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The reduced dynamics of an open quantum system S, interacting with its environment E , is not completely
positive, in general. In this paper, we demonstrate that if the two following conditions are satisfied, simulta-
neously, then the reduced dynamics is completely positive: (1) the reduced dynamics of the system is linear,
for arbitrary system-environment unitary evolution U ; and (2) the reduced dynamics of the system is linear, for
arbitrary initial state of the system ρS .
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I. INTRODUCTION

In the axiomatic approach to quantum operations, as legiti-
mate maps describing the (reduced) dynamics of a quantum
system S, a quantum operation ES is defined as a linear
trace-preserving completely positive map [1]. At first glance,
requiring that ES is linear seems admissible since the unitary
evolution of a closed quantum system is linear, and we may
expect similar property for open quantum systems as well.
In addition, nonlinear evolution may lead to superluminal
signaling [2].

But, instead of being trace-preserving completely positive,
one may expect that ES must be solely a trace-preserving
positive map since the only general requirement seems to be
that ES must map density operators to density operators.

It seems that there are two major reasons, for the usual use
of completely positive maps, instead of the positive ones, in
quantum information theory [1], and in the theory of open
quantum systems [3–5]. First, there exists a simple operator
sum representation, for each trace-preserving completely pos-
itive (CP) map ES , as

ES (ρS ) =
∑

i

Ei ρS E†
i ,

∑
i

E†
i Ei = IS, (1)

where Ei are linear operators and IS is the identity operator, on
the Hilbert space of the system HS [1].

Second, in the theory of open quantum systems, it
is common to consider the set of initial states of the
system-environment as S = {ρSE = ρS ⊗ ω̃E }, where ρS is an
arbitrary state (density operator) on HS and ω̃E is a fixed state
on the Hilbert space of the environment HE [3–5]. Then, for
such an initial set S , it is famous that the reduced dynamics
of the system is CP, for arbitrary system-environment unitary
evolution U [1].

The main question of this paper is to investigate whether it
is possible to obtain the result of the CP-ness of the reduced
dynamics, from its positivity or even from the less restrictive
condition of its linearity.
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Unlike the reduced dynamics, for which, in general, its
positivity is not equivalent to its CP-ness, there exists an
important map for which it is so. This important map is the
inverse of the partial trace over the environment and is called
the assignment map [6,7]. It can be shown that, if there exists
a positive assignment map, then there exists a CP one also,
which results in the CP-ness of the reduced dynamics [8].

As we will see, in Sec. IV, with the only requirement being
that the reduced dynamics is linear, for arbitrary unitary evo-
lution of the system-environment U and arbitrary initial state
of the system ρS , results in the positivity of the assignment
map, and so the CP-ness of the reduced dynamics.

The paper is organized as follows. In the next section, we
review some introductory points on the reduced dynamics
of an open quantum system. The assignment map, and its
role in representing the reduced dynamics as a linear map, is
introduced in Sec. III. Our main results are given in Sec. IV
and the paper is ended in Sec. V, with a summary of our
results.

II. REDUCED DYNAMICS OF AN OPEN SYSTEM

Let us denote the set of all linear operators on HS as LS

and the set of all density operators on HS as DS . Now, by a
Hermitian map, we mean a linear trace-preserving map on LS ,
which maps each Hermitian operator to a Hermitian operator.
A Hermitian map is called positive if it maps each density
operator in DS to a density operator. Both the Hermitian maps
and the positive ones have operator sum representations as

�S (ρS ) =
∑

i

ei Ẽi ρS Ẽi
†
,

∑
i

ei Ẽi
†
Ẽi = IS, (2)

where Ẽi are linear operators on HS , and ei are real coefficients
[9–11]. When all of the coefficients ei in Eq. (2) are positive,
we can define Ei = √

ei Ẽi, and Eq. (2) can be rewritten as
Eq. (1). Then, the map is called CP. It is also worth noting
that the CP-ness of the map ES , in Eq. (1), is equivalent to
the positivity of the map idW ⊗ ES , where the witness W is an
arbitrary (finite-dimensional) quantum system, distinct from
the system S (and the environment E ), and idW is the identity
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map on LW [1]. (LW is the set of all linear operators on the
Hilbert space of the witness HW .)

