistics on Bob’s side and p(μa|νb) =

p(a,b|Aμ,Bν )
pνb

the statistics coming from measurement on the con-

ditional state ωνb . By the decomposition, the CHSH inequality
can be reformulated as∑

b,ν

(−1)b+ν pνb

[〈A0〉νb + (−1)ν〈A1〉νb

]
� 2, (12)
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where 〈Aμ〉νb = p(μ0|νb) − p(μ1|νb). Equation (9) and its dual relation imply |〈A0〉 ± 〈A1〉| � 2
√

f (α,±γ ,±τ ) (see the
Appendix) and

f (α, γ , τ ) = α2(τ 2 + γ 2 − 2) + 2

[α2(1 − γ )2 + 1][α2(τ 2 − 1) + 1] + [α2(1 − τ )2 + 1][α2(γ 2 − 1) + 1]
.

Then we have (see the Appendix)

ICHSH �
∑
b,ν

(−1)b+ν pνb

√
f (α, (−1)νγ , (−1)ντ )

� 2 max
−1�γ ,τ�1

[
√

f (α, γ , τ ) +
√

f (α,−γ ,−τ )]

:= nu(α). (13)

In the second inequality, we have performed an optimization
over γ and τ and obtained an upper bound in terms of a
function of α as nu(α). Under the strong self-duality, i.e.,
γ = τ , we have another bound as

ICHSH � 2 max
γ

(√
1

α2(1 + γ )2 + 1
+

√
1

α2(1 − γ )2 + 1

)

:= nus(α). (14)

By numerical calculation, we find that nu(α) coincides with
nus(α) for all α, and a few typical examples of α = 1

4 , 1
2 , 3

4 , 1
are given in the Appendix. We show nu(α) in Fig. 1(a).

Specifically, we are also interested in the bound obtained
when the measurements are maximum incompatible, i.e.,
p(Ai

μ|S j
Aμ̄

) = 1
2 and γ = τ = 0. We then have f (α, 0, 0) =

1
1+α2 , which implies

ICHSH � 4√
α2 + 1

:= nus,γ=0(α). (15)

We show nu(α) and nus,γ=0(α) in Fig. 1(a). Specifically, let-
ting α = αqm = 1, we have nu(1) ≈ 2.93 and nus,γ=0(1) =

FIG. 1. The UDR implies constraints on the violations of (a) the
CHSH and (b) the LG inequalities in terms of functions of the
balance strength. For the CHSH inequality, nu, which coincides with
nus (pink dotted line), is the upper bound under the unbias assumption
and nns,γ=0 (blue dashed line) is the upper bound under the strong
self-duality and the maximum incompatibility assumption. For the
LG inequality lu (orange dotted line) is the upper bound under the
UDR and unbias assumption and lus (green solid line) is the upper
bound under the UDR and the strong self-duality assumption

2
√

2, which is the Tsirelson bound. As α → 0, nu(α) and
nus,γ=0(α) tend to the maximum violation of 4.

Figure 1(a) shows that the UDF, though defined by local
properties of a single measurement, implies strong constraint
on the Bell nonlocality. We also show that the strong self-
duality does not provide a tighter constraint than the unbias
assumption and is insufficient to account for the Tsirelson
bound.

C. Bound of the Leggett-Garg inequality under the UDR

In this section we show that the UDR can also apply to the
temporal Bell scenario, which deals with correlations arising
from sequential measurements performed on one system at
different times. The LG inequality is the simplest temporal
Bell inequality and deals with three binary measurements A1,
A2, and A3 and reads

〈A1A2〉s + 〈A2A3〉s − 〈A1A3〉s � 1, (16)

where 〈A1A2〉s is the correlation between measurement A1 and
a following measurement A2 on the same particle, and the
other terms of the inequality are defined likewise. We note
that 〈A1A2〉s is uniquely determined by γ if A1 and A2 are
maximal

