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Physics of PT -symmetric quantum systems at finite temperatures
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We study parity-time-symmetric non-Hermitian quantum systems at finite temperature, where the Boltzmann
distribution law fails to hold. To characterize their abnormal physical properties, a quantum statistical theory
(the so-called quantum Liouvillian statistical theory) is developed, in which the Boltzmann distribution law is
replaced by the Liouvillian-Boltzmann distribution law. Using the theory, we derive analytical results of ther-
modynamic properties for parity-time-symmetric non-Hermitian quantum systems and find that a “continuous”
thermodynamic phase transition occurs at the exceptional point, where a zero-temperature anomaly exists.
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I. INTRODUCTION

In statistical mechanics, the Boltzmann distribution (BZ)
law plays a central role and governs the equilibrium distribu-
tion of different equilibrium states at a particular temperature.
According to this law, a system will be in a certain state as a
function of its energy En and the temperature T . As a result,
the weights of different (quantum) states obey the BZ law,
i.e., Pn ∼ e−En/kBT . This universal distribution law was derived
by Boltzmann through an axiomatic method, which involves
finding the most likely macrostates for a given total energy
under the assumption that all possible microstates are equally
likely to occur. Using the BZ law, one can recognize properties
of macroscopic quantities of different physical systems at
finite temperature (finite-T).

The non-Hermitian (NH) problem in controllable open
quantum systems has recently emerged as one of the fron-
tiers of physics. A parity-time (PT )-symmetric NH quantum
model was proposed by Bender and Boettcher in 1998,
where PT -symmetric spontaneous symmetry breaking (PT -
SSB) occurs at a critical point [the so-called “exceptional
point”(EP)] [1–3]. PT -symmetric systems have attracted
considerable attention in different fields [4–8] and various
approaches were proposed for realizing PT -symmetric NH
models [9–35]. However, the properties of a PT -symmetric
NH quantum system at finite-T (the so-called thermal PT sys-
tem) were inadequately reported and nothing is known about
their thermodynamic behaviors. Hence, immediate questions
appear, such as: Do the thermal PT systems still obey the
BZ law? If not, what distribution law do they obey? Are
there new physical phenomena compared with their Hermitian
counterparts for thermal PT systems?

In this paper, by considering a typical thermal PT system
as an example, we study this issue and derive reliable results
by solving the quantum master equation. According to them,
a surprising discovery is that the BZ law is no longer applica-
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ble in such systems. As a result, a theory beyond the usual
quantum statistical one, the quantum Liouvillian statistical
theory, is developed to completely understand these abnormal
physical properties of NH systems at finite-T. In particular,
there exists the nonthermalization in high temperature. Using
the theory, we derive analytical results of thermodynamic
properties for thermal PT systems and find that a “continu-
ous” thermodynamic phase transition occurs at the EP, where
a zero-temperature anomaly exists.

The outline of this paper is as follows. In Sec. II, based
on a simple Hermitian two-level system, we review quantum
statistical theory for Hermitian quantum systems at finite-T.
In this section, we show the usual BZ law at the thermody-
namic equilibrium. In Sec. III, we point out that there are two
choices about the distribution law of NH systems at finite-T. In
Sec. IV, to find the correct answer to the two-choice problem,
we do a simulation on a typical thermal PT system based on
the quantum master equation. Then, we compare the results
with those from the two choices and then find the correct
answer. In Sec. V, based on the correct answer, we develop
the quantum Liouvillian statistical theory for an arbitrary NH
system with finite-T. In Sec. VI, we study the thermodynamic
properties of the thermal PT system and find a “continuous”
thermodynamic phase transition at the EP. In Sec. VII, we
draw the conclusion.

II. BOLTZMANN DISTRIBUTION LAW
IN THE HERMITIAN SYSTEMS

It is well known that in quantum statistical mechanics the
canonical ensemble at the thermodynamic equilibrium satis-
fies the BZ law. For example, we consider a simple Hermitian
two-level system

Ĥ = hσx, (1)

where h is a real number. Its density matrix at the thermody-
namic equilibrium is

ρ = e−βT Ĥ , (2)
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FIG. 1. (a) The relative weight distribution P = P+/P− of the
simple Hermitian two-level system from Boltzmann distribution
(BZ) law. (b) The relative weight distribution P of the thermal
PT system from BZ law P = PBZ

+ /PBZ
− (blue curve), choice I P =

PI
+/PI

− (magenta dots), choice II P = PII
+/PII

− (black curve), and
Gorini-Kossakowski-Sudarshan-Lindblad equation P = PS

+/PS
− (red

triangles), where γ = 0.9.

where βT = 1
kBT is the inverse temperature. The weights of

different quantum states obey the BZ law

Pn = 1

Z
eign(ρ) = 1

Z
〈n|ρ|n〉 = 1

Z
e−βT En , (3)

where eign(ρ) denotes the eigenvalue of the density matrix ρ,
|n〉 is the eigenstate of ρ (n = ±), En = ±h is the eigenvalue
of Ĥ , and

Z = Tr(ρ) =
∑
n=±

〈n|e−βT Ĥ |n〉 (4)

is the partition function. The relative weight distribution

P = P+
P−

(5)

is shown in Fig. 1(a). In the paper, we set h = 1 and kB = 1.
From Fig. 1(a), when the temperature T turns to infinity, P
becomes 1. As a result, at very high temperature, all micro-
scopic quantum states have the same weight and the system is
completely thermalized.

III. DISTRIBUTION LAW IN THE NON-HERMITIAN
SYSTEMS: A TWO-CHOICE PROBLEM

To learn the distribution law in NH quantum systems at
finite-T, we first study a PT system with real energy levels,
of which the Hamiltonian is

ĤNH = hσx + iγ σy, |γ | < |h|. (6)

By doing a similarity transformation (ST) Ŝ = eβNHĤ ′
, ĤNH

can be transformed into a Hermitian one, i.e.,

Ĥ0 = Ŝ−1ĤNHŜ =
√

h2 − γ 2σx. (7)

Here, βNH = 1
2 ln h+γ

h−γ
characterizes the strength of the NH

terms and the Hermitian operator Ĥ ′ = 1
2σz determines the

form of the NH terms. Under the NH ST Ŝ , its energy level

En = ±
√

h2 − γ 2 (8)

is the same as those of a Hermitian system Ĥ0. Its left or right
eigenstates |�L/R

± 〉 under biorthogonal basis can be expressed

by

〈�L
±| = 〈�0,±|Ŝ−1 = 〈�0,±|e−βNHĤ ′

,

|�R
±〉 = Ŝ|�0,±〉 = eβNHĤ ′ |�0,±〉 (9)

with 〈�L
n |�R

m〉 = δnm and
∑

n=± |�R
n 〉〈�L

n | = Î , where |�0,±〉
are the normalized eigenstates of Ĥ0 and Î is the unit operator.

