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Causal modeling is a tool for generating causal explanations of observed correlations and has led to a
deeper understanding of correlations in quantum networks. Existing frameworks for quantum causality tend
to focus on acyclic causal structures that are not fine-tuned i.e., where causal connections between variables
necessarily create correlations between them. However, fine-tuned causal models (which permit causation
without correlation) play a crucial role in cryptography, and cyclic causal models can be used to model physical
processes involving feedback and may also be relevant in exotic solutions of general relativity. Here we develop
a causal modeling framework capable of dealing with these general scenarios. The key feature of our framework
is that it allows operational and relativistic notions of causality to be independently defined and for connections
between them to be established in a theory-independent manner. The framework first gives an operational way
to study causation that allows for cyclic, fine-tuned, and nonclassical causal influences. We then consider how a
causal model can be embedded in a space-time structure (modeled as a partial order) and propose a compatibility
condition for ensuring that the embedded causal model does not allow signaling outside the space-time future.
We identify several distinct classes of causal loops that can arise in our framework, showing that compatibility
with a space-time can rule out only some of them. We discuss conditions for preventing superluminal signaling
within arbitrary (and possibly cyclic) causal structures and consider models of causation in postquantum theories
admitting so-called jamming correlations. Finally, this work introduces the concept of a higher-order affects
relation, which is useful for causal discovery in fined-tuned causal models.
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I. INTRODUCTION

The process of identifying cause-effect relationships un-
derlying our observations is central to science. The causal
modeling paradigm [1,2] provides mathematical tools for re-
lating correlation and causation in scenarios described by
classical variables and has found applications in wide-ranging
disciplines including medical testing [3,4], economic predic-
tions [1,5], and machine learning [6–8]. A consequence of
Bell’s theorem [9] is that in certain scenarios, classical causal
models fail to explain quantum correlations [10]. This has
led to significant progress in the development of quantum
causal models [10–23] that have deepened our fundamental
understanding of quantum causality and quantum correla-
tions, as well as in practical information processing tasks
such as quantum cryptography, communication, and quantum
computation.

Previous work on quantum causality has focused on acyclic
causal structures and on causal models without fine-tuned
parameters, where causation and signaling become equiva-
lent notions. While it may be considered undesirable for a
physical theory of nature to allude to fine-tuned causal ex-
planations [10], the security of cryptographic protocols such
as the one-time pad rely on fine-tuning. Here fine-tuning is
required to ensure that the cipher text gives no information
about the original message without the key, even though the

*vilasini@phys.ethz.ch
†roger.colbeck@york.ac.uk

cipher text was generated from the original message and
thus causally depends on it. Cyclic causal models have been
developed and widely studied in the classical causal model-
ing literature for describing physical scenarios with feedback
[24,25], for instance, where variables such as demand and
price causally influence each other. In the quantum litera-
ture, cyclic causation has been considered in the context of
more exotic phenomena such as closed timelike curves or
processes with indefinite causal order [26,27], which may be
useful in approaches to quantum gravity without a definite
space-time structure. The causal modeling approach enables
an operational formulation of causality that is independent
of space-time structure [1,2]. Whether a cyclic causal model
describes a physical scenario with feedback or a closed time-
like curve depends on how the causal model is combined
with space-time information (see also [28]). Thus, from a
purely operational standpoint, the most general class of causal
models we would like to consider includes those that are
cyclic, fine-tuned, and also allow for nonclassical causal in-
fluences. To make a connection to physical experiments, it
is also desirable to characterize how this general class of
causal models can be embedded in a space-time structure,
such as Minkowski space-time, and to characterize when they
prevent violations of relativistic causality principles such as
no signaling outside the future in the space-time.

In the case of acyclic causal models without fine-tuning,
the condition for ensuring no superluminal signaling in a
space-time is straightforward: Whenever A is a cause of B in
the causal model, we can interpret B as being in the future of
A with respect to a space-time such as Minkowski space-time.
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This ensures that all causal influences and therefore all signals
propagate from past to future in the space-time. Operationally,
interventions allow us to verify causation and define a notion
of signaling: If intervening on A leads to different correlations
on B (compared to without the intervention), then we can say
that A signals to B and use this to infer that A is a cause
of B. In the absence of fine-tuning, every causal relationship
can be verified using interventions, and in such models, cau-
sation implies the ability to signal with an intervention. In
the presence of fine-tuning, it is possible to have causation
without signaling and in this case, demanding that there is
no signaling outside the space-time future does not guarantee
that all causal influences propagate from past to future in the
space-time. The connection between superluminal signaling
and causation has been previously studied by analyzing cor-
relations in Bell-type experiments in Minkowski space-time
(see, for instance, [29,30]). However, to find conditions for
ensuring no signaling outside the space-time future in arbi-
trary scenarios, correlations alone do not suffice; to ascertain
causation we must also consider interventions. Furthermore,
allowing for cyclic causal influences while considering a
partially ordered space-time such as Minkowski space-time
allows for an investigation of the relationships between causal
loops and superluminal signaling. A mathematical framework
for causally modeling these general scenarios and establishing
their connection to relativistic causality principles in a space-
time is currently lacking.

In this work we develop such a framework by defining
causation and space-time structure as separate notions and
then characterizing their compatibility. We keep the causal
part of the framework general by allowing for causation
without signaling (i.e., fine-tuned causal influences), cyclic
causation, and quantum and postquantum causes. We describe
this through a causal modeling approach, but under minimal
theory-independent assumptions and while taking into ac-
count correlations as well as arbitrary interventions. We then
connect this to physics by considering the embedding of the
observed variables involved in the causal model into a space-
time structure, such as Minkowski space, and we characterize
when such embeddings do not allow superluminal signaling.
The framework proposed here has two main advantages. On
the one hand, keeping causation and space-time structure
separate is a useful feature for considering more general for-
mulations of physics without a fixed background space-time
structure (e.g., in a theory of quantum gravity [31,32]), while
keeping a notion of processing and communicating physical
information available. On the other hand, characterizing the
compatibility between operational causation and space-time
structure can give insights into which of these scenarios is
physically realizable in a space-time.

The framework introduced in this work allows a char-
acterization of causality in a class of postquantum theories
(producing so-called jamming nonlocal correlations) pre-
viously proposed in the literature [29,30], clarifies the
relationships between several concepts, and enables us to
address a number of open questions. Even within causality
conditions related to space-time, there can be several distinct
notions. For example, physical principles such as no superlu-
minal signaling and no causal loops or closed timelike curves
are both associated with relativistic causality and implied by

the mathematical framework of special relativity. However,
these can be distinct concepts in a more general mathematical
framework where the causal structure is not fully specified
by the space-time structure, but only constrained by require-
ments such as no superluminal signaling once embedded in
a space-time. Within our framework, we distinguish these
concepts. In an associated Letter [33] we apply this framework
to show the mathematical possibility of causal loops between
Minkowski space-time events, the existence of which can be
operationally detected without leading to superluminal sig-
naling.1 Our framework also suggests further conditions that
could be used to rule out certain types of causal loops.

When we refer to operationally detectable, we mean de-
tectable using inferences from the observed correlations and
those under intervention. Some properties of an underlying
causal structure can be operationally found from the observed
correlations. For example, a violation of Bell inequalities
within the Bell causal structure certifies the nonclassicality of
the underlying common cause from the observed correlations.
To distinguish causation and correlation we need to consider
interventions, which allow more general inferences about the
causal structure [1]. Recently, it has been experimentally
demonstrated [34] that the nonclassicality of a causal structure
can be operationally certified from causation measures based
on interventions even when no such certification is possible
using correlation measures alone.

Apart from these foundational implications, several fea-
tures of our framework are useful from a more practical
perspective. For instance, security of relativistic cryptographic
protocols [35,36] combines both relativistic notions of causal-
ity (such as the impossibility of signaling outside the future
light cone) and information-theoretic concepts. Operational
information about the causal structure (which encodes the
structure of communication channels between agents), the
embedding of the causal structure in a space-time structure,
and the compatibility between the two are all relevant for
cryptography.

To operationally model causation, we adopt a causal mod-
eling approach similar to that of [1,2], in which causal
structures are represented using directed graphs. These indi-
cate how information flows through a network of physical
systems (classical, quantum, or possibly those of a postquan-
tum probabilistic theory), and the directed graph is in principle
independent of any consideration of space-time. One can how-
ever consider embedding the systems represented in the causal
structures within a space-time, and relativistic causality would
then impose constraints on the embedding such that the causal
model cannot be used to signal outside the space-time future,
in which case we say that the causal model is compatible with
the space-time structure. For example, if an active intervention
on a variable A produces a change in probability distribution
over another variable B, then one would say that A affects
B (or A signals to B), which implies that A is a cause of B.
Assigning space-time locations to the variables and requiring
the effect B to always be embedded in the future light cone
of the cause A makes this causal relationship compatible with

1Here, by Minkowski space-time, we only mean the partial order
corresponding to the light-cone structure of Minkowski space-time.
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the partial order of space-time. In some situations (such as for
jamming [29]) we wish to allow a variable to jointly affect a
set of variables without affecting individual variables in the
set and, more generally, we may consider more complicated
affects or nonaffects relations between arbitrary sets of vari-
ables. Such scenarios correspond to causal models where the
correlations are fine-tuned to hide certain causal influences
from direct observation such that there is causation without
correlation or signaling. In the presence of fine-tuning, char-
acterizing when a causal model can be compatibly embedded
in a space-time structure is more complicated. In our work we
provide a method to do so by developing a general framework
and introducing causal modeling tools that have applications
for analyzing causality in a previously proposed class of
postquantum scenarios as well more practical problems re-
lated to causal discovery, as we explain below.

Previously, minimal conditions for preventing superlumi-
nal signaling have been considered in Bell-type scenarios.
This led to the introduction of a general class of postquantum
correlations that can be defined in a tripartite Bell experiment
(see Fig. 3) that were dubbed jamming nonlocal correlations
[29]. In later work, the constraints defining this class of
correlations were claimed to be necessary and sufficient for
ruling out superluminal signaling and causal loops [30], under
certain assumptions on the space-time configuration. Previ-
ous works analyzing postquantum theories admitting jamming
correlations only consider the observed correlations produced
in such Bell-type scenarios. However, to rigorously analyze
causation and signaling possibilities in such theories, corre-
lations alone do not suffice (since correlation does not imply
causation), and interventions must also be taken into account.
A defining feature of jamming correlations is that they allow
the measurement setting of one party to jointly signal to the
measurement outcomes of two other parties, without signaling
to them individually (this can only happen with fine-tuning).
In the space-time configuration considered in [29,30], this
leads to superluminal causal influences without superluminal
signaling. Since we allow fine-tuning, more generally, we can
consider whether it is possible to have causal loops in a causal
structure that do not lead to superluminal signaling when the
systems in the causal structure are embedded in Minkowski
space-time. Therefore, for a clear understanding of the general
validity of such claims for ruling out causal loops, a rigorous
causal modeling framework is required. A general framework
for modeling causality and its compatibility with space-time,
as described in the above paragraphs, will also enable us to
consider conditions for preventing signaling outside the future
light cone and causal loops in arbitrary scenarios (not just
those associated with Bell experiments). Such a mathematical
framework is lacking in the previous literature.

A framework allowing for cyclic quantum causal mod-
els was proposed in [27]. There the focus was on indefinite
causal order processes and the authors adopt a fully quan-
tum approach where all nodes are associated with quantum
systems. To model postquantum theories admitting jamming
correlations [29,30] and analyze the signaling possibilities
therein, we distinguish between classical nodes correspond-
ing to measurement settings and outcomes, and nonclassical
nodes (which may be quantum or more generally postquantum
systems modeled by a generalized probabilistic theory). This

is similar to the approach of [16] but, in contrast to [16],
we allow for cyclic causal models and fine-tuning and also
consider space-time embeddings.

Finally, we note some implications for the problem of
causal discovery (inferring causation from empirical data),
which is ubiquitous in science. Causal discovery algorithms
are often based on the assumption of no fine-tuning or
faithfulness (see [1,2]). Allowing fine-tuning significantly
complicates causal discovery by allowing for causal influ-
ences that are not immediately reflected in certain types of
empirical data. The framework and results presented here
make explicit several aspects of fine-tuned causal models and
elucidate relationships between several concepts relating to
causal models that are equivalent in the absence of fine-tuning
but that become inequivalent in the presence of fine-tuning.
This suggests alternative methods for exploring the problem
of causal discovery in the presence of fine-tuning, a problem
that is of interest to the scientific community beyond the
foundations of quantum physics.

Summary of contributions

We first review the necessary preliminaries of the causal
modeling approach in Sec. II and discuss the jamming sce-
nario along with other motivating examples in Sec. III. In the
rest of the paper, we present several results that address the
open questions outlined above, which are summarized below.

(i) In Secs. IV and V we develop an operational frame-
work for analyzing cyclic and fine-tuned causal models in the
presence of latent nonclassical causes and characterizing their
compatibility with a space-time structure. In particular, this
provides a mathematical framework for causally modeling
postquantum theories admitting jamming nonlocal correla-
tions [29] (referred to as relativistic causal correlations in
[30]). The framework consists of two parts: The first concerns
causal models and the second characterizes the embedding of
these causal models in a space-time structure.

(ii) In the causality part of the framework (Sec. IV), we
extend a number of results previously established in the clas-
sical causal modeling literature, typically used for acyclic
and faithful causal models, to the more general scenarios
considered here, such as Pearl’s rules of do-calculus [1].
We also introduce several causal modeling concepts, such as
higher-order affects relations, which only become relevant in
fine-tuned causal models. We derive relationships between the
many distinct properties of such causal models, highlighting
the deviation from the standard case of faithful causal models.
These technical results have applications for the problem of
causal discovery in fine-tuned causal models, which is of
independent interest.

(iii) In the second part of the framework (Sec. V), we
use higher-order affects relations to define when a causal
model can be said to be compatible with an embedding in
a space-time structure, which is intended to capture that the
model does not allow signaling outside the space-time fu-
ture. We also consider alternative compatibility conditions (in
Sec. V D), discussing the relationships between them and their
physical intuition.

(iv) In Sec. VI we define several distinct classes of causal
loops and consider theories that are consistent with the
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principle that signaling outside the space-time future is not
possible. We show that such theories are necessarily free of
certain types of causal loops and in the associated Letter [33]
we apply our framework to construct a causal model for an
operationally detectable causal loop that can be embedded in
Minkowski space-time without leading to superluminal sig-
naling. We discuss this example and illustrate in Appendix B
that such theories (which allow for causal loops without sig-
naling outside the future of a partially ordered space-time) can
involve further distinct classes of causal loops beyond those
defined in the main text.

(v) The above results illustrate the counterintuitive possi-
bilities allowed by fine-tuned causal models: It is logically
possible to have superluminal causal influences without su-
perluminal signaling (as in nonlocal hidden variable theories
[37] or the jamming scenario of [29,30]), as well as causal
loops that do not lead to superluminal signaling. These results
have consequences for the claim of [30] that certain conditions
on correlations in a tripartite Bell scenario are necessary and
sufficient for ruling out all causal loops. This claim does
not hold in our framework without further assumptions (see
Sec. VII).

In Ref. [38] we apply the results of the present paper
to analyze the postquantum jamming scenario of [29,30] in
detail, where we identify an explicit protocol that leads to
superluminal signaling in this setting (contrary to previous
claims), as well as properties of postquantum theories that
admit such correlations.

A reader who is more interested in the physical impli-
cations of the framework rather than causal modeling may
choose to skip the latter parts of Sec. IV on causal modeling
and directly move on to the space-time part of our frame-
work in Sec. V. In particular, while Secs. IV A and IV B are
important for what follows, Examples 3–5 of Sec. IV C give
the main intuition behind the concept of higher-order affects
relations and how it can be applied to define compatibility
with a space-time in Sec. V. The reader may therefore choose
to skip the remaining technical details of Sec. IV C, as well as
the subtleties of Sec. IV D in their first reading.

II. PRELIMINARIES: ACYCLIC AND FAITHFUL
CAUSAL MODELS

We first briefly review the literature on classical and non-
classical causal models, where cause-effect relationships are
typically taken to be acyclic and assumed not to be fine-tuned,
before developing a model where these assumptions are re-
laxed.

A causal structure can be represented as a directed graph
over several nodes, some of which are labeled observed and
some unobserved; typically this is taken to be a directed
acyclic graph (DAG). Each observed node corresponds to a
classical random variable,2 while each unobserved node is
associated with a classical, quantum, or postquantum sys-
tem. The causal structures we consider in this paper always
feature observed random variables and we will denote the

2These may represent, for example, settings or outcomes of an
experiment.

union S1 ∪ S2 of any two sets S1 and S2 of random variables
as S1S2. A causal structure is called classical (denoted by
GC), quantum (denoted by GQ), or generalized probabilistic
theory (GPT) (denoted by GGPT) depending on the nature of
the unobserved nodes [39]. Edges of causal graphs will be
denoted by �, and it will be useful to later classify these
edges as solid −→ or dashed ��� based on certain operational
conditions for detecting causation. The following definition of
cause is implicit in the meaning of such a causal structure.