〈A1A2〉s =
∑
i= j

p
(
Ai

1

∣∣S)
p
(
A j

2

∣∣S i
A1

)

−
∑
i �= j

p
(
Ai

1

∣∣S)
p
(
A j

2

∣∣S i
A1

)
= 2p

(
A0

2

∣∣S0
A1

) − 1 = γ12,

where we have used the normalization condition and the un-
bias assumption, which implies, for example, p(A0

2|S0
A1

) =
1 − p(A1

2|S0
A1

) = p(A1
2|S1

A1
) = 1 − p(A0

2|S1
A1

). The temporal
correlation is irrelevant to the input state. Without loss of gen-
erality, we let the initial state S = S0

A1
, which leads to a zero

uncertainty for measurement A1. By the UDR, measuring
A1 on the state does not disturb the following measure-
ment. Thus, 〈A1Aμ〉s = 〈Aμ〉 and the LG inequality can be
written as

〈A2〉 + γ23 − 〈A3〉 � 1. (17)

Noting that |〈A2〉 − 〈A3〉| � f (α,−γ23,−τ23), then the LG
inequality has an upper bound as

lu(α) := max
−1�γ23,τ23�1

[2
√

f (α,−γ23,−τ23) + γ23]. (18)

Under the strong self-duality assumption, the LG inequality is
upper bounded by

lus(α) := max
−1�γ23�1

[2
√

f (α,−γ23,−γ23) + γ23]. (19)
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The two upper bounds, namely, lu(α) and lus(α), are shown
in Fig. 1(b). Specifically, for α = αqm = 1, lu(1) = 2.51 and
lus(1) = 1.89, which is close to the quantum violation of the
Lüders bound 3

2 . Here the strong self-duality, though being
significantly stronger than the unbiased assumption, is insuf-
ficient for interpreting the quantum violation.

V. CONCLUSION

Searching for a deep understanding of quantum theory
based on the law of physics is a key task in the field of
quantum foundation. This topic relies on how well one can
operationally understand the specialties of the nonclassical
phenomena. In this paper we have provided an uncertainty-
disturbance relation that allows us to comprehensively study
uncertainty, disturbance, self-duality, and Bell’s nonlocality.
By the UDF, we provided a dimension that can distinguish
quantum theory from other GPTs. We also showed that the
UDR implies constraint on correlations in both the spatial
and the temporal Bell scenarios. We identified the effects
by providing the upper bounds for the famous CHSH and
LG inequalities in terms of functions of the UDF, where we
accounted for the contributions of strong self-duality.
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APPENDIX

1. Proof of αqm = 1

In quantum theory, the maximal measurement is a rank-
1 projection measurement. Suppose that a quantum state
is ρ. After a projection measurement A0 = { p̂i = |Ai

0〉〈Ai
0|},

the state is brought into a completely decohered state
ρ̄ = ∑

i |Ai
0〉〈Ai

0|ρ|Ai
0〉〈Ai

0| = ∑
i p(Ai

0|ρ) · |Ai
0〉〈Ai

0|. Specify
{q(A j

1|ρ)} and {q′(A j
1|ρ̄)} as the distributions obtained by

performing A1 := {|Aj
1〉〈Aj

1|} on ρ and ρ̄, respectively. We
have

DA→A′ =
∑

j

∣∣q(
A j

1

∣∣ρ) − q′(A j
1

∣∣ρ̄)∣∣
= Tr|
A1 (ρ) − 
A1 (ρ̄)|

� Tr|ρ − ρ̄| = Tr

∣∣∣∣∣
∑
k<l

σkl

∣∣∣∣∣
�

∑
k<l

Tr|σkl | =
∑
k<l

2
∣∣〈Ak

0

∣∣ρ∣∣Al
0

〉∣∣
�

∑
k<l

2
√

p
(
Ak

0

∣∣ρ)
p
(
Al

0

∣∣ρ) = �A0 , (A1)

where Tr|X | := Tr
√

X †X and 
A1 (·) := ∑
j |Aj

1〉〈Aj
1| ·

|Aj
1〉〈Aj

1| is dephasing map with respect to measurement

A1, σkl := |Ak
0〉〈Ak

0|ρ|Al
0〉〈Al

0| + |Al
0〉〈Al

0|ρ|Ak
0〉〈Ak

0| for k �= l ,
and we have used the data processing inequality in the first
inequality and convexity of the trace-norm in the second
inequality. Then the above proof implies that αqm � 1.