Based on the characteristics of the biorthogonal basis of
NH systems, there are two choices for the expression of the
density matrix of NH systems at finite-T. Choice I is [36–39]

ρI =
∑
n=±

∣∣�R
n

〉
e−βT En

〈
�L

n

∣∣ = Ŝ (e−βT Ĥ0 )Ŝ−1. (10)

In addition, we give choice II

ρII =
∑
n=±

∣∣�R
n

〉
e−βT En

〈
�R

n

∣∣ = Ŝ (e−βT Ĥ0 )Ŝ†. (11)

After considering the fact of |�R
±〉 �= |�L

±〉 and the defini-
tion of ρI, we find that ρI is NH, i.e., (ρI )† �= ρI. We notice
that for the case of choice I, the usual BZ law does not change.
Now, the weight of a quantum state in choice I is

PI
n = 1

Tr(ρI )
eign(ρI ) = 1

Tr(ρI )

〈
nL

I

∣∣ρI
∣∣nR

I

〉
≡ PBZ

n = 1

Tr(ρBZ)
e−βT En , (12)

where |nL/R
I 〉 are the left or right eigenstates of ρI and ρBZ =

e−βT ĤNH is the density matrix from the BZ law. This equivalent
relation can be obtained from the fact of

ρI = Ŝ (e−βT Ĥ0 )Ŝ−1 = e−βT ĤNH = ρBZ. (13)

On the other hand, the weight of a quantum state in choice II
is

PII
n = 1

Tr(ρII )
eign(ρII ) = 1

Tr(ρII )
〈nII|ρII|nII〉, (14)

where |nII〉 is the eigenstate of ρII. Here, we emphasize that
ρII is a Hermitian operator, i.e., (ρII )† = ρII.

To make it clear, we plot the relative weight distributions
from different starting points, choice I (or the case of BZ law)
and choice II in Fig. 1(b). Obviously, the results from choice
I are quite different from those from choice II. Which one is
right that could characterize correctly the experiments of NH
systems at finite-T?

IV. FINDING THE CORRECT ANSWER BY SIMULATING
THE THERMAL PARITY-TIME SYSTEM

The density matrix ρI in choice I is always NH, (ρI )† �= ρI;
while the density matrix ρII in choice II is Hermitian, (ρII )† =
ρII. Therefore, we may guess choice II with the density matrix
as ρII is correct. To check the conclusion, we do a simulation
of the thermal PT system. First, to design a thermal PT
system, we control an open quantum system coupling to two
separate environments and obtain an open NH quantum sys-
tem. Then, we solve the quantum master equation of the open
NH quantum system. After obtaining its density matrix ρS , we
compare the results with those from choice I or choice II and
finally find the correct answer.

032206-2



PHYSICS OF PT -SYMMETRIC QUANTUM … PHYSICAL REVIEW A 106, 032206 (2022)

h

|1

|2
E B

γ1

γ2

|N=1

|N≠1

S

T=  1
k β

ĤNH

h

|1

|2
B

γ1

γ2

S

h

|1

|2

S

ĤNH

B T

T=  1
k βB T

T=  1
k βB T

)c()b()a(

FIG. 2. Illustration of a thermal PT system that comes from
the controllable open quantum system S coupling to two separate
environments B and E . S denotes a tight-binding model of two
lattice sites 1,2 with a single fermion. There is only one fermion
at lattice 1 or lattice 2, so S is a two-level system. B denotes an
environment with temperature T = 1

kBβT
, which could thermalize S

to its temperature T (we call it thermal environment). E denotes
an environment that could lead to a relevant non-Hermitian (NH)
term for S under postselection with the particle number of S fixed at
N = 1 (we call it NH environment). (a) The total system consists of
S, B, and E . (b) The combined subsystem S + B after tracing out E
and postselection measurements. (c) The thermal PT system after
tracing out B.

A. Experimental design of the thermal parity-time system

To design a thermal PT system, we consider a con-
trollable open quantum system S coupling to two separate
environments B and E . See the illustration in Fig. 2(a). The
Hamiltonian of the total system is given by

Ĥ = ĤS ⊗ ÎE ⊗ ÎB + ÎS ⊗ ĤE ⊗ ÎB

+ ÎS ⊗ ÎE ⊗ ĤB + ĤES ⊗ ÎB + ÎE ⊗ ĤBS, (15)

where ĤS = h(c†
1c2 + c†

2c1), ĤE , and ĤB are the Hamiltonians
of S, E , and B, respectively. ÎS,E ,B are the unit operators of
S, E , and B, respectively. c†

1,2(c1,2) are the creation (annihi-
lation) operators of the fermion in S. ĤES = λ[a†(c1 − ic2) +
H.c.] stands for the coupling between S and E that leads to a
Lindblad operator L̂ES = √

2γ (c1 + ic2) ⊗ ÎB, where γ is the
coupling strength and a†(a) is the creation (annihilation) op-
erator in E . ĤBS = ∑

i=1,2 γic
†
i ci ⊗ B̂i describes the coupling

between S and B, where B̂1,2 are operators of B and γ1,2 are the
coupling strength. Here, we assume that γ1, γ2 
 γ , h. There
is no direct coupling between the two environments B and E .

We point out that the thermal PT system can be imple-
mented experimentally based on ultracold atoms in optical
lattices with the engineered dissipation proposed by the au-
thors of Ref. [40] together with an extra thermal cavity.
Engineering L̂ES can obtain the effective NH Hamiltonian
under postselection, which can be realized using a nonlocal
Rabi coupling to some auxiliary degrees of freedom with
rapid local loss. After adiabatically eliminating the fast decay
modes, effective dynamics with target degrees of freedom
alone are obtained. The thermal environment can be provided
by a cavity with finite-T.

For the open quantum system S under the Markovian ap-
proximation, its nonunitary dynamics is in general expressed
by the quantum master equation in the Gorini-Kossakowski-

Sudarshan-Lindblad (GKSL) form [41–43]

dρS (t )

dt
≡ LρS (t ), (16)

where L is a Liouville superoperator acting on the (reduced)
density matrix ρS of the subsystem S.

For the total system S + B + E , we trace out the NH en-
vironment E from it and consider its effect on the combined
subsystem S + B. We make the postselection measurement for
the number of particles N̂ = (c†

1c1 + c†
2c2) ⊗ ÎB in S, so that it

is always N = 1 [44]. After the postselection measurements,
the quantum jumping term will be projected out [45]. Then
ρS+B becomes

dρS+B

dt
= −i(ĤS+B,effρ

S+B − ρS+BĤ†
S+B,eff ), (17)

where

ĤS+B,eff = ĤNH ⊗ ÎB + ÎS ⊗ ĤB + ĤBS (18)

is the effective Hamiltonian of the combined subsystem S +
B, and

ĤNH = (h + γ )c†
1c2 + (h − γ )c†

2c1 − iγ (19)

can effectively describe S in Fig. 2(b). Here, the term −iγ
can be ignored due to the postselection measurements [46,47].
We assume that the temperature of a possible thermodynamic
equilibrium state of S is the same as that of the thermal envi-
ronment B. Thus, we gain a thermal PT system in Fig. 2(c),
which can also be expressed effectively as

ĤNH = hσx + iγ σy (20)

on the pseudospin space (| ↑〉
| ↓〉) where |↑〉 and |↓〉 denote the

quantum states of the single fermion on site 1 and site 2,
respectively. For ĤNH, at h = γ , a usual PT -SSB occurs:
for the case of h > γ , the energy levels |+〉 and |−〉 are
E± = ±

√
h2 − γ 2; for the case of h < γ , the energy levels

|+〉 and |−〉 are E± = ±i
√

γ 2 − h2; and for the case of h = γ ,
the system is at the EP with state coalescing and energy
degeneracy, i.e., E± = 0.