Definition 1 (cause). Given a causal structure represented
by a directed graph G, possibly containing observed as well as
unobserved nodes, we say that a node Ni is a cause of another
node Nj if there is a directed path Ni � · · · � Nj from Ni to
Nj in G. More generally, we say that a set of nodes S1 is a
cause of a disjoint set of nodes S2 if there exist nodes Ni ∈ S1

and Nj ∈ S2 such that Ni is a cause of Nj .
For an acyclic causal structure GC over the n random

variables {X1, . . . , Xn} (i.e., having those variables as nodes),
a distribution P(X1, . . . , Xn) is said to be compatible with
GC if it satisfies the causal Markov condition, i.e., the joint
distribution decomposes as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|par(Xi )), (1)

where par(Xi ) denotes the set of all parent nodes of the
node Xi in the DAG GC. [We later discuss a notion of
compatibility for more general (possibly cyclic) causal
structures (Definition 4) that is weaker but recovers the
present definition in the acyclic case where all nodes are
observed.] The Markov condition of Eq. (1) is equivalent
to the conditional independence Xi ⊥⊥ nd(Xi )|par(Xi ) of
Xi from its nondescendants, denoted by nd(Xi ) given
its parents par(Xi ) in G, i.e., P(Xind(Xi )|par(Xi )) =
P(Xi|par(Xi ))P(nd(Xi )|par(Xi )) ∀i ∈ {1, . . . , n} [1]. In the
case of classical causal structures with unobserved nodes,
the set of compatible observed distributions for the causal
structure are obtained by marginalization of a total distribution
(over all nodes) that satisfies Eq. (1).

In nonclassical causal structures, this compatibility con-
dition no longer applies since a node (e.g., a measurement
outcome) and its parents (e.g., the quantum states that were
measured to produce that outcome) in the causal structure may
not coexist. Here we can only assign a joint distribution over
all the observed nodes, and this cannot in general be seen as a
marginal of a joint distribution over all nodes, as in the clas-
sical case. Instead, the observed distribution in a nonclassical
causal structure is obtained using the states, transformations,
and measurements of the theory under consideration (which
we will call the causal mechanisms), in the order specified
by the causal structure and in accordance with the probability
rule specified by the theory. For example, in quantum theory,
this would be the Born rule. Compatibility with nonclassical
causal structures can be formulated in terms of a generalized
Markov condition [16] that requires the nonclassical causal
mechanisms (e.g., the quantum channels) to factorize in a
manner analogous the classical Markov condition (1), but the
exact form of this will not be relevant here. There are several
frameworks for describing quantum and postquantum causal
structures which typically differ in how the nodes and edges
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FIG. 1. (a) Bipartite Bell causal structure: � represents a bipar-
tite state (classical, quantum, or that of a generalized probabilistic
theory) shared by two noncommunicating parties Alice and Bob
who measure their subsystems locally using classical measurement
settings A and B to obtain classical outcomes X and Y . (b) Variation
of (a) in which the settings A and B are both causes of both outcomes.

are associated with the causal mechanisms of the theory. How-
ever, the details of these different frameworks do not change
the operational predictions that can be made from the causal
structure, such as the possible observed correlations realizable
in the causal structure, and will not be needed in the rest of
this paper. As an illustration, the following example describes
the sets of compatible observed correlations in the classical
and quantum version of the well-known bipartite Bell causal
structure GB of Fig. 1(a). In the following, Pn denotes the set
of all probability distributions over n random variables and
S (H ) denotes the set of positive-semidefinite and trace one
operators on a Hilbert space H .

Example 1 (sets of compatible correlations in the bipartite
Bell causal structure GB). In the classical causal structure GC

B ,
the set of compatible (observed) distributions is obtained by
assuming a joint distribution P(�XYAB) ∈ P5 over all nodes
that satisfies the Markov condition (1) and marginalizing over
the unobserved node �,

P
(
GC

B

)
:= {P(XYAB) ∈ P4 | P(XYAB)

=
∑

�

P(�)P(A)P(B)P(X |A�)P(Y |B�)}. (2)

If � is a continuous random variable, the sum is replaced
by an integral over �. This compatibility condition for the
classical causal structure GC

B is identical to the local-causality
condition used in the derivation of Bell inequalities (see
[40] for a comprehensive review). In the quantum causal
structure GQ

B , the unobserved node � corresponds to a bi-
partite quantum state ρ� ∈ S (H�) = S (H�X ⊗ H�Y ), and
the observed nodes X and Y are associated with the positive-
operator-valued measures {EX

A }X and {FY
B }Y , which act on the

subsystems H�X and H�Y , depending on the inputs A and B,
respectively, to generate the output distribution,

P
(
GQ

B

)
:= {P(XYAB) ∈ P4 | P(XYAB)

= tr
[(

EX
A ⊗ FY

B

)
ρ�

]
P(A)P(B)

}
. (3)

In classical and nonclassical causal structures alike, con-
ditional independences play an important role. For instance,

in the Bell causal structure, irrespective of the nature of �,
we have X ⊥⊥ B|A and Y ⊥⊥ A|B. Expressed in terms of prob-
abilities, these are the no-signaling constraints. The concept
of d-separation developed in [41–44] provides a method to
read off implied conditional independence relations from the
graph, in both classical and nonclassical causal structures. It
is defined as follows.

Definition 2 (blocked paths). Let G be a DAG in which X
and Y �= X are nodes and Z be a set of nodes not containing
X or Y . A path from X to Y is said to be blocked by Z
if it contains either A � W � B with W ∈ Z , A �W � B
with W ∈ Z , or A � W �B such that neither W nor any
descendant of W belongs to Z , where A and B are arbitrary
nodes in the path between X and Y .

Definition 3 (d-separation). Let G be a DAG in which X ,
Y , and Z are disjoint sets of nodes. Sets X and Y are d
separated by Z in G, denoted by (X ⊥d Y |Z )G (or simply
X ⊥d Y |Z if G is obvious from the context) if every path from
a variable in X to a variable in Y is blocked by Z; otherwise X
is said to be d-connected with Y given Z .

In classical acyclic causal structures (where the Markov
condition of Eq. (1) holds), it has been shown that every
d-separation relation X ⊥d Y |Z between pairwise disjoint
subsets of nodes implies that the conditional independence
X ⊥⊥ Y |Z holds in the corresponding probability distribution
[43,44]. In nonclassical acyclic causal structures, the same
has been shown for d-separation relations between arbitrary
disjoint sets of the observed nodes [16]. In our example
of the Bell causal structure, we have the d-separation rela-
tions X ⊥d B|A and Y ⊥d A|B, which imply the conditional
independences X ⊥⊥ B|A and Y ⊥⊥ A|B characterizing the no-
signaling constraints.

Furthermore, in both cases, given a causal structure G and a
distribution P compatible with it, the pair (G, P) constitutes a
faithful causal model if every conditional independence X ⊥⊥
Y |Z in P corresponds to a d-separation relation X ⊥d Y |Z in
G. In the nonclassical case, P corresponds to the distribution
over the observed nodes and cannot be seen as a marginal
of a joint distribution over all nodes. Hence conditional in-
dependence in the sense of P(XY |Z ) = P(X |Z )P(Y |Z ) can
only be defined when X , Y , and Z are pairwise disjoint sub-
sets of the observed nodes. In the classical case, conditional
independence in this form can also be defined for unobserved
nodes and in a faithful, classical causal model, all such con-
ditional independences imply a corresponding d-separation.
Note that it is possible to define a notion of conditional in-
dependence between quantum nodes in terms of conditional
quantum states (instead of conditional probability distribu-
tions) [21], but in this paper we will only consider conditional
independence relations involving sets of classical variables,
which could be the observed nodes of nonclassical causal
structures or any node of a classical causal structure. Then
an unfaithful or fine-tuned causal model is one where there
exists a conditional independence X ⊥⊥ Y |Z in the distribution
P even though X and Y are d-connected in G. For example,
Fig. 1(b) provides an extension of the Bell causal structure,
where there are additional causal influences from each party’s
input to the other party’s output and it is known that any
distribution realizable in the original causal structure is real-
izable in the classical version of this modified causal structure

032204-5



V. VILASINI AND ROGER COLBECK PHYSICAL REVIEW A 106, 032204 (2022)

TI

TO E

FIG. 2. Causal structures for the motivating examples described in the text: (a) Friedman’s thermostat, (b) traitorous lieutenant, and (c) one-
time pad. Note that there may be additional causal influences. For example, in (b), we will later see that an additional common cause between
M1 and M2 will be required to fully explain the correlations [cf. Fig. 9(a)].

[10] (see Appendix C for further details). Note however that
the d-separation relation Y ⊥d A|B no longer holds here, and
hence any no-signaling distribution would be fine-tuned or
unfaithful with respect to this causal structure but not with
respect to the original one of Fig. 1(a). In other words, the
first causal structure faithfully explains no-signaling correla-
tions using nonclassical causal mechanisms, while the second
provides an unfaithful explanation of such correlations using
classical causal mechanisms.

III. MOTIVATION FOR ANALYZING FINE-TUNED AND
CYCLIC CAUSAL MODELS

One of the most common assumptions made in the analysis
of causal models is that of faithfulness or no fine-tuning.
Fine-tuning complicates causal inference because it involves
independences that disappear with small amounts of noise,
and fine-tuning is often avoided in the literature (also on
the grounds that fine-tuned causal models constitute a set of
measure-zero). Even in the Bell scenario explained above,
a faithful explanation of the correlations using nonclassical
causal models is often preferred over the unfaithful expla-
nation using classical causal models. However, there are a
number of examples, as we will see below, that necessitate
a fine-tuned explanation irrespective of whether the causal
structure is classical and nonclassical. These include certain
everyday scenarios and cryptographic protocols as well as
more exotic cases that arise in certain postquantum theories
that allow for superluminal influences without superluminal
signaling, which we discuss in Secs. III A and III B.

Another common assumption in the causality literature
is that the causal structure is acyclic. Allowing fine-tuned
causal influences makes possible cyclic causal structures that
are compatible with minimal notions of relativistic causality,
such as the impossibility of signaling superluminally at the
observed level. Cyclic causal models have also found appli-
cations in the classical literature for describing systems with
feedback loops [24,45]. Developing a framework for cyclic
and fine-tuned causal models in nonclassical theories there-
fore has both foundational and practical relevance, enabling
us to better understand the operational relationships between
causality and signaling with respect to a space-time structure,
and their implications for information processing. We now

present some concrete examples that necessitate such causal
models.

A. Friedman’s thermostat and the one-time pad

Consider a house with an ideal thermostat. Such a ther-
mostat would maintain a constant inside temperature TI

throughout the year, despite variations in the outside temper-
ature TO, by adjusting its energy consumption E accordingly.
Going by the correlations alone, one might incorrectly con-
clude that the inside temperature TI is causally independent
of everything else as it has no correlations with any other
variables. However a closer look at the internal workings of
the thermostat would reveal that the correct causal explanation
is the one shown in Fig. 2(a), where TI is causally influenced
by both TO and E , and the feedback loop between TI and
E ensures that the indoor temperature remains constant, by
suitably adjusting E . The causal model in this case is fine-
tuned since the independence of TI from TO and E does not
correspond to a d-separation relation in the causal structure
[Fig. 2(a)]. This thermostat analogy, which is attributed to
Friedman [46], can be extended to a number of other scenarios
such as the effect of fiscal and monetary policies on economic
growth [47] or physical systems where several forces exactly
balance out.

In cryptographic settings, examples that necessitate fine-
tuning include the one-time pad or the traitorous lieutenant
problem [48]. Consider a general who wishes to relay an
important secret message M to an ally and has two lieutenants
available as messengers, but one of them is a traitor who might
leak the message to enemies. Consider for simplicity that M
is a single bit. The general could then adopt the following
strategy: Depending on M = 0 or M = 1, generate two bits
M1 and M2 such that M1 = M2 or M1 �= M2 and both are uni-
formly distributed. Give M1 to the first and M2 to the second
lieutenant to relay to the ally. Then the ally would receive M1

and M2 and can simply use modulo 2 addition ⊕ to obtain M∗,
which is indeed the original message M∗ = M = M1 ⊕ M2

[Fig. 2(b)]. More importantly, the individual messages M1 and
M2 contain no information about M and hence neither lieu-
tenant has any information about the secret message. A similar
protocol underlies the one-time pad where a message M is
encrypted using a secret key K (both binary for this example)
to produce an encrypted message ME = M ⊕ K which can be
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FIG. 3. Jamming correlations in the tripartite Bell scenario: Three parties Alice, Bob, and Charlie share a tripartite system �; they measure
their subsystem using the freely chosen measurement settings A, B, and C, producing the outcomes X , Y , and Z , respectively, without
communicating. (a) Space-time configuration for the jamming scenario [29,30]. The measurements of the three parties are pairwise spacelike
separated with the future of Bob’s input B containing the joint future of Alice’s and Charlie’s outputs X and Z (blue region). Here it is argued
that allowing B to signal to X and Z jointly but not individually is consistent with the principle of no signaling outside the future light cone,
since the joint signaling can only be verified in the blue region, which is in the future of B. Such correlations form a larger set compared to
the standard tripartite no-signaling correlations, which forbid individual as well as joint signaling from the inputs of any set of parties to the
outputs of a complementary set of parties [49]. To model the joint signaling through jamming, a new variable CX Z was introduced in [30],
located at the earliest point in the joint future of X and Z and representing the correlations between X and Z . (b) Causal structure for the usual
tripartite Bell experiment.

sent through a public channel as it will carry no information
about the original message M if the key K is uniformly dis-
tributed and is kept private. Only a receiver of ME who knows
the key K can decrypt the message M = ME ⊕ K [Fig. 2(c)].
Hence, fine-tuning of causal influences, i.e., causation in the
absence of correlation, is crucial for the security.

Further, cyclic causal models have been analyzed in the
classical literature [24,45] for the purpose of describing com-
plex systems involving feedback loops, analogous to the
thermostat example. Note that the cyclic dependences here do
not correspond to closed timelike curves since the variables
under question are considered over a period of time, e.g., a
demand at time t1 influences the price at time t2 > t1, which in
turn influences the demand at time t3 > t2. Within our frame-
work we would use separate random variables for each of the
times, which in some cases we would remove the cyclicity. To
characterize genuine closed timelike curves one must consider
not only the pattern of causal influences, but also how the
relevant variables are assigned space-time locations.

B. Jamming nonlocal correlations

Another example that involves fine-tuning, even though it
has not been motivated or discussed in this context, is that of
jamming nonlocal correlations introduced in [29]. The work
in [29] outlines the possibility of postquantum theories be-
yond the standard no-signaling probabilistic theories (such as
boxworld) that are still compatible with the impossibility of
superluminal signaling. A better understanding of such theo-
ries would shed light on the principles of causality (beyond no
superluminal signaling) that distinguish quantum and GPTs
from these more general postquantum theories. However, a

mathematical framework for analyzing causality in such the-
ories is lacking, and the main purpose of this paper is to
develop a general framework for modeling the relationships
between causation and space-time structure that can in partic-
ular be applied to jamming theories. In Ref. [38] we apply our
framework to the jamming scenario in more detail, identifying
aspects of theories that admit such scenarios. We now proceed
to review the jamming scenario below.

Consider three spacelike separated parties, Alice, Bob, and
Charlie, sharing a tripartite system � which they measure us-
ing measurement settings A, B, and C, producing outcomes X ,
Y , and Z , respectively. Suppose that their space-time locations
are such that Bob’s future light cone entirely contains the joint
future of Alice and Charlie, as shown in Fig. 3. The standard
no-signaling conditions forbid the input of each party from
being correlated with the outputs of any subset of the remain-
ing parties, for instance, the joint distribution P(XY Z|ABC)
satisfies P(XZ|ABC) = P(XZ|AC). In [29] it is argued that
a violation of this requirement does not lead to superluminal
signaling in the space-time configuration of Fig. 3, as long
as P(X |ABC) = P(X |A) and P(Z|ABC) = P(Z|C). This is be-
cause any influence that B exerts jointly (but not individually)
on X and Z can only be checked when X and Z are brought
together to evaluate the correlations P(XZ|ABC). This is only
possible in their joint future, which is by construction con-
tained in the future of B. Bob is said to jam the correlations
between Alice and Charlie nonlocally.