For the open quantum system S, interacting with its envi-
ronment E , we can consider the entire system-environment as
a closed quantum system, which evolves unitarily as

ρ ′
SE = AdU (ρSE ) ≡ UρSEU †, (3)

where U is a unitary operator on HS ⊗ HE . In addition,
ρSE and ρ ′

SE are the initial and final states of the system-
environment, respectively. So, the reduced dynamics of the
system is given by

ρ ′
S = TrE (ρ ′

SE ) = TrE ◦ AdU (ρSE ). (4)

In general, the reduced dynamics of the system S cannot
be represented by a map [9,12], i.e., ρ ′

S cannot be given as a
function of the initial state of the system ρS = TrE (ρSE ), in
general. Even if the reduced dynamics of the system can be
given by a map, this map is not linear, in general [13,14]. In
addition, even if it is linear, it is not (completely) positive, in
general, but it is Hermitian [15]. The CP-ness of the reduced
dynamics has been proven, only for some restricted sets S =
{ρSE } of initial states of the system-environment [16–22].

In the experimentally relevant cases, one usually deals with
the factorized initial states of the system-environment, i.e., the
set of initial states of the system-environment, at time t = 0,
is as S = {ρS ⊗ ω̃E }, where ρS is an arbitrary state of the
system, while ω̃E is a fixed state of the environment [3–5].
So, the reduced dynamics is CP, as stated in the Introduction.
But, even in such cases, one may encounter non-CP reduced
dynamics simply by changing the initial time from t = 0, as
illustrated in the following example.

Consider the case that the reduced dynamics is given by a
master equation, which is similar to the Gorini-Kossakowski-
Sudarshan–Lindblad one [23,24], but with a time-dependent
generator KS (t ), as

dσS

dt
=KS (t )[σS]

= − i

h̄
[H (t ), σS]

+
∑

j

γ j (t )

[
Aj (t )σSA†

j (t ) − 1

2
{A†

j (t )Aj (t ), σS}
]
,

(5)

where σS = σS (t ) ∈ DS is the reduced state of the system S
at time t . In addition, the (Hermitian) Hamiltonian operator
H (t ) ∈ LS , the Lindblad operators Aj (t ) ∈ LS , and the real
rates γ j (t ) are all time-dependent, in general [25]. Now, if all
γ j (t ) are positive for all t � 0, then the reduced dynamics is
CP-divisible [25]:

ES (t2, 0) = ES (t2, t1) ◦ ES (t1, 0), (6)

where t2 > t1 > 0, and ES (t, s) is a CP map, which maps σS (s)
to σS (t ). But, if, in the canonical form of the generator KS (t )
[26], all γ j (t ) are positive only during the time interval [0, t1],
then we have

ES (t2, 0) = �S (t2, t1) ◦ ES (t1, 0), (7)

where, though ES (t1, 0) and ES (t2, 0) are CP, but �S (t2, t1),
i.e., the Hermitian map which maps σS (t1) to σS (t2), is non-CP,

in general. So, changing the initial time, from t = 0 to t = t1,
results in the reduced dynamics of the system being given by
the non-CP map �S (t, t1), for t > t1.

In addition to the simplicity and experimental relevance,
which were mentioned above and in the Introduction, one
can give a rather general discussion leading to the CP-ness
of the reduced dynamics: always, in addition to the system
under study S, one can consider another quantum system, the
witness W , which does not interact with S, and, during the
evolution of S, it does not evolve. Now, assuming that the evo-
lution of the witness-system is given by a local map idW ⊗ ES ,
results in the CP-ness of ES . Note that the initial state of the
witness-system ρWS can be entangled. Now, the CP-ness of
ES , and so the positivity of the idW ⊗ ES , is necessary to ensure
that the final state ρ ′

WS = idW ⊗ ES (ρWS) is a valid density op-
erator [1]. However, one can find situations in which, though
the dynamics of the witness-system is local (and the reduced
state of the witness does not change, during the evolution), it
cannot be written as idW ⊗ ES (see, e.g., [27]). So, the reduced
dynamics of the system S can be non-CP, in general, as we
have seen for �S (t, t1) in the previous paragraph.