B. Quantum master equation in the
Gorini-Kossakowski-Sudarshan-Lindblad form of the open

non-Hermitian quantum system

In this subsection, we solve the quantum master equation in
the GKSL form of the thermal PT system with PT symmetry
(h > γ ) and calculate the Liouville superoperator L under the
Born-Markov approximation in the interaction picture, which
has never been studied before.

We trace over the degrees of freedom of the thermal en-
vironment B from Eq. (17), and consider its effect on the
NH subsystem S. We assume that S has little influence on
B, and average out the high-frequency part of the quantum
transition processes by the rotating wave approximation [43].
Eventually, the reduced density matrix ρS

In(t ) of the subsystem
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S in the interaction picture is

d

dt
ρS

In(t ) =
∑
a,b

∑
ω

[

ab(ω)[Âb(ω)ρS

In(t )Â†
a(ω)

− Âa(−ω)Âb(ω)ρS
In(t )] + H.c.

]
, (21)

where 
ab(ω) are the one-sided Fourier transforms


ab(ω) =
∫ t

0
dseiωs〈B̂†

a(s)B̂b(0)〉 (22)

of the reservoir correlation functions

〈B̂†
a(s)B̂b(0)〉 = TrB

(
B̂†

a(t )B̂b(t − s)ρB
In

)
(23)

of B with a, b = 1 or 2. Âa,b(ω) is a NH operator as

Âa(ω) =
∑
m=±

|m〉R〈m|Lγac†
aca|m + ω〉R〈m + ω|L. (24)

|m〉R,L are the right or left eigenstates of ĤNH with the eigen-
value Em, and |m + ω〉R,L are the right or left eigenstates of
ĤNH with the eigenvalue Em+ω. They satisfy L〈m|m〉R = 1.
In addition, we have ω = ±ω0, 0 with ω0 = |E+ − E−| =
2
√

h2 − γ 2.

According to dρS
In(t )
dt ≡ LρS

In(t ), we simplify and obtain

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ0(1 + eω0/kBT ) 0 0 γ0(1 + eω0/kBT ) h+γ

h−γ

−2γ0(eω0/kBT − 1)
√

h−γ

h+γ
−3γ0(1 + eω0/kBT ) −γ0(1 + eω0/kBT ) −2γ0(eω0/kBT − 1)

√
h+γ

h−γ

−2γ0(eω0/kBT − 1)
√

h−γ

h+γ
−γ0(1 + eω0/kBT ) −3γ0(1 + eω0/kBT ) −2γ0(eω0/kBT − 1)

√
h+γ

h−γ

γ0(1 + eω0/kBT ) h−γ

h+γ
0 0 −γ0(1 + eω0/kBT )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(25)

in the region of h > γ , where

γ0 = 1

16

{
γ11(−ω0)γ 2

1 + γ22(−ω0)γ 2
2

− [γ12(−ω0) + γ21(−ω0)]γ1γ2
}
.

See the detailed calculations regarding the quantum master
equation in Appendix A.

C. Non-Hermitian thermal state and the correct answer

In Hermitian systems at finite-T, the quantum statistical
mechanics is based on the thermal equilibrium state. To reach
it, one can prepare a unique final state under time evolution
(from an arbitrary initial state). Using similar logic, we in-
troduce a “non-Hermitian thermal state” (NHTS), which is
the unique final state under time evolution in NH systems at
finite-T (from an arbitrary initial state). We find that if the
spectrum of Liouville superoperator L is λi, i.e.,

LρS
i = λiρ

S
i , (26)

then a NHTS described by ρS
NHTS is the eigenstate of L cor-

responding to the eigenvalue with the maximum real part
λNHTS = max(Re λi ).

For the case of PT symmetry (h > γ ), two energy levels
of ĤNH are purely real, En = ±

√
h2 − γ 2. The eigenvalues of

L in Eq. (25) are

−4γ0(1 + eω0/T ), −2γ0(1 + eω0/T ), −2γ0(1 + eω0/T ), 0.

The first three will dissipate and the rest will form a NHTS
that is also a steady state. Thus, the density matrix ρS

NHTS
for a NHTS corresponding to the eigenvalue of the Liouville

superoperator L with maximum real part is obtained as

ρS
NHTS = h − γ

2h

⎛
⎝ h+γ

h−γ

√
h+γ

h−γ
1−eω0βT

1+eω0βT√
h+γ

h−γ
1−eω0βT

1+eω0βT
1

⎞
⎠. (27)

According to the results obtained from the GKSL equa-
tion and the definition of the NHTS, we obtain the weight of
a quantum state

PS
n = 1

Tr
(
ρS

NHTS

) 〈nS|ρS
NHTS|nS〉, (28)

where |nS〉 is the eigenstate of ρS
NHTS. The results of the rela-

tive weight distribution of the GKSL equation P = PS
+/PS

− are
plotted in Fig. 1(b). It is obvious that the results from choice
I are quite different from numerical results from the GKSL
equation; while the results from choice II are the same as
those from the GKSL equation. In particular, the consistency
between the different results verifies the correctness of the
definition of ρII in choice II rather than ρI in choice I, i.e.,

ρI = ρBZ �= ρS
NHTS, ρII = ρS

NHTS (29)

or

PI
n = PBZ

n �= PS
n , PII

n = PS
n . (30)

Consequently, one can safely conclude that the usual BZ
law in Hermitian systems does not work any longer in NH
systems and there exists a new law that explains these abnor-
mal results for a thermal PT system. In fact, NHTSs come
from NH systems rather than from free ones. To realize a
NH system, we may control the open thermal PT system
by performing a postselection and projecting out the quantum
jumping term. As a result, the equal probability of different
microscopic states is broken down and a new distribution law
appears.
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FIG. 3. The expected values ni = 〈σi〉(i = x, y, z) of the spin op-
erators for the thermal PT system. (a) Time evolution of ni =
〈σi〉 for fixed γ (γ = 0.2) from the different initial states: the red
curve corresponding to ρS (t = 0) = (1, 0; 0, 0), the blue curve corre-
sponding to ρS (t = 0) = (0, 0; 0, 1), the black curve corresponding
to ρS (t = 0) = ( 1

2 , 1
2 ; 1

2 , 1
2 ), where γ0 = 0.05 and T = 1. (b) Time

evolution of ni = 〈σi〉 for different γ from the same fully thermalized
initial state ρS (t = 0) = ( 1

2 , 0; 0, 1
2 ): the red curve corresponding to

γ = 0.3, the blue curve corresponding to γ = 0.9, the black curve
corresponding to γ = 1.5, where γ0 = 0.05 and T = 10. The arrows
denote the direction of time evolution.

In addition, we also study the possible NHTS ρS
NHTS in

the phase with PT -symmetric breaking (h < γ ). Under the
condition γ1, γ2 
 γ , h, the dissipation term in the Liouville
superoperator only has little effect, i.e.,

LρS ≈ −i(ĤNHρS − ρSĤ†
NH). (31)

The eigenvalues of the superoperator L are approximately
obtained as

−2
√

γ 2 − h2, 0, 0, 2
√

γ 2 − h2.

The eigenstate with the maximum real part 2
√

γ 2 − h2 corre-
sponds to a NHTS with

ρS
NHTS = |�R

+〉〈�R
+|, (32)

i.e., the system reaches a pure state |�R
+〉 which corresponds

to the eigenvalue with the largest imaginary part +i
√

γ 2 − h2

under a long time evolution t → ∞. This can be understood
as the fact that the state |�R

−〉 decays more faster than the state
|�R

+〉. Eventually, there is only one eigenstate |�R
+〉 with the

largest imaginary part of the eigenvalue +i
√

γ 2 − h2 left in
the system.