In [30] the causal structure for such an experiment is repre-
sented by introducing a new random variable CXZ associated
with the set XZ that encodes the correlations between its
elements. Then B is seen as a cause of CXZ but not as a cause of
either X or Z . In general scenarios, this representation would
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require adding a new variable for every nonempty subset of
the observed nodes, which can become intractable.3 In fact,
given the assumptions that B is freely chosen and is hence
a parentless node and that for nontrivial jamming it must be
correlated with XZ , any causal structure where B is not a
cause of at least one of X and Z (the causal structure proposed
in [30] being such an example) would not lead to a sensible
causal model satisfying the d-separation property (Definition
4), which is a basic property satisfied by classical and nonclas-
sical causal models alike [1,16]. This is because such a causal
structure would have a d-separation between B and XZ which
would require these sets to be uncorrelated and hence disallow
any nontrivial jamming. Further, this representation does not
always correspond to what is physically going on; for in-
stance, in the example of the traitorous lieutenant, this would
introduce a new variable CM1M2 that is observably influenced
by the general’s original message M, while M would no longer
be seen as a cause of M1 or M2. However, we know that we
physically generated M1 and M2 using M (and possibly some
additional information to explain the distribution over the in-
dividual variables4); hence it is indeed a cause of at least one
of them. Therefore, we aim to develop a different approach
to causal modeling in a general class of fine-tuned and cyclic
scenarios, using only the original variables or systems. The
following proposition illustrates that the jamming scenario
considered in [29,30] necessarily corresponds to a fine-tuned
causal model over the original variables. Here jamming is
considered in the context of multipartite Bell scenarios where
the jamming variable is a freely chosen input of one of the
parties. In the causal model approach adopted here, we will
take free choice of a variable to correspond to the exogeneity
of that variable in the causal structure.5

Proposition 1. Consider a tripartite Bell experiment where
three parties Alice, Bob, and Charlie share a system � which
they measure using the setting choices A, B, and C, producing
the measurement outcomes X , Y , and Z , respectively. Let G
be any causal structure with only {A, B,C, X,Y, Z} as the
observed nodes where A, B, and C are exogenous. Then any
conditional distribution P(XY Z|ABC) corresponding to the
jamming correlations of [29,30] defines a fine-tuned causal
model over G, irrespective of the nature (classical, quantum,
or GPT) of �.

Proof. Jamming allows Bob’s input B to be correlated
jointly with X and Z but not individually with X or Z .
Hence jamming correlations in the tripartite Bell experiment
of [29,30] are characterized by the conditions B ⊥⊥ X and
B ⊥⊥ Z while B �⊥⊥ XZ . Since B is exogenous (i.e., has no
incoming arrows), the only way to explain the correlation
between B and XZ is through an outgoing arrow or a directed
path from B to the set XZ , i.e., an arrow either from B to X

3In general, this representation would include up to 2n − 1 observed
variables whenever the original set of observed variables has n ele-
ments.

4As we will see later in Fig. 9(a), a common cause � between M1

and M2 would also be required in such examples.
5This is a standard way of modeling free choices in a causal model,

although note that it is not equivalent to other definitions of free
choice [30,50,51].

or from B to Z or both.6 Since we require both independences
B ⊥⊥ X and B ⊥⊥ Z to hold, at least one of these will not be
a consequence of d-separation and hence the causal model
must be fine-tuned in order to produce these correlations in
the causal structure G. �

The simplest example of jamming is where B = X ⊕ Z
and all variables are binary and uniformly distributed (the
remaining variables are irrelevant here), and we will revisit
this example several times in this paper. These are the same
correlations as the traitorous lieutenant example. However, in
the jamming case, the three variables involved are taken to be
pairwise spacelike separated and since B is exogenous, this
corresponds to a situation where B superluminally influences
the correlations between X and Z . The jamming scenario
involves superluminal causal influences that need not lead
to observable superluminal signaling. Generalizing from this
idea, one can consider whether such influences can be used
to create causal loops that do not lead to any signaling to
the past or even outside the space-time future. In the interest
of generality and of understanding the relationships between
the principles of no superluminal signaling and no causal
loops, one must consider fine-tuned causal influences along
with cyclic causal influences and characterize when these
influences may or may not lead to signaling outside the future
with respect to a space-time structure, even in the presence of
latent nonclassical causes.

IV. FRAMEWORK: CAUSALITY

This section is devoted to outlining our causal modeling
framework. Section IV A provides a minimal definition (Defi-
nition 4) of a causal model, allowing cyclic, fine-tuned, and
nonclassical causal influences, including when an observed
distribution is compatible with a causal structure. In Sec. IV B
we describe the use of interventions within such causal mod-
els. This enables us to show that Pearl’s rules of do-calculus
[1] hold in the more general causal models defined here
(Theorem 1). Interventions give rise to affects relations which
capture the notion of signaling in a causal model (Definition
6). Using these, we classify the causal arrows in terms of
whether or not they enable signaling. For some of our results
we find it useful to extend these affects relations to conditional
and higher-order affects relations (Sec. IV C), which capture
the most general way of signaling in our framework, through
joint interventions on multiple nodes. Corollary 3 gives a main
implication of conditional higher-order affects relations on
the underlying causal structure. Section IV D summarizes the
relations between the various concepts and illustrates them
with several examples.

A. Cyclic and fine-tuned causal models

Following the motivation set out in the previous sections,
we wish to relax the assumptions of acyclicity and faithfulness
and extend causal modeling methods to cyclic and fine-
tuned causal structures with latent quantum and postquantum

6If this were not the case, B would be d separated from XZ and
therefore cannot be correlated with it.
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causes. While quantum cyclic causal models have been previ-
ously studied [27], these have been analyzed in the faithful
case and are based on the split-node causal modeling ap-
proach of [21]. This approach is not equivalent to the standard
causal modeling approach such as [16] in the cyclic case; for
example, the former forbids faithful two-node cyclic causal
structures [27] but the latter does not, and the former admits
a Markov factorization [analogous to Eq. (1)] while the latter
does not in general (as explained in the next paragraph). There
is no framework for causally modeling cyclic and unfaithful
causal structures in the presence of quantum and postquantum
latent nodes, the lack of a Markov factorization posing a
particular challenge. Here we propose a framework for achiev-
ing this.7 We will define causal models in terms of minimal
conditions that they must satisfy at the level of the observed
(classical) nodes.

Observed distribution

In classical acyclic causal models, the causal Markov con-
dition (1) is used for defining the compatibility of the observed
distribution with the causal structure [1]. In the nonclas-
sical case, an analogous generalized Markov condition of
[16] constraining the nonclassical causal mechanisms (states,
transformations, and measurements) provides a compatibility
condition. However, in cyclic causal models, demanding such
a factorization will be too restrictive even in the classical case.
For example, consider the simplest cyclic causal structure, the
two-cycle where X � Y and Y � X , with X and Y observed
and X = Y . Used naively, the Markov condition would imply
that P(XY ) = P(X |Y )P(Y |X ). Since X = Y , the right-hand
side is a product of deterministic distributions, which forces
P(XY ) to also be deterministic in order to be a valid distribu-
tion. In order to not restrict directed cycles to only consist of
deterministic variables, we instead use a weaker compatibility
condition in terms of d-separation between observed nodes.
As we have previously noted, this is a concept that also applies
to nonclassical causal structures. The condition captures the
intuition that certain graph separation properties in the causal
structure must imply (conditional) independences in the corre-
lations it gives rise to. Based on this, we define compatibility
of the observed distribution with a cyclic causal structure as
follows within our framework.

Definition 4 (compatibility of observed distribution with a
causal structure). Let {X1, . . . , Xn} be a set of random
variables denoting the observed nodes of a directed graph G
(which may also have unobserved nodes) and P(X1, . . . , Xn)
be a joint probability distribution over them. Then P is said to
be compatible with G (or to satisfy the d-separation property)
if for all disjoint subsets X , Y , and Z of {X1, . . . , Xn},8
X ⊥d Y |Z ⇒ X ⊥⊥ Y |Z , i.e., P(XY |Z ) = P(X |Z )P(Y |Z ).

7Note that there may be other, inequivalent ways to do the same,
for example, based on a different condition for compatibility of a
distribution with a causal structure.

8Note that we only need to consider d-separation between observed
sets of variables in this definition; however, the paths being consid-
ered may involve unobserved nodes. For example, if the observed
variables X and Y have an unobserved common cause �, then X and
Y are not d separated by the empty set since there is an unblocked

In the previous literature, causal models are typically de-
fined in terms of a causal structure and causal mechanisms
(which are then used to derive the observed distribution).
When doing so it known that Definition 4 is satisfied by clas-
sical as well as nonclassical causal models in the acyclic case
[1,16]. The compatibility property holds in several classical
cyclic causal models [24,45]. For classical acyclic models,
it is equivalent to the causal Markov condition (1) [52]. In
Appendix C we provide an example of a quantum cyclic
causal model (with causal mechanisms) where this holds.
However, there also exist cyclic causal models producing
observed distributions that do not satisfy Definition 4; we
discuss this further in Appendix C as well. There we also
present further motivation for the compatibility condition of
Definition 4 in terms of the properties of the underlying causal
mechanisms (e.g., functional dependences in the classical
case and completely positive maps in the quantum case) and
outline possible methods for identifying when this condition
might hold for nonclassical cyclic causal models. Even in the
classical case, several inequivalent definitions of compatibility
are possible (which become equivalent in the acyclic case) and
[24] presents a detailed analysis of these conditions and the
relationships between them. Such an analysis for the nonclas-
sical case is beyond the scope of the present work. For the rest
of this paper, we will only consider causal models that satisfy
the compatibility condition in Definition 4.

We will work with the following minimal definition of a
causal model in this paper, which is in terms of the graph and
observed distribution only. Further details about the causal
mechanisms such as the functional relationships between clas-
sical variables, choice of quantum states or transformations,
or generalized tests [16] can also be included in the full
specification of the causal model. These constitute the causal
mechanisms of the model. Developing a complete and formal
specification of these mechanisms and deriving the conditions
for their compatibility with cyclic, fine-tuned, and nonclas-
sical causal models is a tricky problem; we outline possible
ideas for this in Appendix C and leave the full problem for
future work. The results of this paper hold without such a
specification, which if added would be a way to generalize
them. Interestingly, we find that even with this minimal def-
inition, we can derive several different results for a general
class of causal models and also reproduce results that were
originally derived for acyclic classical causal models.

Definition 5 (causal model). A causal model over a set
of observed random variables {X1, . . . , Xn} consists of a
directed graph G over them (possibly involving classical,
quantum, or GPT unobserved systems) and a joint distribution
PG (X1, . . . , Xn) that is compatible with the graph G according
to Definition 4.

Note that other definitions of causal model are used in the
literature; in particular, sometimes the definition requires that
PXi|par(Xi ) [or more generally a possibly nonclassical channel
from par(Xi ) to Xi] is given for each node Xi (see, e.g., [1,16]).

Definition 4 allows for fine-tuned distributions to be com-
patible with the causal structure since it only requires that

path between X and Y through the unobserved common cause, and
naturally we do not expect X and Y to be independent in this case.
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d-separation implies conditional independence and not the
converse. Fine-tuned causal models may in general have an
arbitrary number of additional conditional independences that
are not implied by the d-separation relations in the corre-
sponding causal graph. The following lemma shows that some
additional conditional independences that are not directly im-
plied by d-separation can be derived using d-separation and
other independences (not implied by d-separation) that may
be provided.

Lemma 1. Let S1, S2, and S3 be three disjoint sets of ran-
dom variables (RVs) such that S1 ⊥⊥ S2|S3. If S is a set of
RVs that is d separated from these sets in a directed graph
G containing all the members of S1, S2, S3, and S as nodes,
i.e., S ⊥d Si ∀i ∈ {1, 2, 3}, then any distribution P that is com-
patible with G also satisfies the conditional independences
S1S ⊥⊥ S2|S3, S1 ⊥⊥ S2S|S3, and S1 ⊥⊥ S2|S3S.

A proof can be found in Appendix D 1. Note that
this lemma is trivial in the case of faithful causal models.
This is because the independence S1 ⊥⊥ S2|S3 implies the
d-separation S1 ⊥d S2|S3 for a faithful causal model. Then,
combined with S ⊥d Si, we get the d-separations S1S ⊥d

S2|S3, S1 ⊥d S2S|S3, and S1 ⊥d S2|S3S, which in turn imply
the corresponding independences. This property is not so
straightforward for fine-tuned causal models but nevertheless
holds. Specific examples of this property for fine-tuned causal
models are discussed in Appendix A.

B. Interventions and affects relations

So far, we have only discussed the possible correlations
that can be compatible with a causal structure. However, it
is not possible to infer an underlying causal structure from
correlations alone: Correlations are symmetric while causal
relationships are directional. For example, if two variables X
and Y are correlated, Reichenbach’s principle [53] asserts that
either X must be a cause of Y , Y must be a cause of X , X and
Y share a common cause, or any combination thereof. These
causal explanations cannot be distinguished on the basis of
observed correlations alone. However, intuitively, we can ar-
gue that if “doing” something only to X produces a change in
the distribution over Y , then X is a cause of Y . This intuition
is formalized in terms of interventions and do-conditionals
[1], and we will adopt the augmented graph approach [1] for
defining these.

1. Preintervention, augmented, and postintervention
causal structures

Consider a causal model associated with a causal structure
G over a set S = {X1, . . . , Xn} of observed nodes. External
intervention on a node X ∈ S can be described using an aug-
mented graph GIX which is obtained from the original graph
G by adding a node IX and an edge IX � X (with everything
else unchanged). The intervention variable IX can take values
in the set {idle, {do(x)}x∈X }, where IX = idle corresponds to
the case where no intervention is performed (i.e., the situation
described by the original causal model) and IX = do(x) forces
X to take the value x by cutting off its dependence on all
other parents. From this we see that whenever IX �= idle, X
no longer depends on its original parents parG (X ). There-
fore, conditioned on IX �= idle, it is illustrative to consider a

FIG. 4. Preintervention, augmented, and postintervention causal
structures. Taking the original preintervention causal structure G to
be that of (a), panels (b) and (c) illustrate the augmented causal
structure GIX and postintervention causal structure Gdo(X ) for in-
tervention on X . In GIX , the variable IX can take values in the
set {idle, {do(x)}x∈X } while in Gdo(X ), it can only take the values
{do(x)}x∈X corresponding to an active intervention. Conditioned on
IX = idle, we effectively obtain the original causal model (a), which
corresponds to no intervention being performed, as specified by
Eq. (4a).

new graph, which we denote by Gdo(X ), that represents the
postintervention causal structure after a nontrivial intervention
has been performed. The causal graph Gdo(X ) is obtained by
cutting off all incoming arrows to X except the one from IX

in the causal graph GIX , with everything else unchanged. An
example of the graphs G, GIX , and Gdo(X ) is given in Fig. 4.
The above procedure also applies to interventions on subsets
of the nodes; for example, if X is a subset of the observed
nodes that is being intervened on, an exogenous intervention
variable IXi will be introduced for each element Xi of X , along
with the corresponding edge IXi � Xi. Then IX � X will be
used as shorthand to denote that each element of IX = {IXi}i

has a direct causal arrow to the corresponding Xi. Note that
requiring each IXi to be exogenous ensures that the interven-
tion to be performed on each node is chosen independently (in
principle, one could consider correlated interventions as well,
but we do not do so here).

2. Defining the postintervention causal model

The effect of an intervention on the node X setting X = x,
i.e., performing do(x), is to transform the original probability
distribution PG (X1, . . . , Xn) into a new probability distribu-
tion PGdo(X ) (X1, . . . , Xn, IX ). These distributions are compatible
with the original (i.e., preintervention) and the postinterven-
tion graphs G and Gdo(X ), respectively, and the following
defining rules tell us some of the relationships between
these distributions. Here the distribution PGIX

(X1, . . . , Xn, IX )
compatible with the augmented graph GIX mediates the re-
lationships between the pre- and postintervention scenarios.
Note that the set of intervention variables IX is additionally in-
troduced in going from G to GIX or Gdo(X ). In the corresponding
causal models, the distribution over IX can be arbitrary and all
of the following definitions and results hold for any choice of
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PIX . Then, for any two disjoint subsets X and Y of the observed
nodes, the following defining equations hold:

PGIX
(Y |IX = idle) = PG (Y ), (4a)

PGIX
(Y |IX = do(x)) = PGdo(X ) (Y |IX = do(x))

= PGdo(X ) (Y |X = x) ∀x, (4b)

PGIX
(Y |IX = do(x), X = x) = PGIX

(Y |IX = do(x)) ∀ x, (4c)

PGIX
(IX = do(x), X = x′) = 0 ∀x, x′ s.t. x �= x′. (4d)

Intuitively, Eq. (4a) tells us that when all the interven-
tion variables are idle, this corresponds to the original causal
model, as no intervention is performed. Equations (4b)–
(4d) capture the fact that when a nontrivial intervention is
performed, each intervention variable IXi ∈ IX is perfectly
correlated with the corresponding intervened variable Xi ∈
X . The conditional probability distribution PGdo(X ) (Y |X = x)
of Eq. (4b) is often denoted simply by P(Y |do(x)) and
is commonly referred to as the do-conditional. Note that
P(y|do(x)) := PGdo(X ) (y|x) �= P(y|x) := PG (y|x) in general. At
first sight, it might appear that these defining equations do
not tell us how the pre- and postintervention distributions PG
and PGdo(X ) are related since PG is related to PGIX

only when
IX = idle [Eq. (4a)] and PGIX

is related to PGdo(X ) only when
IX �= idle. However, as we will see in subsequent sections,
these defining rules along with compatibility condition of
Definition 4 allow us to derive further useful rules that explic-
itly connect the pre- and postintervention distributions. The
intuition for this is that the augmented and postintervention
graphs are constructed from the preintervention graph and
certain d-separations in the preintervention graph imply corre-
sponding d-separations in the augmented and postintervention
graphs and therefore certain independences in the associated
distributions.