To see that αqm = 1 for quantum theory, we show
that the UDR can be saturated by preparing ρ in the
state |+〉 = 1√

2
(|0〉 + |1〉) and A0 = {|0〉〈0|, |1〉〈1|} and

A1 = {|+〉〈+|, |−〉〈−|}. Then p(A0
0|ρ) = p(A1

0|ρ) = 1
2 and

we have {q(A+
1 |ρ) = 1, q(A−

1 |ρ) = 0} and {q(A+
1 |ρ̄ ) =

1
2 , q(A−

1 |ρ̄ ) = 1
2 }. In addition, we have �A0 = 1 = DA→A′ ,

meaning any UDR with α > 1 would be violated by quantum
theory. Then the proof for αqm = 1 is completed.

2. Proof of Eqs. (9) and (10)

According to the LS assumption, for the ith outcome of
maximal measurement A0, the postmeasurement state is up-
dated into the S i

A0
. Then, after measurement A0, on average,

the postmeasurement S̄ would be a convex combination of the
eigenstates S̄ = ∑

i p(Ai
0|S ) · S i

A0
. A following measurement

A1 on S̄ gives a disturbed distribution as

q′(A j
1

∣∣S̄) =
∑

i

p
(
Ai

0

∣∣S) · p
(
A j

1

∣∣S i
A0

)
. (A2)

We refer to p(A j
1|S i

A0
) and p(Ai

0|S j
A1

) as transition probabili-
ties following the specification in quantum theory. Consider
the two binary measurements A0 and A1 and their eigen-
states. If without any assumption the transition probabilities
are subject to the normalization condition only and there are
four independent transition probabilities, namely, p(A0

1|S0
A0

),
p(A0

1|S1
A0

), and their duals p(A0
0|S0

A1
) and p(A0

0|S1
A1

), by the
unbias condition

p
(
A0

1

∣∣S0
A0

) + p
(
A0

1

∣∣S1
A0

) = 1,

p
(
A0

0

∣∣S0
A1

) + p
(
A0

0

∣∣S1
A1

) = 1,

namely, the independent transition probabilities reduce to
p(A0

1|S0
A0

) and p(A0
0|S0

A1
). Under the assumption of strongly

self-duality, p(A0
1|S0

A0
) = p(A0

0|S0
A1

) and the number of inde-
pendent transition probabilities reduces further to one.

Let us explore the UDR under the unbias assumption.
Consider the scenario A0 → A1 and adhere to the notions
γ = p(A0

1|S0
A0

) − p(A1
1|S0

A0
) = 2p(A0

1|S0
A0

) − 1 and 〈Aμ〉 =
p(A0

μ|S ) − p(A1
μ|S ) = 2p(A0

μ|S ) − 1. We have

q′(A0
1

∣∣S̄ ) =
∑
i=0,1

p
(
Ai

0

∣∣S) · p
(
A0

1

∣∣S i
A0

)
= p

(
A0

0

∣∣S) · p
(
A0

1

∣∣S0
A0

) + p
(
A1

0

∣∣S)
p
(
A0

1

∣∣S1
A0

)
= p

(
A0

0

∣∣S) · p
(
A0

1

∣∣S0
A0

)
+ [

1 − p
(
A0

0

∣∣S)] · [
1 − p

(
A0

1

∣∣S0
A0

)]
= [

2p(A0
1

∣∣S0
A0

) − 1
][

p
(
A0

1

∣∣S ) − 1

2

]
+ 1

2

= 1

2
γ 〈A0〉 + 1

2
.
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Then the disturbance in the main text simplifies to