According to the discussions about the case of PT symme-
try and PT -symmetric breaking, we investigate the properties
of NHTSs in the thermal PT system. These results of ex-
pected values of σi (i = x, y, z), i.e.,

ni = 〈σi〉 = 1

ZS
Tr(σi · ρS ), (33)

are represented by points on the Bloch sphere in Fig. 3.
Figure 3(a) indicates the existence of a unique NHTS ρS

NHTS:
for ĤNH with fixed γ (γ = 0.2), taking the limit t → ∞,
different initial states will eventually evolve into the same final
state ρS (t → ∞). This means ρS (t → ∞) is just the NHTS
ρS

NHTS; Fig. 3(b) indicates the abnormality of the NHTS
ρS

NHTS: for ĤNH with different γ from the same initial state, for
example, a fully thermalized state described by ρS (t = 0) =
1
2 Î2×2, the system will eventually evolve into different NHTSs
ρS

NHTS(γ ).

V. QUANTUM LIOUVILLIAN STATISTICAL THEORY
FOR AN ARBITRARY NH SYSTEM WITH FINITE-T

To better describe the NH system at finite-T, we develop the
quantum Liouvillian statistical theory, in which an alternative
type of distribution, the Liouvillian-Boltzmann distribution
(LBZ), governs the distribution of NHTSs.

We assume that the Hamiltonian of the NH system is ĤNH

with ĤNH �= Ĥ†
NH. For the NH Hamiltonian ĤNH (or Ĥ†

NH),
we define the left or right eigenstates |�L/R〉 as

Ĥ†
NH

∣∣�L
n

〉 = E∗
n

∣∣�L
n

〉
, ĤNH

∣∣�R
n

〉 = En

∣∣�R
n

〉
, (34)

where En = Re En + i Im En and E∗
n = Re E∗

n − i Im E∗
n are the

corresponding eigenvalues.
For all NH systems, there are a total of three different

cases: Case I from the NH systems with real eigenvalues, i.e.,
Im En ≡ 0; Case II from NH systems with complex eigenval-
ues and the quantum state with the maximum imaginary part
of all eigenvalues is nondegenerate; and Case III from NH
systems with complex eigenvalues and quantum states with
the maximum imaginary part of all eigenvalues are degener-
ate. In the following part, we discuss the quantum Liouvillian
statistical theory case by case.

A. Case I: Real eigenvalues

We discuss the case of the NH Hamiltonian ĤNH with
all real eigenvalues, i.e., Im En ≡ 0. As a result, this is a
quasi-Hermitian system. Under the ST Ŝ , the energy levels
En of ĤNH (or Ĥ†

NH) are all real and the same as those of the
Hermitian model Ĥ0, i.e.,

ĤNH = ŜĤ0Ŝ−1, (35)

with Ĥ0 = Ĥ†
0. The corresponding eigenstates of ĤNH and

Ĥ†
NH become∣∣�R

n

〉 = Ŝ|�0,n〉,
〈
�L

n

∣∣ = 〈�0,n|Ŝ−1, (36)

under the biorthogonal set 〈�L
n |�R

m〉 = δnm. Here |�0,n〉 de-
notes the normalized eigenstate of Ĥ0. In addition, we point
out that a quasi-Hermitian model ĤNH with real eigenvalues
obeys

η̂ĤNHη̂−1 = Ĥ†
NH, (37)

which shows NH similarity, where η̂ = ∑
n|�L

n 〉〈�L
n |. As a

result, for ĤNH, the ST is obtained as

Ŝ = η̂− 1
2 =

(∑
n

∣∣�R
n

〉〈
�R

n

∣∣)1/2

. (38)

Now, the density matrix in the NHTS at temperature T =
1

kBβT
is given as

ρS
NHTS =

∑
n

∣∣�R
n

〉
e−βT En

〈
�R

n

∣∣ = Ŝρ0Ŝ†, (39)

where ρ0 = e−βT Ĥ0 is the density matrix for the Hermitian
model Ĥ0 at the thermodynamic equilibrium.

To simplify the Liouvillian physics for NHTSs, we intro-
duce an effective Hamiltonian ĤL as e−βT ĤL = Ŝ (e−βT Ĥ0 )Ŝ†
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or

ĤL = − 1

βT
ln[Ŝ (e−βT Ĥ0 )Ŝ†]. (40)

In this paper, we call the temperature-dependent Hamilto-
nian ĤL the Liouvillian Hamiltonian (LH). Its corresponding
eigenvalue EL

n and eigenstate are called the Liouvillian energy
level and Liouvillian state, respectively. According to ĤL =
Ĥ†

L, EL
n must be real.

For NHTSs in this NH system, although the energy levels
do not change under STs, the weights and the eigenstates are
deformed. Consequently, the usual BZ law Pn = 1

Z e−βT En is
replaced by the LBZ law [48,49], i.e.,

Pn = 1

Z
e−βT En → Pn = 1

ZS
NHTS

e−βT EL
n , (41)

where EL
n is a Liouvillian energy level rather than the energy

level En and ZS
NHTS = Tr(ρS

NHT S ) is the partition function for
the NHTS. To distinguish the phenomenon of weights in the
thermal PT system from those in Hermitian thermal systems,
we call the corresponding weight Pn = 1

ZS
NHTS

e−βT EL
n the Liou-

villian weight.
In particular, when the temperature is high, βT → 0, the

density matrix ρS
NHTS for a NH system with real spectra is

reduced to

ρS
NHTS ∼ ŜŜ† = e2βNHĤ ′

,

and the Liouvillian weight turns into

Pn = 1

ZS
NHTS

e−βNH(−2E ′
n ),

where E ′
n is the “energy level” of Ĥ ′. We call the abnormality

of the NHTS nonthermalization in high temperature.

B. Case II: Complex eigenvalues and the nondegenerate
quantum state with the maximum imaginary

part of all eigenvalues

The NH Hamiltonian ĤNH has complex eigenvalues, i.e.,
Im En �= 0 (n = 1, 2, . . . , N), and |�R

0 〉 is the nondegenerate
quantum state with maximum imaginary part of all eigen-
values, i.e., Im E0 > Im En �=0. Now, the density matrix in the
NHTS is obtained as

ρS
NHTS = ∣∣�R

0

〉〈
�R

0

∣∣. (42)

Let us give a brief discussion on this result. In the limit
of t → ∞, the system reaches a NHTS and there is only the
eigenstate |�R

0 〉 corresponding to the eigenvalue with maxi-
mum imaginary part max(Im En) = Im E0 left in the system
because other states will decay much faster than this state, i.e.,

|�R〉 =
N∑

n=1

αn

∣∣�R
n

〉
e−iEnt

=
N∑

n=1

αn

∣∣�R
n

〉
et Im En e−it ReEn

∼ αn=0

∣∣�R
n=0

〉
et Im E0 e−it ReE0 , (43)

where αn is the weight for the corresponding state.