3. Physical picture

At the level of the causal mechanisms (if these are also
given), the causal mechanisms of Gdo(X ) can be obtained from
those of G simply by updating the causal mechanisms for
each node Xi in X as Xi = xi if and only if IXi = do(xi )
(while leaving the causal mechanisms for all other nodes
unchanged), i.e., PGdo(X ) (X ) is fully determined by the original
causal model, the causal mechanisms, and PGdo(X ) (IX ), which
can be chosen arbitrarily for the exogenous set IX . Physi-
cally, the postintervention distribution (or the do-conditional)
corresponds to additional empirical data that are collected
in an experiment, which can in general be different from
the experiment generating the original preintervention data.
For example, when the original experiment involves passive
observation of correlations between the smoking tendencies
and the presence of cancer in a group of individuals, an inter-
vention model may involve forcing certain individuals to take
up smoking and then studying their chances of developing
cancer. In repeated trials, the proportion of individuals who
are passively observed and those that are actively intervened
upon may be chosen as desired. The latter type of experiments
may not necessarily be ethical but are nevertheless a phys-
ical possibility. In certain cases, it may be possible to fully
deduce the postintervention statistics counterfactually from

the preintervention data (passive observation) alone, and the
latter experiment (active intervention) need not be actually
performed, sparing us some ethical dilemmas. For example, in
a causal structure where all nodes are observed, this is always
possible [1]. However, even in simple classical causal struc-
tures with unobserved nodes, the postintervention distribution
cannot be completely determined using the preintervention
distribution alone [1].

4. Further relationships between the pre- and
postintervention causal models

As explained above, determining the postintervention dis-
tribution from the preintervention distribution alone is not
possible in the general settings considered here. However, the
compatibility condition of Definition 4 along with the defining
rules of Eqs. (4a)–(4d) allows us to derive further useful re-
lationships between these distributions, in particular the three
rules of Pearl’s do-calculus [1,52]. These rules have been orig-
inally derived in faithful classical causal models satisfying the
causal Markov property (1) which does not hold in the general
scenarios considered here. Here we extend these rules to a
large class of unfaithful and cyclic nonclassical causal models,
by noting that the derivation of these rules do not require the
Markov property but only the weaker d-separation condition
of Definition 4 along with the defining rules (4a)–(4d). This
is captured in the following theorem and we present a proof
in Appendix D 1 for completeness, which is similar to the
original proof of [52] but more explicit. In the following, GX
denotes the graph obtained by deleting all incoming edges to
X and GX denotes the graph obtained by deleting all outgoing
edges from X in a graph G, where X is some subset of the
observed nodes.

Theorem 1. Given a causal model over a set S of observed
nodes, an associated causal graph G, and a distribution PS

compatible with G according to Definition 4, the following
three rules of do-calculus [1] hold for interventions on this
causal model: rule 1, ignoring observations

PGdo(X ) (y|x, z,w) = PGdo(X ) (y|x,w) if (Y ⊥d Z|XW )GX
; (5)

rule 2, action or observation exchange

PGdo(XZ ) (y|x, z,w) = PGdo(X ) (y|x, z,w) if (Y ⊥d Z|XW )GXZ
;

(6)

and rule 3, ignoring actions or interventions

PGdo(XZ ) (y|x, z,w) = PGdo(X ) (y|x,w) if (Y ⊥d Z|XW )GXZ (W )
,

(7)

where X , Y , Z , and W are disjoint subsets of the observed
nodes, Z (W ) denotes the set of nodes in Z that are not ances-
tors of W , and the above hold for all values x, y, z, and w of
X , Y , Z , and W .

While the observed distribution in the postintervention
causal model may not be completely specified by the
preintervention observed distribution alone, considering the
underlying causal mechanisms, e.g., the states and transfor-
mations, measurements involved in the original causal model
should allow for the complete specification of the postin-
tervention distribution. This problem has not been studied
in nonclassical and cyclic causal models; we discuss this
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point in further detail in Appendix C, providing examples of
nonclassical cyclic causal models where the postintervention
distribution can be calculated from the causal mechanisms.
The full solution to this problem will not be relevant to the
results of the main paper. Using these concepts, we now define
the affects relation that is central to the results of this paper.

Definition 6 (affects relation). Consider a causal model as-
sociated with a causal graph G over a set S of observed nodes
and an observed distribution P and let X and Y be disjoint
subsets of S. If there exists a value x of X such that

PGdo(X ) (Y |X = x) �= PG (Y ),

then we say that X affects Y .
With this definition, we are ready to state two useful corol-

laries of Theorem 1.
Corollary 1. If X is a subset of observed exogenous nodes

of a causal graph G, then for any subset Y of nodes disjoint to
X the do-conditional and the regular conditional with respect
to X coincide i.e.,

PGdo(X ) (Y |X ) = PG (Y |X ).

In other words, for any subset X of the observed exogenous
nodes, correlation between X and a disjoint set of observed
nodes Y in G guarantees that X affects Y .

Proof. Since X consists only of exogenous nodes, it can
only be d-connected to other nodes through outgoing arrows.
Then in the graph GX (where all outgoing arrows from X
are cut off), X becomes d separated from all other nodes.
This d-separation (Y ⊥d X )GX implies, by rule 2 of Theorem
1, that PGdo(X ) (Y |X = x) = PG (Y |X = x) ∀x. Further, if X and
Y are correlated in G, i.e., ∃x, y such that PG (y|x) �= PG (y),
the equation previously established along with Definition 6
implies that X affects Y . �

Corollary 2. If X and Y are two disjoint subsets of the
observed nodes such that (X ⊥d Y )Gdo(X ) , then X does not
affect Y and PGdo(X ) (Y ) = PG (Y ).

Proof. The d-separation (X ⊥d Y )Gdo(X ) implies the d-
separation (X ⊥d Y )GX

since Gdo(X ) and GX only differ by the
inclusion of the intervention nodes IXi and the corresponding
edges IXi −→ Xi for each Xi ∈ X . Then by rule 3 of Theorem 1
we have

PGdo(X ) (Y |X ) = PG (Y ),

which by Definition 6 implies that X does not affect Y . Fur-
ther, the d-separation implies the conditional independence
(X ⊥⊥ Y )Gdo(X ) i.e.,

PGdo(X ) (Y |X ) = PGdo(X ) (Y ),

which along with the result that X does not affect Y yields

PGdo(X ) (Y ) = PG (Y ).
�

Note that X affects Y implies that there must be a directed
path from X to Y in G (which is equivalent to X being a cause
of Y ; cf. Definition 1). This follows from the contrapositive
statement of Corollary 2: X affects Y implies that X and Y are
not d separated in Gdo(X ) and since this graph has no incoming
arrows to X (except those from the intervention nodes in IX ),
the only way for X and Y to be d-connected in Gdo(X ) is
through a directed path from X to Y . However, the converse

Y

Z

W

X Λ

FIG. 5. Causal structure of Example 2.

is not true. A directed path from X to Y in G does not imply
that X affects Y in the presence of fine-tuning (as illustrated
in the examples of Appendix A), even though it does imply
d connection between X and Y in Gdo(X ) by construction of
this graph. This motivates the following classification of the
causal arrows � between observed nodes. The arrows �
emanating from or pointing to an unobserved node cannot be
operationally probed and hence need not be classified.

Definition 7 (solid and dashed arrows). Given a causal
graph G, if two observed nodes X and Y in G sharing a
directed edge X � Y are such that X affects Y , then the
causal arrow � between those nodes is called a solid arrow,
denoted by X −→ Y . Further, all arrows � between observed
nodes in G that are not solid arrows are called dashed arrows,
denoted by ��� . In other words, X ��� Y for any two RVs X
and Y in G implies that the X does not affect Y .

Remark 1 (exogenous nodes). Note that if X is an exoge-
nous node that is a direct cause of another node Y in a
causal graph G, i.e., X � Y , and X and Y are correlated
in the corresponding causal model, then by Corollary 1 and
Definition 7 this would imply that the arrow from X to Y must
be a solid one. Applying this to the graphs GIX and Gdo(X ),
where IX is exogenous and correlated with X by construction
[Eqs. (4a)–(4d)], we can conclude that the arrow from every
intervention variable to the corresponding intervened variable
must be a solid arrow, i.e., IX −→ X .

A noteworthy implication that follows from the defining
rules is encapsulated in the following lemma.

Lemma 2. Given a causal graph G and two disjoint subsets
X and Y of observed nodes therein,

(X �⊥⊥ Y )Gdo(X ) ⇒ X affects Y.

Proof. Suppose that X does not affect Y . By Defini-
tion 6, this implies that PGdo(X ) (y|x) = PG (y) ∀x, y. Further
suppose also that (X �⊥⊥ Y )Gdo(X ) . This means that there ex-
ist two distinct values x and x′ of X and some value y
of Y such that PGdo(X ) (y|x) �= PGdo(X ) (y|x′), which contradicts
PGdo(X ) (y|x) = PG (y) ∀x, y. Therefore, (X �⊥⊥ Y )Gdo(X ) must im-
ply X affects Y . �

The converse of the above lemma does not hold as illus-
trated by Example 6. Further, we note that the affects relation
is not transitive in fine-tuned causal models, as illustrated by
the following example.
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Z X
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Z X X
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Y

FIG. 6. Causal structures for (a) Example 3, (b) Example 4, and (c) Example 5.

Example 2. Consider the causal structure of Fig. 5 where
all RVs are binary and related as X = �, Y = W = X ⊕ �,
Z = Y ⊕ W , and � is uniformly distributed. Here both PG (Y )
and PG (Z ) are deterministic distributions. In the graph Gdo(X )

obtained by intervening on X , we have Y = W = X ⊕ �,
Z = Y ⊕ W , and � uniform. Here, since X is not always
equal to �, PGdo(X ) (Y |X ) is no longer deterministic and we
have X affects Y , but PGdo(X ) (Z|X ) is still the same determinis-
tic distribution irrespective of the value of X since Y = W ,
which implies that X does not affect Z . However, in the
graph Gdo(Y ), we no longer have Y = W and PGdo(Y ) (Z|Y ) is
not deterministic, which gives Y affects Z . Therefore, af-
fects relations are in general nontransitive in fine-tuned causal
models.

C. Conditional and higher-order affects relations

The affects relation defined in Definition 6 allows us to
consider joint interventions on a subset of the observed nodes
S. However, certain affects relations where a subset X ⊂ S
that is not a single RV affects another subset Y may be “trivial”
in the sense that they convey the same information as an
affects relation sX affects Y , where sX is a proper subset of
X , i.e., they can be “reduced” to the latter affects relation.
On the other hand, in unfaithful causal models, certain affects
relations of the same form can be “nontrivial” in the sense
that the information that they convey is not the same as any
affects relation from a proper subset of X to Y . To capture this
distinction, we introduce higher-order affects relations where
we consider whether a set X of RVs affects another disjoint
set Y conditioned on an active intervention performed on a
third, mutually disjoint subset Z of the RVs. Intuitively these
relations are useful because additional interventional infor-
mation can help us better detect fine-tuned causal influences.
More generally, we can also condition on noninterventional
information, which leads to the concept of conditional higher-
order affects relations. As we will see later in the paper when
we bring space-time into the picture, these higher-order af-
fects relations have operational meaning in terms of signaling
using joint interventions on space-time random variables, and
the conditional higher-order affects relations capture the most
general way that agents may signal to each other in our frame-
work. Before we formalize these concepts, some examples
would be illustrative.

Example 3. Consider a causal model where the only nodes
are the observed binary variables X , Y , and Z and the causal
graph [Fig. 6(a)] is simply Z −→ Y and X has no incoming or
outgoing arrows. By Definition 7 of the solid arrow, Z affects

Y and by Corollary 2, X does not affect Y . We also have
XZ affects Y . This is because PGdo(XZ ) (Y |XZ ) = PG (Y |XZ )
and PGdo(Z ) (Y |Z ) = PG (Y |Z ) (by exogeneity of X and Z), and
using the d-separation condition in Definition 4, we have
PG (Y |XZ ) = PG (Y |Z ). Then Z affects Y implies PG (Y |XZ ) =
PG (Y |Z ) �= PG (Y ), i.e., XZ affects Y . In this example, the
node X is entirely superficial as it neither causes nor is a cause
of anything else and is therefore completely independent and
the affects relation XZ affects Y follows trivially from Z
affects Y .

Example 4. Consider another causal model over the same
nodes as the previous example, where the causal graph is a
collider from X and Z to Y , i.e., X � Y �Z . Furthermore,
suppose that Z is uniformly distributed, X is not uniformly
distributed, and Y = X ⊕ Z (where ⊕ denotes modulo 2 addi-
tion). One can then easily check that the same affects relations
as the previous example hold, i.e., Z affects Y , X does not af-
fect Y , and XZ affects Y , which allows us to classify the causal
arrows as in Fig. 6(b). In this case, Z gives partial information
about Y since X is nonuniform; however, X and Z taken to-
gether give full information about Y . This is in contrast to the
previous example where Z and XZ gave the same information
about Y . More explicitly, the distinguishing condition here is
whether or not PGdo(XZ ) (Y |XZ ) = PGdo(Z ) (Y |Z ); in the previous
example this holds, while in the current one it does not.

In general, X , Y , and Z from the above example may be
pairwise disjoint subsets of the observed nodes, and we may
condition not only on the set Z (which has been intervened
upon), but also on an additional disjoint set of nodes W , upon
which an intervention has not been performed. We then have
the following definition.

Definition 8 (conditional higher-order affects relation).
Consider a causal model associated with a causal graph G over
a set S of observed nodes and an observed distribution P. For
four pairwise disjoint subsets X , Y , Z , and W of S, we say that
X affects Y given {do(Z ),W } if there exist values x of X , z of
Z , and w of W such that

PGdo(XZ ) (Y |X = x, Z = z,W = w) �= PGdo(Z ) (Y |Z = z,W = w).
(8)

An affects relation X affects Y given {do(Z ),W } is a condi-
tional affects relation if W �= ∅ and an unconditional affects
relation otherwise. When Z �= ∅ it is a higher-order affects re-
lation and otherwise a zeroth-order affects relation. Definition
6 then refers to unconditional zeroth-order affects relations.
In general, all of these will be simply called affects relations,
unless they need to be explicitly distinguished.
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The next lemma (proven in Appendix D 2) establishes the
implication of such affects relations for the underlying causal
structure.

Lemma 3. For a causal model over a set S of RVs where
X , Y , Z , and W are any pairwise disjoint subsets of S,
(i) X affects Y given do(Z ) implies that X is a cause
of Y (cf. Definition 1) and (ii) X affects Y given
{do(Z ),W } implies that X is a cause of Y or X is a cause
of W .

It is possible for X not to be a cause of Y and yet sat-
isfy X affects Y given {do(Z ),W }. A simple example is
a three-node collider causal structure X −→ W ←− Y with
W = X · Y ; it is easy to check that X affects Y given W even
though X and Y are d separated. This captures the well known
fact that conditioning on a collider can introduce correlations
between independent exogenous variables. Note however that
X is a cause of W as implied by the above lemma.

The following lemmas provide useful connections between
conditional higher-order (HO) and conditional zeroth-order
affects relations; their proofs can be found in Appendix D 2.

Lemma 4. For a causal model over a set S of RVs where
X , Y , Z , and W are pairwise disjoint subsets of S, X affects
Y given {do(Z ),W } implies that Z affects Y given W or XZ
affects Y given W .

Lemma 5. For a causal model over a set S of RVs where
X , Y , Z , and W are pairwise disjoint subsets of S and
X consists only of exogenous nodes, X affects Y given
{do(Z ),W } implies that XZ affects Y given W .

The converse of Lemma 5 is not true; we can have X does
not affect Y given {do(Z ),W } even when XZ affects Y given
W , as we have seen for W = ∅ in Example 3, where X was
superficial to the causal model and the affects relation XZ
affects Y trivially followed from the affects relation Z affects
Y . Note also that the implication of the above lemma does not
hold in general when X is not exogenous. This is because in
fine-tuned causal models (rather counterintuitively), Z affects
Y does not imply that any set of RVs containing Z also affects
Y , which was a step required in the above proof. The following
example illustrates this.