At the end of this section, we mention that the utilization
of the completely positive maps for describing the reduced
dynamics of the system S can be extended, at least, through
the two following ways. First, consider the case that the set
of initial states of the system-environment is given by S =
{ρSE = ∑

α w̃αQα ⊗ σ̃α}, where the linear operators Qα ∈ LS

vary by changing ρSE , but σ̃α are fixed density operators on
HE and the (positive) weights w̃α are also fixed. Then the
reduced dynamics of the system S, in Eq. (4), for arbitrary
system-environment unitary evolution U , is given by

ρ ′
S =

∑
α

w̃αE (α)
S (Qα ), (8)

where E (α)
S is a CP map, depending on U and σ̃α [28]. In other

words, in this case, the reduced dynamics is given by a set of
CP maps {E (α)

S } instead of only one CP map.
Second, consider the case that set of initial states of the

system-environment is given by S = {ρSE = ES ⊗ idE (ω̃SE )},
where ω̃SE is a fixed state on HS ⊗ HE , ES is an arbitrary
CP map on LS , and idE is the identity map on LE , the set
of all linear operators on HE . Splitting a quantum experiment
into the three steps of preparation, evolution, and measure-
ment, choosing the set S as above means that we can only
manipulate the system S, through the CP maps ES , during
the preparation step. Now, it can be shown that, for arbitrary
system-environment unitary evolution U , the final state of the
system ρ ′

S in Eq. (4) can be written as a completely positive
map on (the Choi matrix representation [29,30] of) ES [31,32].
In other words, in this case, even if ρ ′

S cannot be given as
a completely positive map on the initial state of the system
ρS , but it can be given by a completely positive map on the
preparation map ES .

III. ASSIGNMENT MAP

Consider the set S = {ρSE } of initial states of the system-
environment. The set S includes all initial ρSE which
are prepared (chosen) through the preparation step of the
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experiment. Obviously, in general, S is a subset of D, the set
of all density operators on HS ⊗ HE .

The set of initial states of the system is given by SS =
TrES . Assuming that the system S is finite-dimensional of
dimension dS only a finite number m of the members of
SS , where the integer m is 0 < m � (dS )2, are linearly in-
dependent. Let us denote this linearly independent set as
S ′

S = {ρ (1)
S , ρ

(2)
S , . . . , ρ

(m)
S }. Therefore, any ρS ∈ SS can be

expanded as

ρS =
m∑

i=1

aiρ
(i)
S , (9)

where ai are real coefficients. Note that ρS is a Hermitian
operator. So

∑
(ai − a∗

i )ρ (i)
S = 0. Now, since all ρ

(i)
S ∈ S ′

S are
linearly independent, all ai must be real.

In general, there may be more than one state in S such that
tracing over the environment gives ρ

(i)
S . However, we choose

only one of them and denote it as ρ
(i)
SE . Linear independence of

ρ
(i)
S ∈ S ′

S results in linear independence of ρ
(i)
SE . We denote this

linearly independent set as S ′ = {ρ (1)
SE , ρ

(2)
SE , . . . , ρ

(m)
SE } [33].

So, each ρSE ∈ S , for which ρS = TrE (ρSE ) is expanded in
Eq. (9) can be written as

ρSE =
m∑

i=1

aiρ
(i)
SE + Y (ρSE ), (10)

where ai are the same as those in Eq. (9) and Y is a Hermitian
operator on HS ⊗ HE such that TrE (Y ) = 0. In other words,
Eq. (9) results that ρSE and

∑
aiρ

(i)
SE can differ with each

other up to a Hermitian operator Y , for which TrE (Y ) = 0. In
general, Y is a function of ρSE . This dependence is explicitly
given in Eq. (10) by writing it as Y (ρSE ).

The subspaces V and VS are defined as [9]

V = SpanC S, (11)

and

VS = TrEV = SpanC SS = SpanC S ′
S. (12)

Therefore, each X ∈ V can be written as X = ∑
l cl τ

(l )
SE ,

where τ
(l )
SE ∈ S , and cl are complex coefficients. Using

Eq. (10), we can expand each τ
(l )
SE as τ

(l )
SE = ∑

i aliρ
(i)
SE + Y (l ).

So,

X =
m∑

i=1

(∑
l

alicl

)
ρ

(i)
SE +

∑
l

cl Y (l )

=
m∑

i=1

diρ
(i)
SE + Y (X ), (13)

where di = ∑
l alicl are complex coefficients and the linear

operator Y (X ) = ∑
l cl Y (l ) is such that TrE [Y (X )] = 0. Con-

sequently, for each x ∈ VS we have

x = TrE (X ) =
m∑

i=1

diρ
(i)
S , (14)

where the coefficients di are the same as those in Eq. (13). In
Fig. 1, the sets SS and DS , the subspace VS , and the vector
space LS are given in a Venn diagram.