C. Case III: Complex eigenvalues and the degenerate quantum
states with the maximum imaginary part of all eigenvalues

The NH Hamiltonian ĤNH has complex eigenvalues, i.e.,
Im En �= 0, and |�R

n 〉 are m-fold degenerate quantum states
with the same maximum imaginary part of all eigenvalues i.e.,

Im En = 
 > Im Em<n<N , n = 1, 2, . . . , m, m < N.

In the limit of t → ∞, the system reaches a NHTS and we
have a subspace from m-fold degenerate quantum states with
the same maximum imaginary part of all eigenvalues |�R

n 〉,
n = 1, 2, . . . , m, m < N . Using a similar approach, we have

|�R〉 =
N∑

n=1

αn

∣∣�R
n

〉
e−iEnt

=
N∑

n=1

αn

∣∣�R
n

〉
et Im En e−it ReEn

∼ et


(
n∑

n=1

αn

∣∣�R
n

〉
e−it ReEn

)
, (44)

where αn is the weight for the corresponding state.
As a result, for a NHTS, the original NH model is reduced

into a subspace of m-fold degenerate quantum states with the
same maximum imaginary part of all eigenvalues |�R

n 〉, n =
1, 2, . . . , m, m < N . In the following part, we use a projection
operator to characterize the reduction, i.e.,

|�R〉 → P̂|�R〉 = |ψR〉
and

ĤNH → P̂ĤNHP̂−1 = Ĥ′
NH,

where Ĥ′
NH and |ψR〉 are the Hamiltonian and quantum state

of the subspace, respectively. Now, the density matrix in the
NHTS ρS

NHTS of the original NH Hamiltonian is reduced into
(ρ ′

NHTS)S of Ĥ′
NH in the subspace.

In addition, we show the method to calculate Ĥ′
NH. First,

we define the basis of the original NH system{∣∣SR
n

〉
, n = 1, 2, . . . , N

}
.

Second, under projection to subspace, we have a projection
basis, i.e.,{∣∣SR

n

〉
, n = 1, 2, . . . , N

} → {P̂|SR
n 〉, n = 1, 2, . . . , N}

= {∣∣sR
n

〉
, n = 1, 2, . . . , m

}
.

Third, based on the projection basis {|sR
j 〉}, we derive the

effective Hamiltonian

Ĥ′
NH =

∑
i j

hi j

∣∣sR
j

〉〈
sL

i

∣∣+ i
, (45)

where hi j = 〈sL
i |ĤNH|sR

j 〉, i, j = 1, 2, . . . , m.

Then, after globally shifting i
, i.e., ĤNH → ĤNH − i
 or
Ĥ′

NH → Ĥ′
NH − i
, the situation is mapped to Case I. Finally,

the density matrix in the NHTS is obtained as

(ρ ′
NHTS)S = Ŝ ′(e−βT Ĥ′

0 )(Ŝ ′)† = e−βT ĤL , (46)
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TABLE I. The density matrix in non-Hermitian thermal states for an arbitrary non-Hermitian system with finite temperature T.

All real eigenvalues Complex eigenvalues

ρS
NHTS = Ŝ(e−βT Ĥ0 )Ŝ† = e−βT ĤL Nondegenerate Degenerate

ρS
NHTS = |�R

0 〉〈�R
0 | (ρ ′

NHTS)S = Ŝ ′(e−βT Ĥ′
0 )(Ŝ ′)† = e−βT ĤL

where Ĥ′
0 = (Ŝ ′)−1Ĥ′

NHŜ ′ [Ĥ′
0 = (Ĥ′

0)†] and

S ′ = P̂ŜP̂−1 =
(

m∑
n=1

∣∣ψR
n

〉〈
ψR

n

∣∣)
1
2

. (47)

In summary, the quantum Liouvillian statistical theory for
an arbitrary NH system with finite-T can be expressed in
Table I.

VI. THERMODYNAMIC PROPERTIES OF THE THERMAL
PT SYSTEM

Using the quantum Liouvillian statistical theory, we study
thermodynamic properties for the NHTSs ρS

NHTS of the ther-
mal PT system.

Now, the physical properties of the original NH system
ĤNH at finite-T correspond to those of a Hermitian system of
LH, ĤL. According to e−βT ĤL = Ŝ (e−βT Ĥ0 )Ŝ†, we obtain the
analytical result as

e−βT ĤL = σxA + σzB + ÎC, (48)

where

A = − sinh(βT

√
h2 − γ 2),

B = sinh(βNH) · cosh(βT

√
h2 − γ 2),

C = cosh(βNH) · cosh(βT

√
h2 − γ 2), (49)

and Î = (1 0
0 1). From the generalized Baker–Campbell–

Hausdorff formulation, the LH is derived as

ĤL = − 1

βT

cosh−1 C

|�reff | (�σ · �reff ), (50)

where �σ = (σx, σy, σz ), �reff = (A, 0, B), and |�reff | =√
A2 + B2. See the detailed calculations about the generalized

Baker-Campbell-Hausdorff formulation in Appendix B.
After diagonalizing ĤL, the Liouvillian energy levels (the
eigenvalues for ĤL) are

EL
± = ± 1

βT
cosh−1[cosh βNH · cosh(βT

√
h2 − γ 2)], (51)

which are quite different from the energy levels (the eigen-
values for ĤNH) E± = ±

√
h2 − γ 2, as shown in Fig. 4. As a

result, the Liouvillian energy gap is

� = 2
∣∣EL

±
∣∣ = 2

βT
cosh−1[cosh βNH · cosh(βT

√
h2 − γ 2)].

(52)
At the EP, � diverges, i.e., when βNH → ∞, � → ∞. Re-
member the energy gap for ĤNH at EP turns to zero, i.e., when
βNH → ∞, ω0 = 2

√
h2 − γ 2 → 0. According to LBZ law,

we have

Pn = 1

ZS
NHTS

exp

[
cosh−1 C

|�reff | (�σ · �reff )

]
. (53)

The expected values of spin operators σi (i = x, y, z) are de-
fined as

ni = 〈σi〉 = 1

ZS
NHTS

Tr(σi · e−βT ĤL ). (54)

After straightforward calculations, we have

�n = (nx, ny, nz ) =
(

A

C
, 0,

B

C

)

=
(

− tanh(βT

√
h2 − γ 2)

cosh βNH
, 0, tanh βNH

)
(55)

in the region of h > γ [50]. Figure 5(a) shows the results
of �n. Based on these results, when βNH increases from zero
to infinite, the spin direction changes from the x direction
to the z direction. Figures 5(b) to 5(d) show the behavior of
ni = 〈σi〉 at T = 10, respectively. Approaching EP h → γ (or
βNH → ∞), we have ĤL → − βNH

βT
σz at finite-T. The external

field | βNH

βT
| in LH ĤL becomes infinite. As a result, �n is fixed

to be polarized along the z direction with saturated ampli-
tude 1 [see the magenta arrows marked by a magenta line in
Fig. 5(a)]. On the other hand, for the region of h < γ , the
NHTS becomes a pure state described by |�R

+〉 and we have

�n =
⎛
⎝0,−

√
1 −

(
h

γ

)2

,
h

γ

⎞
⎠. (56)

As shown in Fig. 5(a), the red arrows (the expected values
of σi) swerve from the z direction to the y direction with in-
creasing γ . In Fig. 5(d), we can see that, as the temperature T
approaches infinity, nz is not 0 in the phase with PT symmetry

FIG. 4. (a) The energy level E+ = √
h2 − γ 2 versus temperature

T and γ for the non-Hermitian Hamiltonian ĤNH. (b) The Liouvillian
energy level EL

+ = 1
βT

cosh−1[cosh βNH · cosh(βT

√
h2 − γ 2)] versus

temperature T and γ for the Liouvillian Hamiltonian ĤL .
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FIG. 5. (a) Expected values ni = 〈σi〉 of the spin operator from
Liouvillian-Boltzmann distribution for the non-Hermitian thermal
states ρS

NHTS of the thermal PT system. (b), (c), and (d) depict nx ,
ny, nz at temperature T = 10, respectively.