Example 5. Consider the causal structure of Fig. 6(c). Sup-
pose that the exogenous W is uniformly distributed and the
variables are related as Y = X ⊕ Z ⊕ W , Z = X , and X = W .
This immediately gives Y = X = Z = W and hence PG (Y ) =
PG (W ) is uniform. In the graph Gdo(Z ), we have Y = X ⊕ Z ⊕
W , and X = W , which gives Y = Z and hence PGdo(Z ) (Y |Z ) is
deterministic. This gives Z affects Y . In the graph Gdo(XZ ), we
only have the relation Y = X ⊕ Z ⊕ W , which implies that
PGdo(XZ ) (Y |XZ ) is uniform and hence that XZ does not affect
Y . Note that we also have X affects Y given do(Z ).

Definition 8 does not yet fully capture the notion of re-
ducibility or triviality of certain affects relations. Consider
Example 4 again and add a superficial observed node V
with no incoming or outgoing arrows. Then we have both
the higher-order affects relations X affects Y given do(Z )
and XV affects Y given do(Z ). However, the addition of
V adds no information to the original affects relation since
PGdo(XZV ) (Y |XZV ) = PGdo(XZ ) (Y |XZ ) [i.e., V does not affect Y
given do(XZ )]. In other words, the affects relation XV affects
Y given do(Z ) is reducible to the affects relation X affects
Y given do(Z ). Based on this idea, we propose the following

criterion for distinguishing between reducible and irreducible
affects relations.

Definition 9 (reducible and irreducible affects relations).
For a causal model defined over a set S of observed nodes,
the affects relation X affects Y given {do(Z ),W } between
pairwise disjoint subsets X , Y , Z , and W of S is said to be
reducible if there exists a proper subset sX of X such that
sX does not affect Y given {do(Zs̃X ),W }, where s̃X := X\sX .
Conversely, if for all proper subsets sX of X , sX affects Y
given {do(Zs̃X ),W }, the affects relation X affects Y given
{do(Z ),W } is said to be irreducible.

Then we have the following lemmas, which make clear
why the above definition captures a notion of reduction of
the affects relation. Proofs of these lemmas can be found in
Appendix D 2.

Lemma 6. For every reducible affects relation X affects Y
given {do(Z ),W }, there exists a proper subset s̃X of X such
that s̃X affects Y given {do(Z ),W }.

Lemma 7. For a causal model over a set S of RVs of X1, X2,
Y , Z , and W are pairwise disjoint subsets, X1 affects Y given
{do(Z ),W } and X2 does not affect Y given {do(ZX1),W }
implies that X1X2 affects Y given {do(Z ),W }.

Definition 9 classifies the relation XZ affects Y as re-
ducible in Example 3 [Fig. 6(a)] and irreducible in Example
4 [Fig. 6(b)]. Note that checking for the (ir)reducibility of
an affects relation involves considering an affects relation of
a greater order than the original one, where the order of X
affects Y given {do(Z ),W } is measured by the cardinality |Z|
of Z .

The following lemma (proven in Appendix D 2) relates
conditional affects relations to unconditional affects relations
such that the irreducibility of the former implies the irre-
ducibility of the latter. As we will later see, this will allow
us to restrict consideration to unconditional affects relations
without loss of generality when considering their space-time
embeddings (cf. Remark 5).

Lemma 8. For a causal model over a set S of RVs where X ,
Y , Z , and W are pairwise disjoint subsets of S,

(i) X affects Y given {do(Z ),W } implies that X affects YW
given do(Z ),

(ii) X affects Y given {do(Z ),W } is irreducible, implies that
X affects YW given do(Z ) is irreducible, and

(iii) X affects YW given do(Z ) if and only if X affects Y
given {do(Z ),W } or X affects W given do(Z ).

The converse does not hold for the first two statements of
this lemma, as illustrated by the following counterexamples.
For part (i), consider again Example 4 with the superficial
observed node V having no incoming or outgoing arrows.
Here we have Z affects Y and Z affects VY and yet Z does
not affect V given Y (Z , V , and Y play the role of X , Y , and
Z in the above lemma with W = ∅). For part (ii), consider the
causal structure X1 ��� W ��� X2 −→ Y with all variables bi-
nary, W = X1 ⊕ X2, Y = X2, X1, and X2 uniformly distributed.
Taking X = X1X2, it is easy to verify that we have X affects Y
given W , X affects YW and it is irreducible, and X affects Y
given W is reducible to X2 affects Y given W .

Using this, we obtain a stronger version of Lemma 3 as a
corollary of Lemmas 3 and 8 (see Appendix D 2 for a proof).

Corollary 3. For a causal model over a set S of RVs where
X , Y , Z , and W are any pairwise disjoint subsets of S,

032204-14



GENERAL FRAMEWORK FOR CYCLIC AND FINE-TUNED … PHYSICAL REVIEW A 106, 032204 (2022)

FIG. 7. Relationships between concepts relating to causal models. The black arrows denote implications, while red (crossed out) arrows
denote nonimplications. The numbers label the counterexamples corresponding to each nonimplication, which are explained in the main text.
The equivalence between “∃ a directed path from X to Y in G” and (X �⊥d Y )Gdo(X ) is explained in the paragraph following Corollary 2.
Here X −→ Y and X ��� Y imply X � Y since solid and dashed arrows are simply special instances of the more general squiggly arrow by
Definition 7. This graph is complete in the sense that, given any ordered pair of statements (φ1, φ2) from the ten that form the vertices of this
graph, one can deduce whether or not φ1 ⇒ φ2 as follows: If there exists a directed path from φ1 to φ2 that consists only of the implication
arrows (black), then φ1 ⇒ φ2 and otherwise φ1 �⇒ φ2.

(i) X affects Y given do(Z ) is irreducible, implies that for
each element eX ∈ X there exists an element eY ∈ Y such that
eX is a cause of eY , and

(ii) X affects Y given {do(Z ),W } is irreducible, implies that
for each element eX ∈ X there exists an element eYW ∈ YW
such that eX is a cause of eYW .

Remark 2. Note that in the language of conditional HO
affects relations, Pearl’s third rule of do-calculus (Theorem
1) can be written in the equivalent form

(Y ⊥d Z|XW )Gdo(XZ (W )) ⇒ X does not affect Y given {do(Z ),W },
where Z (W ) is the set of nodes in Z that are not ancestors
of W .

Remark 3. We have seen in Definition 7 that a dashed
arrow from X to Y corresponds to causation in the absence
of the corresponding zeroth-order affects relation X affects
Y . A natural question to ask is whether all dashed arrows
in a causal model can be detected using higher-order affects
relations. If we consider causal models with no latent nodes,
then this is the case. Such a model is entirely classical and
the causal mechanisms consist of functional equations, i.e.,
for each node Y , a function fY taking as input the parent
variables par (Y ) and an independent exogenous error variable
EY that completely determines Y as Y = fY (par(Y ), EY ). The
meaning of saying that X is a parent of Y is that fY has a
nontrivial dependence on the input X , i.e., there exists a fixed
value of all other inputs of fY such that changing the value
of X produces a change in the function value. This is pre-

cisely captured by the higher-order affects relation X affects
Y given do(par(Y ) \ X, EY ). Therefore, given any unfaithful
causal model where all nodes, including the error nodes, are
observed and can be intervened upon, full causal discovery
is possible, i.e., whether there exists a causal link X � Y
between any two nodes X and Y in the model, and whether this
is a dashed or solid arrow can be determined by interventions
in this case. While requiring all the nodes to be observable
might be quite a strong assumption, we are not aware of a
method for full causal discovery of arbitrary unfaithful causal
models in previous literature even under this assumption.
By introducing the concept of higher-order affects relations,
our framework suggests an advantage for the classical causal
discovery problem for unfaithful causal models. The further
exploration of the connections between our framework and
the general causal discovery problem is left for future work.

D. Relationships between concepts

Due to the presence of fine-tuning and the introduction of
the two types of causal arrows (solid and dashed), a number
of concepts that are equivalent in faithful causal models are
not equivalent for the causal models described in our frame-
work. We summarize some of the relationships between the
concepts arising in our causal modeling framework, before
bringing space-time structure into the picture. This section can
be skipped at the first reading.

The relationships are illustrated in Fig. 7. The reason for
every implication is explained in the figure caption, and for
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FIG. 8. Affects relation does not imply correlation. This is a
causal structure for Example 6, which demonstrates a scenario where
E affects H even though PEH = PE PH , i.e., solid arrows can also
be fine-tuned and the ability to detect causation through an active
intervention does not imply that we will see correlation upon passive
observation.

every implication that fails, we provide a counterexample
below. There are 14 implications in Fig. 7 that do not hold.
Some of these can be explained by the same counterexample
or are immediately evident from the definitions. Therefore,
we first group these 14 cases based on the corresponding
counterexample or argument needed for explaining them; in
the end we will only need a few distinct counterexamples to
cover all these cases. Note that if we restrict consideration to
faithful and/or acyclic causal models, not all of these nonim-
plications would hold. For instance, in the case of faithful and
acyclic causal models commonly considered in the literature,
nonimplications 1–5, 9, and 12 will become implications. This
section does not cover all implications and nonimplications
found in this paper, since some of these also involve the
conditional HO affects relations introduced herein. For this
we refer the reader to the previous sections. Here we consider
relationships between certain basic notions such as correlation
vs causation vs affects relations (unconditional zeroth-order
ones) to illustrate how these differ in the fine-tuned case.

Nonimplication 1. In unfaithful causal models, X and Y can
be independent even when they are d-connected, as we have
seen in the examples of Fig. 2.

Nonimplications 2, 11, and 18. These are covered by Ex-
ample 6.

Nonimplications 3, 6, 8, and 13. These are covered by
Example 7.

Nonimplications 4 and 5. The relation X is a cause of Y
does not imply that it is a direct cause of Y ; it can be an
indirect cause. Further, X can affect Y even when it is an
indirect cause, for example, X −→ Z −→ Y .

Nonimplication 7. This is covered by Example 8.
Nonimplication 9. It is evident that the relation X is a direct

cause of Y does not imply X ��� Y , since it can also be a cause
through a solid arrow.

Nonimplications 10 and 12. These are just a consequence of
the fact that correlation does not imply causation. Correlation
between X and Y can arise when they share a common cause,
without being a cause (direct or indirect) of each other.

Nonimplications 14 and 17. In a simple common cause
scenario, i.e., Z −→ X and Z −→ Y with X = Y = Z , X does
not affect Y ; however, X is correlated with Y and there is no
dashed arrow from X to Y .

Nonimplication 15. It is evident that independence of X and
Y does not imply that there is a dashed arrow between them;
they can also be d separated.

Nonimplication 16. This is covered by Example 9.

B

A C

D

Λ

B

A C

Λ

FIG. 9. Some fine-tuned causal structures. (a) Jamming causal
structure of Example 7. Note that the common cause � is essential
to this example, because without �, A and C would be d separated
given B, which would imply the conditional independence PAC|B =
PA|BPC|B. The dashed arrows would imply the independence of A and
B as well as C and B and hence the observed distribution would
factorize as PABC = PAPBPC . Then no pairs of disjoint subsets of
{A, B,C} would affect each other, contrary to the original example.
(b) Causal structure for Example 8, where B affects D even though
there is no solid arrow path from B to D.

Example 6. Consider the causal structure of Fig. 8. Let
the three variables S, E , and H be binary and correlated as
H = S ⊕ E and S = E . These relations imply that H = 0 de-
terministically. Now, when we intervene on E , we can choose
its value independently of S and whenever we choose E �= S,
we will see that H = 1 occurs with nonzero probability. In
other words, there exists a value e of E such that P(H =
1|do(e)) �= P(H = 1) = 0, i.e., E affects H . As E is a direct
cause of H in G, this further implies that the causal arrow
from E to H is a solid one, even though E and H are inde-
pendent in both the pre- and postintervention causal models,
i.e., (E ⊥⊥ H )G and (E ⊥⊥ H )Gdo(X ) both hold, the former since
H is deterministic in the original causal model, irrespective
of the value of E , and the latter since H is uniform in the
postintervention model, again irrespective of the value of E .
Therefore, the existence of an affects relation between two
sets of observed variables does not imply correlation between
them in either the pre- or the postintervention causal model.
Further, S does not affect H since the exogeneity of S implies
that PGdo(S)(H |S) = PG (H |S) (Corollary 1) and the indepen-
dence of S and H in G gives PG (H |S) = PG (H ).

Example 7 (jamming). Consider the causal structure of
Fig. 9(a), where B ��� A, B ��� C, and the RVs A and C
share an unobserved common cause �. By Definition 7 of the
dashed arrows, we have that B does not affect A and B does not
affect C. Suppose that B affects the set AC. When A, B, and
C are binary, a probability distribution compatible with this
situation is one where all three RVs are uniformly distributed
and correlated as B = A ⊕ C. Then A and C individually carry
no information about B but A and C jointly determine the exact
value of B. In this case, B is a cause of A and of C but, due to
fine-tuning, B and A are uncorrelated, as are B and C, and
there are no pairwise affects relations. This means that the
causal influence of B on A (or B on C) can only be detected
when A, B, and C are jointly accessed. The common cause is
crucial to this example as explained in Fig. 9(a), and the causal
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FIG. 10. The dashed arrow (or nonaffects relation) does not imply independence. (a) Original causal structure G of Example 9, before the
causal arrows are classified according to Definition 7. (b) Corresponding causal structure Gdo(X ) when the node X is intervened with. (c) Causal
structure G after all the arrows have been classified as explained in the text. The example shows that even though we have X ��� Y in G, there
exists a causal model compatible with this graph such that X and Y are correlated in G in this causal model.

structure compatible with the distribution and affects relations
of this example is not unique. An alternative causal structure
that is compatible with correlations and affects relations of
this example is where one of the dashed arrows B ��� A or
B ��� C is dropped.

This example by itself makes no reference to space-time or
the tripartite Bell scenario. However, if the variables A, B, and
C are embedded in a pairwise spacelike separated way and
taken to correspond to the output of Alice, input of Bob, and
output of Charlie, respectively, this becomes a special case of
the tripartite jamming scenario of [29,30] (Fig. 3).9 In the rest
of the paper, such examples, where a RV has dashed arrows
to a set of RVs will be referred to as instances of jamming in
accordance with the terminology of [29], irrespective of the
space-time configuration. We will further discuss the relation
of such causal models to space-time structure later in the
paper.

Example 8. Consider a causal model over observed vari-
ables {A, B,C, D} associated with the causal graph G given in
Fig. 9(b). Here there are no pairs of variables sharing an edge
such that one of them affects the other. A correlation com-
patible with this graph is obtained by taking B = A ⊕ C = D
where all variables are binary and uniformly distributed. Here
B affects D even though there are no solid arrow paths from B
to D.

Example 9. Consider the causal structure of Fig. 10(a)
with the variables X , Y , W , and Z taken to be binary. Suppose
the causal mechanisms of the model are X = Z , W = X ⊕ Z ,
and Y = X ⊕ W with the exogenous variable Z being uni-
formly distributed. This reduces to W = 0 (deterministically)
and Y = X = Z . Since Z is uniformly distributed, PG (Y ) is
also uniform and since X and Y are perfectly correlated in
G, PG (Y |X ) is deterministic. Now consider the graph Gdo(X )

shown in Fig. 10(b). The causal mechanism for X here is
fully specified by the distribution over PIX , which can be
arbitrary. For the remaining variables we have W = X ⊕ Z ,
Y = X ⊕ W , and Z is uniformly distributed, which gives Y =
Z . The d-separation (Z ⊥d X )Gdo(X ) implies the independence

9Barring the slight change of notation, in Fig. 3, A and C correspond
to the inputs of Alice and Charlie while X and Z correspond to
the outputs that are jammed by B. We do not make a distinction
between inputs and outputs in general since we will also consider, for
example, situations where the jamming variable is not exogenous.

of Z and X in Gdo(X ) and hence the independence of Y and
X in Gdo(X ) and since Z is uniformly distributed here, so is
Y , i.e., PGdo(X ) (Y |X ) = PGdo(X ) (Y ), and both equal the uniform
distribution. From before, we had noted that PG (Y ) is also
uniform, which gives PGdo(X ) (Y |X ) = PG (Y ) or X does not
affect Y . Therefore, by Definition 7, the causal arrow from
X to Y must be a dashed one, even though we have seen that
(X �⊥⊥ Y )G .

The remaining causal arrows of Fig. 10(a) can also be
classified as solid or dashed arrows as done for X � Y in the
above example. For example, the relation X affects W can be
established by noting that PGdo(X ) (W |X ) is uniform (since W =
X ⊕ Z with X and Z independent in Gdo(X ) and Z is uniform)
while PG (W ) is deterministic. Therefore, we have X −→ W
in G. Similarly, the relations W does not affect Y , Z affects X ,
and Z does not affect W can also be established and we obtain
the graph of Fig. 10(c) as the original causal structure G once
all the arrows of Fig. 10(a) have been classified.

Further examples can be found in Appendix A where we
discuss how conditional independences and affects relations
can be deduced from the causal model in our framework.