FIG. 1. The set SS = TrES (green dotted circle) is the set of
initial states of the system S. The set DS (red dashed ellipse) is
the set of all states (density operators) on HS . Obviously, SS ⊆ DS .
The subspace VS (blue solid ellipse) is defined in Eq. (12), and so,
SS ⊂ VS . Finally, LS (black solid rectangle) is the set of all linear
operators on HS . So, DS ⊂ LS and VS ⊆ LS . When SS = DS , then
VS = LS .

Now we can define the linear trace-preserving assignment
map 	S as follows. First, we define 	S (ρ (i)

S ) = ρ
(i)
SE . Then we

extend the definition of 	S to the entire VS as a linear map.
So, for any x ∈ VS , in Eq. (14), we have

	S (x) =
m∑

i=1

di	S
(
ρ

(i)
S

) =
m∑

i=1

diρ
(i)
SE . (15)

The assignment map 	S maps VS to (a subspace of) V and is
Hermitian by construction. [When x is a Hermitian operator,
all di in Eq. (14) are real. So, 	S (x) is also a Hermitian
operator.] Comparing Eqs. (13) and (15) shows that 	S does
not necessarily map x to X , unless Y (X ) = 0. In addition,
note that the assignment map 	S in Eq. (15) is defined on the
subspace VS . This definition can be extended to the entire LS

simply, i.e., one can find a Hermitian map 	′
S on the entire

LS such that, for each x ∈ VS , it acts as 	S [8]. However,
only for each x ∈ VS , but not necessarily for arbitrary f ∈ LS ,
we have TrE ◦ 	′

S (x) = TrE ◦ 	S (x) = x. In other words, the
extension	′

S of the assignment map 	S is self-consistent only
on VS , not necessarily on the entire LS .

Now, using Eqs. (4), (9), (10), and (15), the reduced dy-
namics of the system for each ρSE ∈ V is given by

ρ ′
S = TrE ◦ AdU (ρSE )

=
m∑

i=1

aiTrE ◦ AdU
(
ρ

(i)
SE

) + TrE ◦ AdU (Y )

= TrE ◦ AdU ◦ 	S (ρS ) + TrE ◦ AdU (Y )

= �S (ρS ) + TrE ◦ AdU (Y ), (16)

where �S ≡ TrE ◦ AdU ◦ 	S . The map �S is a (linear) Her-
mitian map on VS since TrE and AdU are CP [1] and
the assignment map 	S is Hermitian on VS , as we saw
in Eq. (15). When TrE ◦ AdU (Y ) = 0, the subspace V is
called U -consistent [9]. The reduced dynamics of the system,
for each ρSE ∈ V , is given by the linear Hermitian trace-
preserving map �S if and only if V is U -consistent [9,34].
In Fig. 2 we represent when the Hermitian map �S gives the
reduced dynamics of the system in a commutative diagram.
It is also worth noting that, in the theory of open quantum
systems, one usually approximates the reduced dynamics as a
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FIG. 2. The state ρSE is the initial state of the entire system-
environment. The final state of the system-environment ρ ′

SE is given
in Eq. (3). Tracing over the environment E , gives the initial state of
the system ρS = TrE (ρSE ), and its final state ρ ′

S = TrE (ρ ′
SE ). Accord-

ing to Eqs. (9), (10), and (15), 	S (ρS ) + Y gives ρSE . The map �S is
defined as �S = TrE ◦ AdU ◦ 	S . According to Eq. (16), �S gives
ρ ′

S , if the U -consistency condition TrE ◦ AdU (Y ) = 0 is satisfied.
Then, rounding the diagram clockwise, from ρS to ρ ′

S , is equivalent
to rounding it counterclockwise, through the Hermitian map �S .

linear map, utilizing some simplifying assumptions (about V)
[3–5,35].

The CP-ness of TrE and AdU results in the fact that only
the assignment map 	S determines whether �S is CP or not.
If 	S is Hermitian, then �S can be either Hermitian, positive,
or CP. But when the extension 	′

S of the assignment map 	S

is positive, then �S is necessarily CP [8].
We end this section with the following point. Assum-

ing unitary dynamics for the entire system-environment, the
(non)linearity of the reduced dynamics is only a consequence
of U -(in)consistency of the subspace V . In other words, it is
only a consequence of how we choose (construct) the initial
set S and there is no fundamental reasoning behind it [34]. In
addition, as discussed in [34], the nonlinearity of the reduced
dynamics does not lead to superluminal signaling.