(h > γ ), which means the nonthermalization occurs in a high
temperature.

From the above discussions, we conclude that ni = 〈σi〉 is
always continuous when crossing over the EP. Furthermore,
we calculate ∂�n

∂γ
. Because h = γ is a transition from real spec-

tra to complex, the NHTSs of both sides (h > γ and h < γ )
are described by different functions. After straightforward
calculation, we can see

∂�n
∂γ

=
{

γ

h
√

h2 − γ 2
tanh(βT

√
h2 − γ 2)

+γ βT

h
[1 − tanh2(βT

√
h2 − γ 2)], 0,

1

h

}
, (57)

∂�n
∂T

=
{ √

h2 − γ 2

kBT 2 cosh βNH
[1 − tanh2(βT

√
h2 − γ 2)], 0, 0

}
(58)

for h > γ and

∂�n
∂γ

=
⎛
⎝0,− 1√

1 − (
h
γ

)2

h2

γ 3
,− h

γ 2

⎞
⎠ (59)

for h < γ .
Figure 6 shows the result of ∂�n

∂γ
. We can see that ∂nx

∂γ
de-

pends on γ and temperature T , and ∂ny

∂γ
and ∂nz

∂γ
depend only

on γ . Moreover, at finite-T T �= 0, ∂�n
∂γ

is discontinued at the
γ = h. It means a “second-order” phase transition at the EP:
there exists a ν = 1

2 critical rule for ∂�n
∂γ

: at finite-T T �= 0,

∂�n
∂γ

= (2βT , 0, h−1) (60)

for h → γ + 0+ in the phase with PT symmetry (h � γ ) and

∂�n
∂γ

= (0,−(2h)
− 1

2 (γ − h)−ν,−γ −1) (61)

0 1 2 3
0

8 (a)

0 1 2 3
0

0.02 (b)

0 1 2 3
-5

0 (d)

0 1 2 3
-5

0 (e)

0 1 2 3
-1

1 (g)

0 1 2 3
-1

1
(h)

0 500
T

0

0.2 (c)

0 500
T

0

1 (f)

0 500
T

0

1 (i)

FIG. 6. The derivatives of expected values of the spin operators
of the thermal PT system versus γ or temperature T . (a), (d),
and (g) are ∂�n

∂γ
versus γ at the temperature T = 0.01, respectively.

(b), (e), and (h) are ∂�n
∂γ

versus γ at the temperature T = 100, respec-

tively. (c), (f), and (i) are ∂�n
∂T versus temperature T at γ = 0.999,

respectively.

for γ → h + 0+ in the phase with PT -symmetry breaking
(h < γ ); while at zero temperature T = 0,

∂�n
∂γ

= ((2h)−
1
2 (h − γ )−ν, 0, h−1) (62)

for h → γ + 0+ and

∂�n
∂γ

= (0,−(2h)−
1
2 (γ − h)−ν,−γ −1) (63)

for γ → h + 0+. To emphasize the strangeness of the ν = 1
2

critical rule, we call it zero temperature anomaly for the ther-
modynamic phase transition at the EP.

VII. CONCLUSION

In this paper, we study PT -symmetric NH quantum sys-
tems at finite-T and develop a quantum Liouvillian statistical
theory for NH systems at finite-T. By considering a con-
trollable open quantum system S coupling with two separate
environments B and E , we design a thermal PT system and
solve the corresponding GKSL master equation to find the
correct distribution. In addition, we define the NHTS for
NH systems at finite-T and explore its physical properties.
As a result, in general, the usual BZ law and the Equal
Probability Principle are all no longer valid for the NH sys-
tem at finite-T. Instead, the usual BZ law Pn ∼ e−En/kBT is
replaced by the LBZ law Pn ∼ e−EL

n /kBT , where EL
n is a Li-

ouvillian energy level of ĤL rather than an energy level En

of ĤNH. Based on the quantum Liouvillian statistical the-
ory, we derive analytical results of thermodynamic properties
for the thermal PT system and find that a “continuous”
thermodynamic phase transition occurs at the EP, where a
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zero-temperature anomaly exists. Therefore, the quantum Li-
ouvillian statistical theory provides the necessary method to
study NH many-body physics and hence can be used to deal
with NH quantum many-body problems, including the topo-
logical property, transport property, correlation property, and
so on. In the future, we will study more complex NH models
and explore the possible exotic phenomena in NH systems at
finite-T.
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APPENDIX A: QUANTUM MASTER EQUATION OF THE
OPEN NON-HERMITIAN QUANTUM SYSTEM

For the total system S + B + E , we trace out E from it and
get the GKSL equation of the reduced density matrix ρS+B

dρS+B

dt
= −i[ĤS+B, ρS+B]

− 1

2
{L̂†

ESL̂ES, ρ
S+B} + L̂ESρ

S+BL̂†
ES. (A1)

We make the postselection measurement for the number of
particles N̂ = (c†

1c1 + c†
2c2) ⊗ ÎB in S, so that it is always N =

1 [44]. After the postselection measurements, the quantum
jumping term L̂ESρ

S+BL̂†
ES will be projected out [45]. Then

we get Eq. (17).
In general, the derivation of a quantum Markovian master

equation is performed in the interaction picture. Thus, we
write Eq. (17) as in the interaction picture

d

dt
ρS+B

In (t ) = −i
(
V̂In(t )ρS+B

In (t ) − ρS+B
In (t )V̂ †

In(t )
)
, (A2)

where

ρS+B
In (t ) = eiĤeff,0tρS+B(t )e−iĤ†

eff,0t , (A3)

V̂In(t ) = eiĤeff,0t ĤBSe−iĤeff,0t , (A4)

and

Ĥeff,0 = ĤNH ⊗ ÎB + ÎS ⊗ ĤB. (A5)

For simplicity, we use [A, B]† to denote AB − BA†. So
d
dt ρ

S+B
In (t ) = −i[V̂In(t ), ρS+B

In (t )]†. Its equivalent integral form
is

ρS+B
In (t ) = ρS+B

In (0) − i
∫ t

0
ds
[
V̂In(s), ρS+B

In (s)
]

†. (A6)

Combining Eqs. (A2) and (A6), and taking the partial trace
over the degrees of freedom of the environment B, we give the
reduced density matrix ρS

In(t ) in the subsystem S

d

dt
ρS

In(t ) = − iTrB
[
V̂In(t ), ρS+B

In (0)
]

†

−
∫ t

0
dsTrB

[
V̂In(t ),

[
V̂In(s), ρS+B

In (s)
]

†

]
†
. (A7)

Here, we assume TrB[V̂In(t ), ρS+B
In (0)]† = 0 [43]. Addition-

ally, we use the Born approximation that the subsystem
S has little influence on the environment B, so ρS+B

In (s) ∼
ρS

In(s) ⊗ ρB
In. By the Markov approximation ρS

In(s) ∼ ρS
In(t ),

we have

d

dt
ρS

In(t ) = −
∫ t

0
dsTrB

[
V̂In(t ),

[
V̂In(s), ρS

In(t ) ⊗ ρB
In

]
†

]
†
.