V. FRAMEWORK: SPACE-TIME

We now turn to space-time structure and the relevant con-
cepts needed for studying its relation to causality. Section V A
introduces our way of modeling space-time structure and
the concept of ordered random variables (Definition 10). In
Sec. V B we define what it means to embed a causal model in
a space-time structure (Definition 15). We then characterize in
Sec. V C what it means for a causal model to be compatible
with an embedding in a space-time (Definition 16), which for-
malizes the requirement that signaling outside the space-time
future is not possible using the affects relations of the em-
bedded causal model. Finally, in Theorem 2 of Sec. V D, we
provide necessary and sufficient conditions for compatibility.

A. Space-time structure

We model space-time simply by a partially ordered set
T without assuming any further structure or symmetries. A
particular example of T is Minkowski space-time, where the
partial order corresponds to the light-cone structure and the
elements of T can be seen as space-time coordinates in some
frame of reference. Our results will only depend on the order
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relations of T and not on the representation of its particular
elements. To make operational statements about T , we must
embed physical systems into it. In our case, we can only
do so for the observed systems in the causal model which
are random variables. We embed them in this space-time by
assigning an element of T to each random variable, which
then specifies its space-time location [thereby producing an
ordered random variable (ORV)], and assigning a subset of T
to each ORV, which specifies the locations in the space-time
at which the ORV can be “accessed.” Here the order of an
ORV corresponds to that of the space-time T (and not of the
causal model), i.e., ORVs can be seen as abstract versions of
space-time random variables.

Definition 10 (ordered random variable). Given a RV X ,
we can assign to it a location O(X ) ∈ T . An ORV X is then
the pair X := (X, O(X )). We can extend the definition of O to
ORVs so that O(X ) is interpreted to mean O(X ).

We use ≺, �, and ⊀� to denote the order relations for a
given partially ordered set T , where for α, β ∈ T , α ⊀� β

corresponds to α and β being unordered with respect to T .
This is different from α = β, which corresponds to the two
elements being equal. These relations carry forth in an obvi-
ous way to ORVs and we say, for example, that two ORVs
X and Y are ordered as X ≺ Y if and only if O(X ) ≺ O(Y ).
Note, however, that when we write X = Y we mean X = Y
and O(X ) = O(Y ).

Definition 11. The inclusive future of an ORV is the set

F (X ) := {α ∈ T : α � O(X )}.
Note that X ∈ F (X ) but X /∈ F (X ), hence the name “in-

clusive” future. Then we say that an ORV Y lies in the
inclusive future of an ORV X if and only if O(Y ) ∈ F (X ).
In a slight abuse of notation, we will simply write this as
Y ∈ F (X ), which is equivalent to X � Y . Further, any prob-
abilities written in terms of ORVs should be understood as
being probability distributions over the corresponding random
variables. In the rest of the paper, whenever we use the term
“future” this should be understood as inclusive future.

Remark 4. When considering causal loops or closed time-
like curves (CTCs),10 one typically imagines a cyclic space-
time whose light-cone structure is not a partial order, but a
preorder. This is the case in general relativity where the space-
time structure implies a causal structure and having a CTC is a
property of the space-time. Here we have separated causality
from space-time such that causal loops are a property of the
causal model (see Sec. VI), and any causal loop embedded
in a space-time (partial or preordered) as described in the
following section would form a CTC. We will consider how
such cyclic causal models can be compatibly embedded in a
space-time, i.e., without leading to signaling outside the fu-
ture, and the more interesting case is when we take a partially
ordered space-time such as Minkowski space-time. Through
this approach, we will see that it is possible to have a CTC

10By CTC we mean any situation in which a causal model whose
causal structure has a loop is embedded in space-time (cf. Definition
15). This leads to causal influences in both directions between two
points in the space-time.

in Minkowski space-time that does not lead to superluminal
signaling, since it is possible for the signaling properties of a
causal model to respect the partial order even while the causal
relations are cyclic. The problem would in a sense be trivial if
the space-time is also a preorder, since for any cyclic causal
structure (which defines a preorder relation) one can always
find a corresponding preordered space-time that compatibly
embeds it.

B. Embedding of a causal model in a space-time structure

We have discussed two types of order relations: the pre-
order encoded by the arrows � of the causal structure and
the partial order specified by the order relation ≺ of the par-
tial order T . These are two distinct concepts and within our
framework they can be set independently of one another. We
first formalize how a given causal model may be embedded
in a space-time structure, and in the next section we introduce
a compatibility condition that connects the two that aims to
capture when a causal structure can be embedded in the partial
order T . This compatibility condition is based on the idea of
ensuring that it is impossible to signal outside the future as en-
coded by the partial order T .11 Whether signaling is possible
depends on where random variables can be accessed and so
we first introduce the concept of an accessible region, which
is the subset of T at which it is possible to have a copy of a
random variable. Since we are dealing with classical random
variables, it makes sense to imagine these being broadcast,
i.e., sending a copy to all points in the accessible region.

Definition 12 (copy of a RV). Consider a causal model
over a set of observed variables S. A RV X ′ ∈ S is a copy
of X ∈ S if the only parent of X ′ is X and if X ′ = X . It is
often convenient to think of copying a random variable X in
the causal model, where the copy is not initially included in
the model. To do so, we augment the causal graph with a
new node X ′ whose only parent is the node X and such that
X ′ = X (the graph has X −→ X ′ added). We usually do not
draw the augmented causal model, but instead keep the copies
implicit. We also extend the definition of a copy to ordered
random variables so that X ′ is a copy of X whenever the
corresponding RV X ′ is a copy of the RV X .

Note that each RV affects each of its copies. We can then
define the accessible region of a RV to be the region of T in
which it is possible to have a copy of the RV. In essence, we
can imagine each RV being copied throughout its accessible
region.

Definition 13 (accessible region of a RV or an ORV). Given
a causal model over a set of observed variables S and a partial
order T , for each random variable X ∈ S we can define an ac-
cessible region RX ⊆ T intended to represent the set of points
in T at which it is possible to have a copy of X . The inacces-
sible region of X is then the complement R̃X = T \ RX and
represents the set of points at which it is impossible to have a
copy of X . We can naturally extend this definition to ORVs by
taking the accessible region of an ORV X = (X, O(X )) to be
the accessible region of X .

11It may be helpful to think of T as a Minkowski space-time, with
the partial order specified by the light-cone structure.
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We also want a notion of accessible region for sets of RVs
and ORVs. The accessible region of a set can be thought of as
the locations at which there can be a copy of all of the random
variables in the set. This motivates taking the intersection of
the accessible regions of the individual elements, since if the
accessible region of the set were any larger than this, it would
contradict the definition of accessible region for at least one
individual element of the set.

Definition 14 (accessible region of a set of RVs or ORVs).
Given a set S = {Si}i of RVs, we define the accessible region
of S by RS = ⋂

Si∈S RSi . For the empty set ∅, the accessible
region is defined to be R∅ := T .

Definition 15 (embedding). Given a set of RVs S, an em-
bedding of S in a partially ordered set T produces a
corresponding set of ORVs S by assigning a location O(X ) ∈
T and an accessible region RX to each RV X such that the
associated ORV is X = (X, O(X )). An embedding of a set of
RVs is called nontrivial if no two RVs X and Y such that X
affects Y are assigned the same location in T .

The set of RVs S we will wish to embed will typically be
related by a causal model or a set of affects relations. We
have seen that when analyzing affects relations, it is useful
to augment the original causal model with an additional set of
RVs corresponding to the intervention nodes. In the following,
whenever we refer to an embedding of a causal model or a set
of affects relations in a partial order, this must be understood
as an embedding of the original set of RVs S associated
with causal model or affects relations; the nontriviality of
the embedding will also only concern the embedding of the
original set of RVs S. For simplicity, we will assume that every
hypothetical intervention node IX that may be introduced to
model interventions on a RV X ∈ S is embedded at the same
location as X (even though IX affects X by construction).
Our results are not affected by this assumption; it is a mere
simplification.

C. Compatibility of a causal model with an embedding
in space-time

Up to here there are no conditions on how the locations
and accessible regions are set; in particular, these need not be
related with the notion of future defined on T . We now intro-
duce a compatibility condition that connects these concepts
together, which aims to capture the intuition that signaling
outside the (inclusive) future should not be possible. As this
intuition is nontrivial to formalize for general unfaithful causal
models, we will first motivate the important aspects of the
definition with examples, before formally stating it. For this,
we will first consider the case of faithful causal models, then
unfaithful causal models with interventions only on single
nodes, and finally the general case of unfaithful causal models
with joint interventions. For all the examples in the following
paragraphs we will take T to be Minkowski space-time and
embed RVs such that the accessible region of each RV coin-
cides with its inclusive future.

1. Compatibility for faithful causal models

For faithful causal models, if X and Y are two RVs, X is
a cause of Y in a causal structure G, i.e., X � · · · � Y in
G is equivalent to X affects Y . Therefore, if we demand that

whenever X affects Y for any two RVs X and Y in the model, Y
must be embedded in the future of X in the space-time, which
ensures that all causal influences propagate from past to future
and consequently that there is no signaling outside the future
for the given embedding of the model.12

2. Compatibility for unfaithful causal models
with single-node interventions

The above condition for faithful models is insufficient to
rule out such signaling in unfaithful models since affects and
cause become inequivalent notions here, and we must also
consider affects relations involving sets of RVs. For example,
in the jamming causal structure (Example 7), if we embed A
and C outside the future of B but such that there are points in
the intersection of the futures of A and C that are also outside
the future of B, then signaling is possible. We first consider
affects relations of the form X affects S where X is a RV and S
is a set of RVs. Operationally, this means that given access to a
copy of all elements of S, one can learn information about the
intervention performed on X . Then, in order to avoid signaling
outside the future by means of the affects relation X affects S,
a necessary and sufficient condition on the embedding would
be to take the accessible regions to coincide with the inclusive
futures and RS ⊆ RX , which would ensure that the joint
future of all elements in S is contained in the future of X .
Note that this does not imply that all causal influences (which
may be hidden due to fine-tuning) must propagate from past
to future, only that any observable signal propagates from past
to future (cf. the jamming scenario of Fig. 3).

3. Compatibility for unfaithful causal models
with multinode interventions

Consider a general affects relation of the form S1 affects
S2 for two disjoint subsets S1 and S2 of RVs (possibly arising
from an unfaithful causal model). If in analogy to the previous
case we demand that any compatible embedding must be
such that RS2 ⊆ RS1 with all accessible regions coinciding
with the corresponding inclusive futures, this would be too
restrictive in the present case. Take the simple Example 3
where Z −→ Y and X is an isolated node with no in or out
edges. Then clearly XZ affects Y but we would only require Y
to be in the future of Z and not also in the future of X (which
trivially affects it given Z). On the other hand, in the causal
structure of Example 4, Y depends on both the exogenous
nodes X and Z and we would expect that Y must be embedded
in the joint future of X and Z to avoid signaling outside the
future. To establish that embedding Y in the joint future of X
and Z is necessary in the latter case and not the former and to
avoid imposing too strong constraints on the embedding, we
must also consider the higher-order affects relation X affects
Y given do(Z ).

12Note that such an embedding is always possible for acyclic causal
models but impossible for causal models with certain types of causal
loops (Lemma 10) and possible for causal models with certain other
types of causal loops as we will show in Sec. VI.
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4. Operational meaning of a higher-order affects relation

Operationally, the conditional HO affects relation X affects
Y given {do(Z ),W } means that an agent Alice who can inter-
vene on X can signal to an agent Bob having access to Y if Bob
also has access to information about interventions performed
on some set Z along with information about some other set W
(upon which an intervention was not performed). If the RVs
in these sets are embedded in a space-time, in order for the
affects relation X affects Y given {do(Z ),W } to not lead to
signaling outside the space-time future, we must embed the
RVs such that the joint future of Y , Z , and W (i.e., where they
are jointly accessible by Bob) is contained in the future of X .

Furthermore, a given HO affects relation X affects Y given
{do(Z ),W } may itself contain some redundancies if X is a
set of RVs (as we have seen in Example 4) such that it can
be reduced to the HO affects relation s̃X affects Y given
{do(Z ),W } for some proper subset s̃X of X (Lemma 6). In
such cases we only need to impose that the joint future (or
joint accessible region) of Y and Z is contained in that of the
smaller set s̃X .

The following definition based on this intuition allows us
to decide when a set of affects relations can be compatibility
embedded in a space-time.

Definition 16 [compatibility of a set of affects relations with
an embedding in a partial order (compat)]. Let S be a set
of ORVs formed by embedding a set of RVs S in a partially
ordered set T with embedding E . Then a set of affects rela-
tions A is said to be compatible with the embedding E if the
following conditions hold.

(i) compat1. Let S1,S2 ⊆ S be disjoint nonempty subsets
of ORVs and S3 and S4 be two more subsets (possibly empty)
disjoint from each other and S1 and S2. If S1 affects S2 given
{do(S3),S4} is in A and is irreducible with respect to the
affects relations in A , then RS2S3S4 = RS2

⋂
RS3

⋂
RS4 ⊆

RS1 with respect to E .
(ii) compat2. For all X ∈ S , RX = F (X ) with respect

to E .
The definition is motivated by the desire to prevent sig-

naling outside of the future. The condition compat2 identifies
the accessible region with the inclusive future, which is based
on the ability to broadcast a RV to any location in its future.
An alternative would be a weaker condition that requires
the accessible region to be some subset of the future. The
condition compat1 is defined in terms of accessible regions
and so could also be used with a weaker version of compat2.
However, a weaker version would in effect place a constraint
on broadcasting and we do not use it here. We return to this in
Sec. V D.

This definition covers all the special cases previously dis-
cussed. For single variables, if X affects Y then Y should be
in the future of X (given compat2, this is equivalent to taking
the accessible region of Y to be contained within that of X );
this is compat1 when S3 is the empty set (in which case its
accessible region is simply T by Definition 14) and S1 = X
and S2 = Y are single ORVs. When S2 is a set of ORVs, this
case ensures that the ORVs in S2 are jointly accessible only
in the future of the ORV X . This covers the particular case of
jamming (Example 7).

We now illustrate the definition by applying it to Examples
3–5. In Example 3, Z affects Y implies that Y must be in the

future of Z and XZ affects Y being a reducible affects relation
does not add any further constraints, so we do not require Y to
be in the future of X . In Example 4 we again must embed Y in
the future of Z , but in this case XZ affects Y is irreducible and
therefore imposes the constraint that Y must be in the joint
future of X and Z . In Example 5, in contrast to the previous
example, we have X affects Y given do(Z ) even though XZ
does not affect Y . The former is irreducible as it involves
single RVs and implies that the joint future of Y and Z must be
in the future of X , and since we also have Z affects Y , which
would require Y to be in the future of Z , we can conclude that
compatibility in this case forces Y to be in the future of both
X and Z . Noting that W also affects Y , this would require Y to
be in the future of W as well.

5. Completeness of Definition 16

We now provide an argument to show that our definition of
compatibility indeed fully captures the intuition of no signal-
ing outside the future within our framework. Given compat2
which we have motivated above, compat1 is necessary to
avoid agents from using the affects relation to signal outside
the future, since a violation of compatibility would enable
S2, S3, and S4 to be accessed outside the future of S1 and
yet receive a signal from S1 through the irreducible affects
relation S1 affects S2 given {do(S3),S4}.13

Further, if a set of affects relations satisfies our definition
with respect to some space-time embedding, this is sufficient
to ensure that no agents who can access the associated ORVs
can signal outside the future using those affects relations.14

This is because the conditional HO affects relation S1 affects
S2 given {do(S3),S4} (between arbitrary pairwise disjoint sets
of ORVs) captures the most general way in which agents
can signal to each other in our framework: An agent Al-
ice may intervene on a set S1 of observed nodes and an
agent Bob with access to another set of observed RVs S2

can try to detect the effect of Alice’s intervention and Bob
may additionally have access to some combination of ob-
servational (S4) and interventional data [do(S3)] relating to
other sets of the observed nodes. Therefore, demanding that
F (S2)

⋂
F (S3)

⋂
F (S4) ⊆ F (S1) holds for any space-time

embedding of the RVs will be sufficient to ensure that this
affects relations cannot be used to signal outside the space-
time’s future. However, this turns out to be too strong a
sufficiency condition, and imposing this only for irreducible
affects relations (as the definition does) is already sufficient.
To see this, suppose that S1 affects S2 given {do(S3),S4}
is reducible. Then there exists a subset s1 ⊂ S1 such that s1

affects S2 given {do(S3),S4} (cf. Lemma 6). Without loss of
generality, take this to be irreducible (if not, simply find a sub-
set of s1 that satisfies the same affects relation and repeat this
argument); then requiring F (S2)

⋂
F (S3)

⋂
F (S4) ⊆ F (s1)

13Without compat2, compat1 is necessary for no signaling outside
the accessible region. See Sec. VII for further discussion.