IV. MAIN RESULT

Assume that the reduced dynamics of the system for each
ρS ∈ SS is given by a dynamical map 
S , i.e., the final state
ρ ′

S , in Eq. (4), is given by 
S (ρS ). As discussed in the In-
troduction, in the axiomatic approach to quantum operations,
postulating that the dynamical map 
S is linear seems more
natural than postulating it as a CP map. In addition, it can
be shown simply [34] that when the map 
S is linear, on the
subspace VS , then it is equal to �S in Eq. (16). Now we ask
under what circumstances does only requiring that 
S is linear
[and so is equal to �S , in Eq. (16)] result in that it is also CP?
Such circumstances are given in the following Proposition.

Proposition 1. Requiring that the reduced dynamics of
the system for each ρS ∈ DS and for arbitrary system-
environment unitary evolution U is a linear function of ρS

results in the CP-ness of the assignment map 	S . Thus the
reduced dynamics of the system S is CP, as Eq. (1).

Proof. First, we require that the reduced dynamics of the
system, for arbitrary system-environment unitary evolution U
is linear. So, the reduced dynamics is given by the map �S

in Eq. (16) for arbitrary U [34]. In other words, the subspace
V in Eq. (11) is U -consistent for arbitrary U . This results in
the one-to-one correspondence between the subspaces V and

VS = TrEV [9]. Hence, for each X, Z ∈ V , TrE (X ) = TrE (Z )
if and only if X = Z . It indicates that Y (ρSE ) in Eq. (10) and
so Y (X ) in Eq. (13) are zero. Therefore, 	S (ρS ) = ρSE and
	S (x) = X where the linear assignment map 	S is defined in
Eq. (15) and ρS , ρSE , X , and x are given in Eqs. (9), (10), (13),
and (14), respectively.

Second, we require that the reduced dynamics of the sys-
tem is linear for arbitrary initial state of the system ρS ∈ DS .
This means that we choose the set of initial states of the
system-environment S such that SS = DS . Therefore, since
one can find (dS )2 linearly independent states in DS (see, e.g.,
[36]), we have VS = SpanC DS = LS .

Note that we want to find the conditions which ensure the
positivity of (the extension of) the assignment map 	S in
Eq. (15). Requiring that, for a given U , the reduced dynamics
is linear, for arbitrary initial state ρS ∈ DS , results that SS =
DS (and so 	′

S = 	S since VS = LS) and TrE ◦ AdU (Y ) = 0,
where Y is given in Eq. (10). However, it does not necessitate
that Y = 0. So the assignment map 	S , which maps ρS in
Eq. (9) to Z = ∑m

i=1 aiρ
(i)
SE , is not necessarily positive since

Z is not necessarily a positive operator. However, if we add
the first requirement as well, which ensures that Y = 0, then
we conclude that 	S = 	′

S is positive.
On the other hand, only assuming the first requirement

though results in the positivity of 	S on SS , but it does not
necessarily lead to the positivity of the extension 	′

S of the
assignment map 	S on the whole DS (LS). Nevertheless, if we
add the second requirement also, which states that SS = DS ,
we ensure that 	′

S = 	S is positive on the entire DS (LS).
Consequently, assuming that both the first and the sec-

ond requirements are satisfied simultaneously, results in the
fact that 	′

S = 	S is positive on the entire DS . Now, it was
showed that when there is a positive extension 	′

S of the
assignment map 	S , on the entire DS (LS) then there exists
a CP assignment map 	

(CP)
S also [8]. In fact, in this case,

where SS = DS and so 	′
S = 	S , and, in addition, there is

a one-to-one correspondence between the subspaces V and
VS , there is a unique way to define (the extension of) the
assignment map. So the CP assignment map 	

(CP)
S is the same

as our positive 	S = 	′
S , with the explicit form

	S (ρS ) = 	
(CP)
S (ρS ) = ρS ⊗ ω̃E , (17)

where ω̃E is a fixed state on HE [6,8,11]. This fact that ω̃E is
a fixed state is a consequence of assuming that the assignment
map is a self-consistent positive map on the entire DS (LS)
[6,8,11]. The assignment map 	

(CP)
S given in Eq. (17) is, in

fact, the famous Pechukas’s one first introduced in [6]. Finally,
the CP-ness of 	

(CP)
S leads to the CP-ness of the reduced

dynamics �S = TrE ◦ AdU ◦ 	S = TrE ◦ AdU ◦ 	
(CP)
S . �

In the axiomatic approach to quantum operations it is more
appropriate to postulate that the dynamical map 
S is convex-
linear instead of considering it linear. A convex-linear map is
defined as follows.