(A8)
We substitute s by t − s, the above equation can be expressed
as

d

dt
ρS

In(t ) = TrB

∫ t

0
ds[V̂In(t − s)ρS

In(t ) ⊗ ρB
InV̂

†
In(t )

− V̂In(t )V̂In(t − s)ρS
In(t ) ⊗ ρB

In] + H.c.. (A9)

Using eigenstates of ĤNH in h > γ , we insert the
identity operator Î = ∑

m=± |m〉R〈m|L ⊗ ÎB in V̂In(t )
and get

V̂In(t ) = eiĤeff,0t

[∑
a

∑
m=±

|m〉R〈m|Lγac†
aca

∑
n=±

|n〉R〈n|L ⊗ B̂a(t )

]
e−iĤeff,0t

=
∑

a

∑
m=±

∑
n=±

eiEmt |m〉R〈m|Lγac†
aca|n〉R〈n|Le−iEnt ⊗ B̂a(t )

=
∑

a

∑
m=±

∑
ω

e−iωt |m〉R〈m|Lγac†
aca|m + ω〉R〈m + ω|L ⊗ B̂a(t ), (A10)

where |m〉R,L are the right or left eigenstates of ĤNH with the eigenvalue Em, and |n〉R,L = |m + ω〉R,L are the eigenvalues ĤNH

with the eigenvalue Em+ω and they satisfy L〈m|m〉R = 1. In addition, we have ω = ±ω0, 0 with ω0 = |E+ − E−| = 2
√

h2 − γ 2.
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We define an operator Âa(ω),

Âa(ω) =
∑
m=±

|m〉R〈m|Lγac†
aca|m + ω〉R〈m + ω|L (A11)

with a = 1 or 2. Now, V̂In(t ) is written as

V̂In(t ) =
∑

a

∑
ω

e−iωt Âa(ω) ⊗ B̂a(t ). (A12)

Substituting this form of V̂In(t ) to Eq. (A9), we get

d

dt
ρS

In(t ) =
∑

b

∑
ω

∑
a

∑
ω1

ei(ω1−ω)t Âb(ω)ρS
In(t )Â†

a(ω1)
∫ t

0
dseiωsTrB

(
B̂b(t − s)ρB

InB̂†
a(t )

)

−
∑

a

∑
−ω1

∑
b

∑
ω

ei(ω1−ω)t Âa(−ω1)Âb(ω)ρS
In(t )

∫ t

0
dseiωsTrB

(
B̂†

a(t )B̂b(t − s)ρB
In

)

+
∑

a

∑
ω1

∑
b

∑
ω

e−i(ω1−ω)t Âa(ω1)ρS
In(t )Â†

b(ω)
∫ t

0
dse−iωsTrB

(
ρB

InB̂†
b(t − s)B̂a(t )

)

−
∑

b

∑
ω

∑
a

∑
−ω1

e−i(ω1−ω)tρS
In(t )Â†

b(ω)Â†
a(−ω1)

∫ t

0
dse−iωsTrB

(
ρB

InB̂†
b(t − s)B̂a(t )

)
. (A13)

We employ the one-sided Fourier transforms


ab(ω) =
∫ t

0
dseiωs〈B̂†

a(s)B̂b(0)〉,


∗
ba(ω) =

∫ t

0
dse−iωs〈B̂†

b(0)B̂a(s)〉 (A14)

of the reservoir correlation functions 〈B̂†
a(s)B̂b(0)〉 =

TrB(B̂†
a(t )B̂b(t − s)ρB

In) of the environment B to simply
Eq. (A13) equation. Eventually, d

dt ρ
S
In(t ) of the subsystem S

in the interaction picture is

d

dt
ρS

In(t ) =
∑
a,b

∑
ω

∑
ω1

ei(ω1−ω)t
ab(ω)
(
Âb(ω)ρS

In(t )A†
a(ω1)

−Âa(−ω1)Âb(ω)ρS
In(t )

)
+
∑
a,b

∑
ω

∑
ω1

e−i(ω1−ω)t
∗
ba(ω)

(
Âa(ω1)ρS

In(t )Â†
b(ω)

−ρS
In(t )Â†

b(ω)Â†
a(−ω1)

)
. (A15)

We use the rotating wave approximation to average out the
high-frequency part of the quantum transition processes and
ignore the case of ω �= ω1, then get

d

dt
ρS

In(t ) =
∑
a,b

∑
ω

[
ab(ω)
(
Âb(ω)ρS

In(t )Â†
a(ω)

−Âa(−ω)Âb(ω)ρS
In(t )

)+ H.c.]. (A16)

The imaginary part of 
ab only provides a shift of en-
ergy levels and does not affect the possible thermodynamic
equilibrium state, so we ignore its imaginary part and get

ab = 1

2γab, where γab = ∫∞
−∞ dseiωs〈B̂†

a(s)B̂b(0)〉 is the real
part of 
ab. Using the Kubo-Martin-Schwinger (KMS) condi-
tion 〈B̂†

a(t )B̂b(0)〉 = 〈B̂b(0)B̂†
a(t + i 1

T )〉 [43,51], we derive the

temperature-dependent behavior of γab,

γab(−ω) = e−ω/kBT γba(ω). (A17)

For the sake of simplicity, we use (A B
C D) to denote ρS

In(t ).

According to dρS
In (t )
dt ≡ LρS

In(t ) and ρS
In(t ) = (A B

C D), we get

dA

dt
= −γ0(1 + eω0/kBT )A + γ0(1 + eω0/kBT )

h + γ

h − γ
D,

dB

dt
= −2γ0(eω0/kBT − 1)

√
h − γ

h + γ
A − 3γ0(1 + eω0/kBT )B

− γ0(1 + eω0/kBT )C − 2γ0(eω0/kBT − 1)

√
h + γ

h − γ
D,

dC

dt
= −2γ0(eω0/kBT − 1)

√
h − γ

h + γ
A − γ0(1 + eω0/kBT )B

− 3γ0(1 + eω0/kBT )C − 2γ0(eω0/kBT − 1)

√
h + γ

h − γ
D,

dD

dt
= γ0(1 + eω0/kBT )

h − γ

h + γ
A − γ0(1 + eω0/kBT )D. (A18)

Then we simply and get Eq. (25).

APPENDIX B: GENERALIZED
BAKER-CAMPBELL-HAUSDORFF FORMULATION

Generalized Baker-Campbell-Hausdorff formulation: For
the case of σ 2

1 = 1 and σ 2
2 = 1, we have the following equa-

tion:

ρ = e�r1·�σ · e�r2·�σ · e�r1·�σ = α + |�reff | · σeff = ec+�r·�σ , (B1)
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where

c = 1
2 ln(α2 − |�reff |2), (B2)

and

|�r| = tanh−1

( |�reff |
α

)
, (B3)

with

α = cosh (2r1) · cosh r2 + (�n1 · �n2) sinh (2r1) · sinh r2,

|�reff | = {[sinh (2r1) · cosh r2 + 2(�n1 · �n2) sinh2 r1 · sinh r2]2

+ (sinh r2)2}1/2,

σeff = |�reff |−1 · {σ1[sinh (2r1) · cosh r2

+ 2(�n1 · �n2) sinh2 r1 · sinh r2] + σ2 sinh r2},
r1 = |�r1| and r2 = |�r2|.