14This applies given the setup assumptions of the framework, such
as that interventions are performed independently on each node X
and correspond to an exogenous variable IX , etc.
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is sufficient to ensure that the reduced affects relation s1 af-
fects S2 given {do(S3),S4} does not signal outside the future.
By the reducibility of the original relation S1 affects S2 given
{do(S3),S4}, we have for s̃1 := S1\{s1} that s̃1 does not affect
S2 given {do(S3s1),S4}, which means the original affects re-
lation does not require F (S2)

⋂
F (S3)

⋂
F (S4)

⋂
F (s1) =

F (S2)
⋂

F (S3)
⋂

F (S4) to be in contained in the future of
s̃1, once we have imposed F (S2)

⋂
F (S3)

⋂
F (S4) ⊆ F (s1)

for the corresponding reduced relation.
While these arguments justify the completeness of our defi-

nition, they do not rule out the possibility of another definition
that captures the same intuition. This would also depend on
how no signaling outside the future is interpreted, and this
can be done in several inequivalent ways (e.g., by taking the
accessible regions to be a subset of the future in compat2);
we have proposed one possible, natural way to formalize this.
We discuss similar but distinct compatibility conditions in
Sec. V D.

Remark 5. Given a set A of arbitrary conditional affects
relations (including zeroth-order and HO relations), one can
use part (i) of Lemma 8 to convert this to a new set ˜A
containing only unconditional affects relations such that com-
patibility of A with an embedding E in a space-time T
implies the compatibility of ˜A with the same embedding.
For this, form ˜A from A by including every unconditional
affects relation from A , and for every conditional affects
relation S1 affects S2 given {do(S3), S4} in A add the cor-
responding unconditional affects relation S1 affects {S2, S4}
given do(S3) in ˜A , if the latter was not already included
in A [note that the former implies the latter by part (i)
of Lemma 8]. Now every irreducible conditional relation S1

affects S2 given {do(S3), S4} in A imposes the condition
F (S2)

⋂
F (S3)

⋂
F (S4) ⊆ F (S1) on any compatible space-

time embedding E . By part (ii) of Lemma 8, irreducibility of
S1 affects S2 given {do(S3), S4} in A implies irreducibility of
S1 affects {S2, S4} given do(S3) in ˜A , and the latter imposes
the same condition on the embedding, by Definition 16. Every
unconditional relation is present in both sets and hence imply
the same conditions on the embedding.

In summary, every affects relation of the form S1 affects
S2 given {do(S3), S4} present in A can be replaced by S1

affects {S2, S4} given do(S3) for the purpose of applying
Definition 16.

Remark 6. A complete set of affects relations for a causal
model over a set S of RVs is one where for any subsets
S1, S2, S3, S4 of S we know whether or not S1 affects S2 given
{do(S3), S4}. It is not always possible to deduce a complete
set of affects relations from a causal model (as defined in
Definition 5), and in general a complete set may not be avail-
able. Use of a partial set of affects relations can be sufficient
to deduce incompatibility with an embedding, and, given a
causal model, a partial set can be deduced. Note that we
require causal models to define affects relations in the first
place.

Definition 17 (compatibility of a causal model with an
embedding in a partial order). We say that a causal model
over a set of RVs S is compatible with an embedding in
a partial order if the set of affects relations A implied by
the causal model are compatible with the embedding (cf.
Definition 16).

Remark 7. If X ��� Y , there is no affects relation between
X and Y and our compatibility condition does not require that
for the corresponding ORV Y , Y ∈ RX . Although demanding
this would be natural in light of common notions of causa-
tion, one of the motivations behind this line of research is to
investigate what happens without this because the existence
of such causal influences may not be operationally detectable.
In other words, our compatibility condition does not imply
that cause precedes effect with respect to the space-time order
relation, but it does imply that signaling is not possible outside
the future of the space-time structure. Interestingly, this does
not rule out the possibility of causal models with causal loops
that can be compatibly embedded in the space-time, as we
show in the associated Letter [33] (reviewing this argument in
Sec. VI).

D. Necessary and sufficient conditions for compatibility

For compatibility of a set of affects relations with an
embedding E in space-time, Definition 16 states that the con-
ditions compat1 and compat2 must be satisfied. Consider now
a similar condition, which we call compat1′(S,A ), where
the arguments in the parentheses specify the set of ORVs
and affects relations that the condition is applied to (since
we will later apply it to a different set). With this convention,
compat1 := compat1(S,A ).

(iii) compat1′(S,A ). Let S1,S2 ⊆ S be disjoint proper
subsets of ORVs and S3 and S4 be two other subsets (possible
empty) disjoint from themselves and S1 and S2. If S1 affects
S2 given {do(S3),S4} is in A and is irreducible with respect
to the affects relations in A , then

⋂
s234∈S2S3S4

F (s234) ⊆⋂
s1∈S1

F (s1) with respect to E .
Note that compat1′(S,A ) imposes no condition on the

accessible regions but only on the space-time locations of the
ORVs (which allow us to fully specify their inclusive futures),
while compat1 restricts the accessible regions. However, once
compat2 is imposed, compat1 and compat1′(S,A ) are essen-
tially equivalent, i.e., an equivalent definition of compatibility
would be to use compat1′(S,A ) and compat2 instead of com-
pat1 and compat2 in Definition 16. We use compat1 instead
of compat1′(S,A ) in the original definition to make it clear
that this condition is related to the operational concept of
accessibility of ORVs, which is captured by the accessible
regions. In general, the accessible region of an ORV need not
be fully specified by its space-time location or even be related
to its future, but this is the case once compat2 is assumed. The
following theorem (proven in Appendix D 3) and corollary
establish certain useful connections between these concepts
and follow from Definition 16.

Theorem 2 (necessary and sufficient conditions for com-
patibility with an embedding in T ). Let S be set of ORVs
embedded in a partial order T with respect to an embedding
E and let A be a given set of affects relations on S . Further,
consider forming an augmented set of ORVs S ′ by taking S
and for each variable X ∈ S embedding a copy of X at each
point in its accessible region RX and form A ′ by adding to
A that each variable affects each of its copies for all copies.
Then the following statements hold.

(i) If the set of affects relations A is compatible with
the embedding E in T , then compat1′(S ′,A ′) holds, i.e.,
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compat1′(S ′,A ′) is necessary for compatibility of A with
the space-time embedding E .

(ii) The condition compat1′(S ′,A ′) implies that RX ⊆
F (X ) ∀X ∈ S but not that the two sets RX and F (X ) are
necessarily equal for all X ∈ S , i.e., compat1′(S ′,A ′) is not
sufficient for compatibility of A with the space-time embed-
ding E .

The augmented sets S ′ and A ′ in the above theorem cap-
ture the idea of broadcasting classical RVs to each point in
their accessible region. Imposing compat1′ for the embedding
E of these sets in space-time then ensures that this broadcast-
ing (i.e., finding copies of the RVs) is possible only within the
future, but not necessarily to all locations in the future. Note
that being able to find copies of an ORV X only within its
future does not by itself imply that any ORV Y affected by X
must be contained in its future. We then have the following
corollary of the theorem.

Corollary 4. Let S be a set of RVs and A be a set of affects
relations over them. Then there exists a nontrivial embedding
E of S in a partial order T compatible with A if and only
if there exists a nontrivial embedding E ′ of the same affects
relations that satisfies compat1′(S ′,A ′).

That the existence of a nontrivial embedding E that
satisfies compat implies the existence of one that satisfies
compat1′(S ′,A ′) follows directly from the necessary part of
Theorem 2. The other direction follows because any nontrivial
embedding E ′ that satisfies compat1′(S ′,A ′) can be turned
into a nontrivial embedding E that satisfies compat simply
by taking E ′ and setting the accessible regions of ORVs to
satisfy compat2. The important point to note is that the two
embeddings E and E ′ need not be the same.

VI. CAUSAL LOOPS AND THEIR SPACE-TIME
EMBEDDINGS

We have characterized a general class of causal models,
defined when a given causal model can be said to be com-
patible with a space-time embedding and also compared with
related yet distinct conditions on the space-time embeddings.
It is interesting to consider whether there are certain structural
properties of the causal model alone that guarantee the exis-
tence of a nontrivial and compatible space-time embedding
for that causal model. Clearly, the acyclicity of the causal
structure is such a property. While this is certainly sufficient,
a natural question is whether is it also necessary to guarantee
the existence of such a space-time embedding. This question
motivates us to define a broad set of possible theories T that
are consistent with the principle of no signaling outside the
future. The set T consists of theories with the property that for
every causal models that can arise in the theory, there exists
a nontrivial and compatible embedding in a space-time (cf.
Definition 16).

This class of theories is quite general; it certainly includes
quantum and standard GPTs and any theory that can be
characterized using acyclic causal structure. In the associated
Letter [33], we apply the framework developed here to con-
struct an explicit operationally detectable causal loop that can
be embedded in (1 + 1)-dimensional Minkowski space-time
without superluminal signaling, which demonstrates that the
set T can also include theories admitting causal loops. In

this section we characterize several different classes of causal
loops that can arise in our framework and we show that
some of these classes can be ruled out by requiring that the
causal model has a compatible space-time embedding, while
the results of the associated Letter [33] show that some other
classes cannot be ruled out in this manner. We provide further
examples to argue that fully characterizing the set of theories
T may be a difficult task. By full characterization, we mean
finding a necessary and sufficient set of conditions on the set
of possible affects relations (and/or correlations) of the causal
model that guarantees the existence of a nontrivial compatible
space-time embedding. Let us now take a closer look at the
types of causal loops that can arise in our framework.

A. Different classes of causal loops

We have seen that due to fine-tuning, causation does not
imply the existence of affects relations. This motivated the
classification of causal arrows (Definition 7) as solid or dashed
based on the existence of suitable affects relations. Similarly,
we can distinguish between different types of causal loops
in our framework depending on whether they can be opera-
tionally detected through their affects relations. A causal loop
simply corresponds to a directed cycle in a causal structure
G involving at least two observed nodes, i.e., two observed
nodes X and Y in G such that there exist directed paths from
X to Y and from Y to X . Often, however, we may not know
the full causal structure but only a set of affects relations A
over the observed nodes of an underlying causal structure G.
The set A might allow us to infer some but not necessarily all
the causal relationships in G. We then have the following two
broad categories of causal loops: The former (affects causal
loops) are operationally detectable via their affects relations
and the latter (hidden causal loops) are not operationally
detectable through their affects relations or correlations.

Definition 18 (affects causal loop (ACL)). Any set of af-
fects relations A that can only arise in a causal model
associated with a cyclic causal structure G are said to form or
contain an affects causal loop. In other words, affects causal
loops certify the cyclicity of the underlying causal structure
through the observed affects relations.

Definition 19 (hidden causal loop (HCL)). Given a causal
model whose causal structure contains a directed cycle, and
a complete set of affects relations, we say that this causal
model contains a hidden causal loop if the same set of affects
relations and the same correlations are also realizable in an
acyclic causal structure.

A HCL is by definition a causal loop since it corresponds
to a directed cycle in the causal structure. These act as causal
loops at the level of the causal mechanisms but cannot be
detected at the operational level of affects relations (or correla-
tions). It can be the case that causal structures contain directed
cycles without being an ACL, meaning that the affects rela-
tions of the associated causal model can also be obtained in an
acyclic causal structure. This does not necessarily imply that
both the affects relations and correlations can be generated in
an acyclic causal structure, so ACLs and HCLs need not be
complements of one another. Below we provide an example
of a HCL.
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FIG. 11. Operationally undetectable causal loop (Example 10).

Example 10 (operationally undetectable causal loop).
Consider the causal structure of Fig. 11 over the binary RVs
X , Y , and �, where X and Y are observed nodes which are
causes of each other (forming a causal loop) and � is an un-
observed common cause of the two. Suppose that the RVs are
related as follows: � is uniformly distributed and X = � ⊕ Y
and Y = � ⊕ X . Note that the given causal structure already
implies a complete set of affects relations, i.e., for each pair
of the observed nodes, we know whether or not one affects
the other. In this case, this is implied by the dashed arrows
and we have that X and Y do not affect each other. Since � is
uniform, PGdo(X ) (Y |X ) and PGdo(Y ) (X |Y ) are both uniform, and
in order to have the required (non)affects relations, it must be
that case that PG (X ) and PG (Y ) are both uniform. Along with
the given functional dependences, this implies that X and Y
are uncorrelated with each other. In other words, there are no
affects relations or correlations between the set of observed
nodes of this causal structure even though there is a causal
loop. A causal structure over X and Y with no edges at all
would also explain these observations. Therefore, the directed
cycle between X and Y in Fig. 11 corresponds to a hidden
causal loop. It is also worth noting that knowing the value of
the exogenous variable � is not enough to determine the value
of X or Y with the given functional relations. Nevertheless, in
Appendix C we propose a method for uniquely determining
the observed distribution in such examples, when the causal
mechanisms are given.

We now focus on the more interesting class of causal loops,
affects causal loops. Definition 18 only tells us that these are
causal loops whose existence is operationally certified by the
observable affects relations. It is natural to seek necessary
and sufficient conditions on the set of affects relations such
that they form an ACL. Here (and in Appendix B) we pro-
pose several sufficient conditions which can be considered
as definitions of different types of affects causal loops. We
discuss six types here and four more in Appendix B and
provide examples to illustrate that none of these are necessary
conditions, i.e., there can be further types of ACLs not covered
by these ten types. After defining the six types here, we will
prove that these are indeed ACLs (Theorem 3).

A first sufficient condition for the existence of an ACL is
that there are two RVs X and Y that affect each other. Since
affects implies cause, this tells us that X and Y must be causes
of each other and hence that these affects relations are only
realizable in a cyclic causal structure, i.e., they lead to an ACL.
A second condition is the presence of a chain of single RV
affects relations from X to Y and from Y to X . The latter can
in general be a distinct condition from the former due to the
nontransitivity of the affects relation (see Example 2), but can
be shown to be an ACL. This gives us the following two types
of causal loops.

Definition 20 [affects causal loops, type 1 (ACL1)]. A set
of affects relations A is said to contain a type 1 affects causal
loops if there exist two RVs X and Y such that {X affects Y , Y
affects X } ⊆ A .

Definition 21 [affects causal loops, type 2 (ACL2)]. A set
of affects relations A is said to contain a type 2 affects causal
loop if there exist RVs X, Z1, Z2, . . . , Zk and Y such that X
affects Z1, Z1 affects Z2, . . ., Zk affects Y , and Y affects X are
all in A .

More generally, one can also consider affects relations
involving sets of RVs. A first observation is that S1 affects S2

and S2 affects S1 for two sets of RVs does not imply the exis-
tence of a directed cycle in the causal structure. For example,
consider a causal structure G with four nodes A, B, C, and D,
all of which are observed such that the only edges in G are the
solid arrows A −→ B and C −→ D, with A affects B and C
affects D. Then, if S1 = AD and S2 = BC we have S1 affects
S2 and S2 affects S1 even though G is clearly acyclic. However,
if we take these to be irreducible affects relations, this will
no longer be the case and we can certify the cyclicity of the
causal structure from the affects relations, as we later show.
This motivates more general set of sufficient conditions for the
existence of affects causal loops. Two immediate possibilities
are the following.

Definition 22 [affects causal loops, type 3 (ACL3)]. A set
of affects relations A is said to contain a type 3 affects causal
loop if there exist two disjoint sets S1 and S2 of RVs such that
{S1 affects e2, S2 affects e1} ⊆ A where e1 ∈ S1, e2 ∈ S2, and
both affects relations are irreducible.

Definition 23 [affects causal loops, type 4 (ACL4)]. A set
of affects relations A is said to contain a type 4 affects causal
loop if there exist sets of RVs S1, S2, . . . , Sn where each pair Si

and Si+1 modn is disjoint such that {S1 affects S2, S2 affects S3,
. . ., Sn−1 affects Sn, Sn affects S1} ⊆ A , and all these affects
relations are irreducible.

ACL1–ACL4 imply cyclicity of the causal structure as
shown in Theorem 3. However, these are not the most general
conditions on the affects relations with this property. There
can be further conditions that are not equivalent to ACL1,
ACL2, ACL3, or ACL4 which also imply cyclicity. The fol-
lowing is such a condition.

Definition 24 [affects causal loops, type 5 (ACL5)]. A set
of affects relations A is said to contain a type 5 affects causal
loop if there exist sets of RVs Si ⊆ Ŝi for i = 1, . . . , n such
that Ŝ1 affects S2, Ŝ2 affects S3, . . ., Ŝn−1 affects Sn, and Ŝn

affects S1 are all in A , where all the affects relations are
irreducible and every pair of sets connected by an affects
relation is disjoint. Such a chain of affects relations is called
a complete affects chain; in this case the affects chain is from
the set S1 to itself.