Definition 1. When 
S is convex-linear on DS then
we have 
S[pρS + (1 − p)τS] = p
S (ρS ) + (1 − p)
S (τS ),
where ρS, τS ∈ DS , and 0 � p � 1.

In the following Proposition, we refer to the convexity of
the set SS . This property is defined as below.
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Definition 2. When SS is convex, if ρS, τS ∈ SS , then also
ωS = pρS + (1 − p)τS ∈ SS where 0 � p � 1.

In Proposition 1, we saw that requiring the reduced dynam-
ics of the system S is linear leads to its CP-ness. Now we want
to go further and show that requiring the reduced dynamics is
convex-linear results in the CP-ness of the reduced dynamics
as well.

Proposition 1′. Requiring that the reduced dynamics of
the system for each ρS ∈ DS and for arbitrary system-
environment unitary evolution U is a convex-linear function
of ρS results in the CP-ness of the assignment map 	S , as in
Eq. (17). Thus, the reduced dynamics is CP, as in Eq. (1), for
arbitrary U and arbitrary ρS ∈ DS .

Proof. Since, as before, we have SS = DS , the set SS is
convex. Thus, we can show that the convex-linearity of the
reduced dynamics results in its linearity, following a similar
procedure as [34].

Note that some of the real coefficients ai, in Eq. (9) are
positive and the others are negative. Let us denote the positive
ones as a(+)

i and the negative ones as a(−)
i . So, from Eq. (9),

we have

ρS +
∑

i

|a(−)
i |ρ (i)

S =
∑

i

a(+)
i ρ

(i)
S . (18)

Tracing from both sides we have 1 + ∑
i |a(−)

i | = ∑
i a(+)

i ≡
b. Dividing both sides of Eq. (18) into b results in

1

b

(
ρS +

∑
i

|a(−)
i |ρ (i)

S

)

= 1

b

(∑
i

a(+)
i ρ

(i)
S

)
≡ ωS, (19)

where ωS ∈ DS = SS . Therefore, assuming that 
S is convex-
linear on SS we have


S (ωS ) = 
S

(
1

b

(
ρS +

∑
i

|a(−)
i |ρ (i)

S

))

= 
S

(
1

b

(∑
i

a(+)
i ρ

(i)
S

))

⇒ 1

b

(

S (ρS ) +

∑
i

|a(−)
i |
S

(
ρ

(i)
S

))

= 1

b

(∑
i

a(+)
i 
S

(
ρ

(i)
S

))
, (20)

which leads to


S (ρS ) =
m∑

i=1

ai
S (ρ (i)
S ). (21)

So, noting Eq. (9), we conclude that 
S is linear. Hence, if 
S

is convex-linear, for arbitrary U and arbitrary ρS ∈ DS , then
it is also linear for arbitrary U and arbitrary ρS ∈ DS . Now
Proposition 1 shows that the assignment map 	S is CP, as
Eq. in (17), and so the reduced dynamics of the system 
S =
�S is also CP. �

V. SUMMARY

Requiring that the reduced dynamics of the system S in-
teracting with its environment E is (convex) linear means
that (1) the reduced dynamics is (convex) linear for arbitrary
system-environment evolution U , and (2) the reduced dynam-
ics is (convex) linear for arbitrary initial state of the system
ρS ∈ DS .

In Proposition 1 (1′), it was shown that the above require-
ment results in the CP-ness of the reduced dynamics. So in the
axiomatic approach to quantum operations there is no need
to consider the CP-ness as a distinct postulate. It is only a
consequence of (convex) linearity.

In addition, when the reduced dynamics is (convex) linear
for arbitrary U and arbitrary ρS , then the set of initial states
of the system-environment is as S = {ρS ⊗ ω̃E }, where ρS is
an arbitrary state of the system and ω̃E is a fixed state of the
environment. In other words, under such circumstances the
assignment map is as the Pechukas’s one [6], given in Eq. (17).
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