We then prove the above generalized Baker-Campbell-
Hausdorff formulation.

First, for σ 2
n = 1, we have

e�r·�σ = cosh r + σn sinh r, (B4)

where |�r| = r with cosh2 r − sinh2 r = 1 and σn = �r·�σ
r . On the

other hand, for the case of X = d + �f · �σ with f = | �f |, we
have X = ec+�r·�σ , where

ec cosh r = d, ec sinh r = f . (B5)

Then, we have r = tanh−1( f
d ) and c = 1

2 ln(d2 − f 2).
Next, we calculate ρ = e�r1·�σ · e�r2·�σ · e�r1·�σ and get

ρ = e�r1·�σ · e�r2·�σ · e�r1·�σ

= (cosh r1 + σ1 sinh r1)

× (cosh r2 + σ2 sinh r2)

× (cosh r1 + σ1 sinh r1), (B6)

where r1 = |�r1| and r2 = |�r2|. The result is obtained as

ρ = (cosh r1 · cosh r2 + σ1 sinh r1 · cosh r2

+ σ2 cosh r1 · sinh r2 + σ1σ2 sinh r1 · sinh r2)

× (cosh r1 + σ1 sinh r1)

= cosh (2r1) · cosh r2 + (�n1 · �n2) sinh (2r1) · sinh r2

+ σ1[sinh (2r1) · cosh r2 + 2(�n1 · �n2) sinh2 r1 · sinh r2]

+ σ2 sinh r2, (B7)

where �n1 = �r1
|�r1| and �n2 = �r2

|�r2| . Here, we used {σ1, σ2} = 2(�n1 ·
�n2).

Third, we show the final result:

ρ = α + |�reff | · σeff = ec+�r·�σ , (B8)

where

c = 1

2
ln(α2 − |�reff |2), r = tanh−1

( |�reff |
α

)
,

with α = cosh 2r1 · cosh r2 + (�n1 · �n2) sinh 2r1 · sinh r2,

|�reff | = {[sinh (2r1) · cosh r2 + 2(�n1 · �n2) sinh2 r1 · sinh r2]2

+ (sinh r2)2}1/2

and

σeff = |�reff |−1 · {σ1[sinh (2r1) · cosh r2

+ 2(�n1 · �n2) sinh2 r1 · sinh r2] + σ2 sinh r2}.
In general, according to α2 − |�reff |2 = 1, we have

c = 1

2
ln(α2 − |�reff |2) ≡ 0. (B9)

So

ρ = e
cosh−1 α

|�reff | (�σ ·�reff ) = ecosh−1 α·σeff . (B10)

APPENDIX C: EXPECTED VALUES OF THE SPIN
OPERATORS IN THE PT SYSTEM

FOR THE TWO CHOICES

1. Choice I

In choice I, the expected values of physical operators σi

(i = x, y, z) of the thermal PT system are

ni = 〈σi〉 = 1

Z I
Tr(σi · ρI ), (C1)

where Z I = Tr(ρI ). It is obvious that Z I = Z0, where Z0 =
Tr(ρ0) is the partition function for Hermitian model Ĥ0

According to the definition of ρI = Ŝρ0Ŝ−1, we have

ρI = CÎ + σxA + σyB (C2)

for the thermal PT system, where Î = (1 0
0 1) and

A = − cosh βNH · sinh(βT

√
h2 − γ 2),

B = −i sinh βNH · sinh(βT

√
h2 − γ 2),

C = cosh(βT

√
h2 − γ 2). (C3)

We obtain the expected values of σx, σy, and σz as

nx = A

C
= − cosh βNH · tanh(βT

√
h2 − γ 2),

ny = B

C
= −i sinh βNH · tanh(βT

√
h2 − γ 2),

nz = 0. (C4)

We can see that the expected value of σy becomes imaginary,
i.e., ny �= (ny)∗, which means that the result is unphysical.

At γ = 0, the Hamiltonian of the thermal PT systembe-
comes a Hermitian Hamiltonian Ĥ = hσx, which corresponds
to the Hermitian case. In this case, different quantum states at
the thermal equilibrium state obey the BZ distribution law, i.e.,
P+ = e−βT E+ and P− = e−βT E− , where E± = ±h are energy
levels. In Fig. 7(a), the blue curve and blue triangles represent
the expected values of σx from choice I ρI and those derived
by directly solving the GKSL equation ρS

NHTS in the Hermitian
case (γ = 0), respectively. Except for the case of γ = 0, the
others correspond to the NH case, such as the case of γ = 0.9
marked by the red curve and red triangles in Fig. 7(a). The
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FIG. 7. The expected value 〈σx〉 = nx of the spin operator in the
thermal PT system versus the temperature T for γ = 0 (Hermi-
tian case) and γ = 0.9 (non-Hermitian case). (a) The comparison
between the results from choice I ρI (solid curves) and those
obtained by directly solving the Gorini-Kossakowski-Sudarshan-
Lindblad equation (the small triangles). (b) The comparison between
the results from choice II ρII (solid curves) and those derived by
directly solving the Gorini-Kossakowski-Sudarshan-Lindblad equa-
tion (the small triangles).

results of nx derived by ρI (the red curve) are noticeably
inconsistent with those obtained by directly solving the GKSL
equation ρS

NHTS (red triangles) for the NH case in Fig. 7(a). In
particular, nx > 1 derived by ρI indicates that the results from
choice I ρI are absurd and unphysical. Finally, we conclude
that ρI is not a correct formulation for describing NH systems
at finite-T.

Additionally, we have

ρI = Ŝ (e−βT Ĥ0 )Ŝ−1

= e−βT ŜĤ0Ŝ−1 = e−βT ĤNH

= ρBZ. (C5)

This equation means that ni from ρI = Ŝρ0Ŝ−1 is the same as
that from BZ distribution law ρBZ = e−βT ĤNH . The statement
is also verified by Fig. 1(b) in the main text.

2. Choice II

In choice II, the expected values of physical operators σi

(i = x, y, z) of the thermal PT system are written as

ni = 〈σi〉 = 1

Z II
Tr(σi · ρII ), (C6)

where Z II = Tr(ρII ) is the partition function.
After straightforward calculations, we have

ρII = σxA + σyB + ÎC, (C7)

for the thermal PT system, where Î = (1 0
0 1),

A = − sinh(βT

√
h2 − γ 2),

B = sinh(βNH) · cosh(βT

√
h2 − γ 2),

C = cosh(βNH) · cosh(βT

√
h2 − γ 2). (C8)

Then, we get

nx = A

C
= − tanh(βT

√
h2 − γ 2)

cosh βNH
,

ny = 0,

nz = B

C
= tanh βNH. (C9)

The expected value of σi becomes real, i.e., ni = (ni )∗.
According to Fig. 7(b), the results from density matrix ρII

(the red curve) are the same as those obtained by directly solv-
ing the GKSL equation ρS

NHTS (red triangles) for the NH case
of γ = 0.9. In particular, |nx| � 1 derived by ρII indicates
that the results from choice II ρII are physical. This means
that ρII = Ŝρ0Ŝ† is correct for the thermal PT system in the
NHTS.
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