DA0→A1 =
∑
j=0,1

∣∣q(
A j

1

∣∣S) − q′(A j
1

∣∣S̄)∣∣
= 2

∣∣q(A0
1

∣∣S) − q′(A0
1

∣∣S̄)∣∣
= 2

∣∣∣∣p
(
A0

1

∣∣S) − 1

2
− 1

2
γ 〈A0〉

∣∣∣∣
= |〈A1〉 − γ 〈A0〉|.

Noting that �A0 = 2
√

p(A0
0|S )p(A1

0|S ) =
√

1 − 〈A0〉2, we
can rewrite the UDR as√

1 − 〈A0〉2 � α|〈A1〉 − γ 〈A0〉|.
Squaring the inequality, we have

(1 + α2γ 2)〈A0〉2 + α2〈A1〉2 − 2γα2〈A0〉〈A1〉 � 1. (A3)

The dual UDR for the case A0 → A1 is obtained likewise

(1 + α2τ 2)〈A1〉2 + α2〈A0〉2 − 2τα2〈A1〉〈A0〉 � 1, (A4)

where τ = 2p(A0
0|S0

A1
) − 1.

3. Proof of Eq. (13)

Defining u = 〈A0〉 + 〈A1〉 and v = 〈A0〉 − 〈A1〉, we can rewrite Eqs. (A3) and (A4) as

4 � u2[α2(1 − γ )2 + 1] + v2[α2(1 + γ )2 + 1] + 2uv[α2(γ 2 − 1) + 1], (A5)

4 � u2[α2(1 − τ )2 + 1] + v2[α2(1 + τ )2 + 1] − 2uv[α2(τ 2 − 1) + 1]. (A6)

By eliminating uv terms we obtain

4 � u2

f (α, γ , τ )
+ v2

f (α,−γ ,−τ )
, (A7)

with

f (α, γ , τ ) = α2(τ 2 + γ 2 − 2) + 2

[α2(1 − γ )2 + 1][α2(τ 2 − 1) + 1] + [α2(1 − τ )2 + 1][α2(γ 2 − 1) + 1]
. (A8)

Equation (A7) implies constraints on u and v, namely,
|〈A0〉 ± 〈A1〉| as

|〈A0〉 ± 〈A1〉| � 2
√

f (α,±γ ,±τ ). (A9)

In this expression, f (α,±γ ,±τ ) are formulated with transi-
tion probabilities and determined solely with the choice of
A0 and A1. However, the left-hand side is formulated with
A0,1’s expectation values on S . Thus, the UDR establishes
constraints on |〈A0〉 ± 〈A1〉| in terms of transition probabili-
ties, which can bound quantum nonlocality as

ICHSH �
1∑

b,ν=0

pνb |〈A0〉νb + (−1)ν〈A1〉νb |

�
1∑

b,ν=0

pνb2
√

f (α, (−1)νγ , (−1)ντ )

� max
γ ,τ

2
√

f (α, γ , τ ) + 2
√

f (α,−γ ,−τ )

≡ nu(α), (A10)

where the second inequality is due to applying Eq. (A9) to the
state ωνb . For a given α a typical diagram of the upper bound
nu(α) of ICHSH as a symmetric function of γ and τ is plotted

in Fig. 2, showing that the maximal values are attained in the
case of γ = τ .

FIG. 2. Plot of N ≡ 2
√

f (α, γ , τ ) + 2
√

f (α, −γ , −τ ) as a
function of γ and τ with (a) α = 1, (b) α = 3

4 , (c) α = 1
2 , and

(d) α = 1
4 . We see clearly that the maximum is always attained at

γ = τ .
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