Rather than considering a chain of irreducible affects
relations from a RV or a set of RVs back into itself, one can
consider multiple chains which taken together imply cyclicity
and this would give yet another type of causal loop in our
framework. For example, we may have an irreducible affects
relation A affects BC. Along with another irreducible affects
relation BCD affects A, this would form a type 5 affects
causal loop. By Corollary 3, these affects relations would tell
us that A is either a cause of B or C while B, C, and D are all
causes of A. Irrespective of whether A is a cause of B or of
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C, this implies the existence of a directed cycle in the causal
structure. However, we could instead have started with the
irreducible affects relations A affects BC, B affects A, and C
affects A. Since in general B affects A and C affects A need not
imply BC affects A (see Example 5), these affects relations
may not constitute a type 5 affects loop but they nevertheless
imply cyclicity (using Corollary 3). Note that A affects BC
and B affects A alone (even if irreducible) do not necessarily
imply cyclicity since the former tells us that A is either a cause
of B or of C and the latter that B is a cause of A. That is, these
affects relations can in principle be obtained in an acyclic
causal model where A is a cause of C and B is a cause of A.
Generalizing this idea, we have another type of affects loop,
ACL6.

Definition 25 [affects causal loops, type 6 (ACL6)]. A set
of affects relations A is said to contain a type 6 affects causal
loop if the following conditions are satisfied.

(i) There exist disjoint sets of RVs S1 and S2 such that S1

affects S2 belongs to A and is irreducible.
(ii) For each element e2 ∈ S2, there exists a complete chain

of irreducible affects relations that connects it back to S1, i.e.,
for each e2 there exists sets of RVs Si ⊆ Ŝi for i = 1, . . . , n
and s1 ⊆ S1 such that {Ŝ2 affects S3, Ŝ3 affects S4, . . ., Ŝn−1

affects Sn, Ŝn affects s1} ⊆ A , where all the affects relations
are irreducible and every pair of sets connected by an affects
relation is disjoint.

There are further types of affects causal loops, all of
which imply cyclicity of the causal structure. For example,
we can also consider affects causal loops involving chains of
conditional higher-order affects relations (Definition 8) and
define analogs of ACL1–ACL6 for this case. These can in
general be distinct from ACL1–ACL6 since it is possible
to have a conditional HO affects relation X affects Y given
{do(Z ),W } without the unconditional zeroth-order affects re-
lation X affects Y . Even using unconditional zeroth-order
affects relations alone, further distinct classes of affects causal
loops are possible and four such classes (ACL7–ACL10) are
described in Appendix B. The intuition behind them is as
follows. The kind of chains of irreducible affects relations
considered in the above definitions are such that for each
subsequent pair of affects relations Ŝi affects Si+1, the set Si+1

is contained in Ŝi+1. What if this were not the case and we
only had that Si+1

⋂
Ŝi+1 �= ∅? Let us call this an incomplete

affects chain. The example before the last definition, with A
affects BC and B affects A, illustrates that this condition alone
is not enough to guarantee cyclicity and to justify calling these
affects relations a causal loop. One way is to add the affects
relation C affects A, which motivates the definition of ACL6
above. Another option is to add the irreducible affects rela-
tions C affects D and D affects BC and one can again show that
the set of irreducible relations A = {A affects BC, B affects A,
C affects D, D affects BC} is cyclic. One can however verify
that this A does not correspond to any of the affects causal
loops previously defined. There are two incomplete affects
chains that complete each other, but no complete chain as
required by the above types of ACL. In general, one might
need to combine a given incomplete chain with several other
complete or incomplete chains to guarantee cyclicity of the
resulting set of affects relations, and the conditions therefore
continue to get more complex. Even the additional classes of

affects causal loops defined in Appendix B do not exhaust
all the possible types of affects causal loops that might be
possible in our framework (we provide an example in the
Appendix to illustrate this).

The following theorem (proven in Appendix D 3) shows
that ACL1–ACL6 are indeed affects causal loops in the sense
of Definition 18.

Theorem 3. Any set of affects relations A containing an
affects causal loop of type 1, 2, 3, 4, 5, or 6 can only arise
from a causal model over a cyclic causal structure, i.e., these
are indeed instances of affects causal loops according to Def-
inition 18.

B. Possibility of compatibly embedding causal
loops in space-time

In the preceding section we discussed various properties
of causal loops that follow from the causal model alone
and without reference to space-time. Here we consider the
space-time embeddings of such loops and whether affects
causal loops can be compatibly and nontrivially embedded in
a space-time structure. This turns out to indeed be possible
for certain types of affects causal loops. This implies that
for some causal loops their existence can be operationally
certified (through observed affects relations, by virtue of being
affects causal loops) and they can nevertheless be nontrivially
embedded in space-time without leading to signaling outside
the space-time future. While our framework can be applied to
arbitrary partially ordered space-times, for the sake of illustra-
tion, we consider the case of (1 + 1)-dimensional Minkowski
space-time in this section. Before we show the existence of
embeddable causal loops in this case, we make the following
observation.

Lemma 9. Let S be a set of RVs and A be a set of affects
relations over them.

(i) The absence of affects causal loops (Definition 18) in
A is a sufficient condition for the existence of a nontrivial
embedding of S in a space-time that A is compatible with.

(ii) If A is assumed to be a set of affects relations asso-
ciated with a faithful causal model, then all causal loops are
type 1 affects causal loops and the existence of a nontrivial
space-time embedding of S that A is compatible with is
both necessary and sufficient to rule out all causal loops and
guarantee the acyclicity of the causal model that generates A .

The above lemma (proven in Appendix D 3) shows that
all the distinct classes of causal loops ACL2–ACL6 (and
ACL7–ACL10 and other possible classes as described in Ap-
pendix B) as well as the concept of hidden causal loops only
arise in fine-tuned causal models. If fine-tuning is allowed,
even the absence of affects causal loops does not rule out
causal loops since we can have hidden causal loops which are
operationally undetectable, i.e., the absence of ACLs does not
imply acyclicity of the causal structure. Here we first show
that the absence of type 1 and type 2 affects causal loops is
necessary for the existence of such a nontrivial and compatible
space-time embedding. The results of our associated Letter
[33] show that this is no longer true for ACLs of higher types.
In particular, we construct an ACL of type 4 there that does
admit such a space-time embedding, which demonstrates that
the absence of affects causal loops is not necessary for the
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existence of a nontrivial and compatible space-time embed-
ding. We further show here that the absence of type 1 and type
2 loops is not sufficient for the existence of a nontrivial and
compatible space-time embedding, since such an embedding
is not guaranteed to exist for affects loops of other types, i.e.,
for ACL3 and above there may or may not exist a nontrivial
and compatible space-time embedding (this is discussed in
Appendix B).

Consider the affects causal loops of types 1 and 2. Recall
that a nontrivial space-time embedding is one where no two
RVs such that one affects the other are assigned the exact
same space-time location. A nontrivial space-time embedding
is impossible for ACL1 and ACL2, since compat applied to
a set of affects relations containing an ACL2 implies that
X � Z1 � · · · � Zk � Y � X , which can only be satisfied
when X � Y � X , i.e., O(X ) = O(Y ), which corresponds to
a trivial embedding. The latter step follows directly by apply-
ing compat for ACL1. This is stated explicitly in the following
lemma.

Lemma 10. Let S be a set of RVs and A be a set of affects
relations over them that contains affects causal loops of type 1
or 2. The set S cannot be nontrivially embedded in any space-
time such that A is compatible with the embedding.

Now consider ACL3 formed by the irreducible affects re-
lations A = {AB affects C, CD affects A}. Applying compat
to the first affects relation, we have that C must be in the
joint inclusive future of A and B, i.e., A � C and B � C.
The condition compat for the second affects relation similarly
implies that C � A and D � A. Together these imply that A
and C must be embedded at the same location while B and
D cannot be in the future of this location. Since we have
neither A affects C nor C affects A in A , there is a nontrivial
embedding. However, if we form A ′ by adding one or both
of these affects relations to A , there will no longer be any
nontrivial and compatible embedding. In other words, affects
causal loops of type 3 can admit nontrivial and compatible
space-time embeddings, but will always be degenerate, i.e.,
they require two of the RVs to be embedded at the same
location (e1 and e2 in Definition 22), as shown in the lemma
below.

Lemma 11. Let S be a set of RVs and A be a set of affects
relations over them that contains affects causal loops of type 3.
The set S cannot be embedded in any space-time such that the
embedding is nondegenerate such that A is compatible with
the embedding. However, there are nontrivial embeddings that
A is compatible with.

Proof. By Definition 22, ACL3 implies that for two sets
S1 and S2 of RVs, we have the irreducible affects relations
S1 affects e2 and S2 affects e1 for some elements e1 ∈ S1 and
e2 ∈ S2. Applying compat (Definition 16), this implies that
e1 must be embedded in the inclusive future of all elements
e′

2 ∈ S2 and e2 must be embedded in the inclusive future of
all elements e′

1 ∈ S1. This is only possible if e1 and e2 are
embedded at the same location, making the embedding de-
generate. However, it can be the case that A does not contain
or imply the any affects relations between e1 and e2; therefore,
the embedding may still be nontrivial. �

Can we embed an affects causal loop compatibly in space-
time such that all RVs have distinct locations? The associated
Letter [33] shows that such a nondegenerate embedding is

FIG. 12. Nontrivial and compatible space-time embedding for an
operationally detectable causal loop. Example 11 describes a set of
affects relations that forms an affects causal loop of type 4. Such
a causal loop is operationally detectable since the cyclicity of the
underlying causal model can be certified operationally using the
observed affects relations, as shown in Theorem 3. This figure il-
lustrates a nontrivial and nondegenerate yet compatible embedding
of this causal loop in (1 + 1)-dimensional Minkowski space-time,
where space and time are given along the horizontal and vertical
axes, respectively, and black lines correspond to light cones. Note
that this embedding remains compatible even when the space-time
RVs A and C are pushed to the far past of B along the black line (B’s
past lightlike surface).

indeed possible for certain types of affects causal loops, with
an explicit example. The causal loop proposed in [33] corre-
sponds to a type 4 ACL in the language of the present paper;
we reproduce this example here for completeness.

Example 11 (operationally detectable causal loop with a
nontrivial, compatible space-time embedding [33]). Suppose
we have the irreducible affects relations A = {B affects AC,
AC affects B} which form a type 4 ACL. Then compat would
require that F (B) = F (A)

⋂
F (C). This can be satisfied even

when A, B, and C are embedded at distinct space-time loca-
tions, as shown in Fig. 12. This figure shows that this affects
causal loop involving the RVs A, B, and C can be embedded in
a (1 + 1)-dimensional Minkowski space-time without leading
to signaling outside the space-time future. This is possible
even if we embed A and C arbitrarily far in the past, as long as
the earliest location where their light cones intersect coincides
with the location of B. By Theorem 3, observation of the
affects relations {B affects AC, AC affects B} operationally
certifies the existence of a causal loop, i.e., that there exists
at least one pair of RVs among A, B, and C that are causes of
each other. This causal loop corresponds to a closed timelike
curve (CTC) once the RVs are embedded in a space-time,
since it would imply bidirectional causal influences between
two distinct space-time locations. Even if this CTC involves
causal influences between RVs that occur far apart in time (in
some reference frame), they will not allow any agent to signal
superluminally since the affects relations are compatible with
the space-time. This is true even if the agent can access all the
RVs or any subset thereof. This is because both of the affects
relations in A can only be verified in the joint future of A
and C and the earliest point that they can do so is the location
of B.

An explicit cyclic causal model in which the affects causal
loop of the above example can arise is also provided in [33];
we further discuss this in Appendix A and Fig. 14(b) along
with other examples that illustrate the concept of higher-order
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affects relations introduced in this work. One can also use
the framework developed here to construct several further
examples of causal loops (of ACL4 or higher types) that can
be compatibly embedded in space-time. The example pro-
vided in our Letter [33] suffices to illustrate the claim that such
loops are even possible. We discuss further the space-time
embeddings of higher types of ACLs in Appendix B.

Remark 8 (types of space-time embeddings). Apart from
distinguishing between different types of causal loops (that
arise due to fine-tuning of the underlying parameters of the
causal model), one might also wish to distinguish between
different types of space-time embeddings. Some useful
distinctions that were made so far are between trivial and
nontrivial embeddings and degenerate and nondegenerate
embeddings. The former is useful because any set of affects
relations can be compatibly embedded in a space-time
through a trivial embedding where all RVs are embedded
at the same location and this does not tell us anything
interesting. If we demand nontrivial embeddings, i.e., that
two RVs connected by an affects relation only involving them
are not embedded at the same location, then this rules out
affects causal loops of types 1 and 2, as shown in Lemma
10, but not type 3 loops. On the other hand, if we demand
nondegenerate embeddings, i.e., that all RVs are embedded
at distinct locations, we can rule out type 3 affects causal
loops, as shown in Lemma 11, but not type 4. Note that
the compatible and nondegenerate space-time embedding of
the type 4 affects causal loop that we propose in the Letter
in [33] (and discussed in Example 11) is fine-tuned and is
unstable in the sense that small adjustments to the space-time
embedding of the variables would break compatibility.
In the case of Minkowski space-time, the requirement
F (B) = F (A)

⋂
F (C) that guarantees compatibility of the

ACL4 in Example 11 confines the ORVs A and C to a
surface that is one dimension smaller than the dimensions
of the space-time, once the location of the ORV B is fixed.
This surface if simply the boundary of the past light cone
of B. The ORVs A and C can be placed anywhere on this
surface, including arbitrarily far in the past of B along
its past lightlike surface but cannot be placed out of this
surface without violating compatibility. (Alternatively, once
A and C are embedded, there is only one possible location
for B.) Such examples of causal loops that do not lead to
superluminal signaling involve a form of fine-tuning both at
the level of the causal model and at the level of its space-time
embedding.

Remark 9 (open questions and challenges). As motivated
in the above remark, one can consider further distinctions
between space-time embeddings, such as whether they are un-
stable embeddings. We have seen that such embeddings arise
in Example 11 and other examples of this section and Ap-
pendix B. All the nondegenerate and compatible space-time
embeddings of affects causal loops that we know so far (such
as Example 11) are such unstable embeddings. Therefore,
an interesting open question is whether demanding that an
embedding is stable would rule out some or all of the affects
causal loops of type 4 and higher.

It remains unclear what condition on the space-time em-
bedding would rule out all possible types of affects causal
loops. A main reason is that the general class of affects causal

loops (i.e., operationally detectable causal loops) is not fully
characterized; ACL1–ACL6 only provide various sufficient
conditions that imply the existence of an affects causal loop
but none of them, including the further classes ACL7–ACL10
discussed in Appendix B, are necessary. In all the classes other
than ACL1 and ACL2, one can find causal loops that admit
nontrivial and compatible space-time embeddings, but it is
also possible to find ACLs of other types that have no non-
trivial or compatible embeddings. Thus the question regarding
necessary and sufficient conditions on affects relations that
guarantee a nontrivial and compatible embedding (and sim-
ilarly for other types of embeddings) also remains open.

While we have seen that there is a nontrivial and compat-
ible embedding of the affects loop of Example 11 in (1 +
1)-dimensional Minkowski space-time, there is no such em-
bedding of the same loop in (3 + 1)-dimensional Minkowski
space-time [33]. This is because the compatibility condition
requires B to be embedded at the earliest location in the
joint future of A and C, which is not possible in (3 + 1)-
dimensional Minkowski space-time where a frame-dependent
concept of earliest location in the joint future does not exist
[in contrast to the (1 + 1)-dimensional case]. This implies that
the conditions for ruling out causal loops in a space-time can
depend on the dimension of the space-time and possibly other
topological features. In particular, it remains a pertinent open
question whether the existence of a nontrivial and compatible
embedding in the space-time is sufficient to rule out all affects
causal loops in (3 + 1)-dimensional Minkowski space-time.
We leave these open questions as a challenge for future re-
search in the field.

The framework developed here, along with the results
of the associated Letter [33], illustrates the counterintuitive
possibilities offered by fine-tuning: If it is possible to have su-
perluminal causal influences without superluminal signaling
(as in nonlocal hidden variable theories [37] or the jamming
scenario [29,30]), then we can also have causal loops that do
not lead to superluminal signaling. The particularly interesting
feature of such causal loops is that they can be operationally
detected through their affects relations. These results have
consequences for the claims of [29,30] that certain constraints
on correlations in Bell scenarios are necessary and sufficient
for ruling out causal loops (as claimed in [30]). They suggest
that neither directions of these claims can hold. This is dis-
cussed in the following section.

VII. CRITICAL ANALYSIS OF PREVIOUS CLAIMS
REGARDING RELATIVISTIC CAUSALITY

Here we comment on two related works, Ref. [29], where
the concept of jamming nonlocal correlations were intro-
duced, and Ref. [30], where these were further analyzed and
generalized to so-called relativistic causal correlations. The
results and assumptions of [29,30] are not stated in the same
mathematical language as ours, and hence some translation is
needed to use our framework. For this discussion, we consider
a tripartite Bell experiment, i.e., we consider six random vari-
ables: the settings (A, B, and C) and corresponding outcomes
(X , Y , and Z) that are embedded into Minkowski space-time
satisfying the following constraints.
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Definition 26 (embeddings of the form E jam). Random vari-
ables A, B, C, X , Y , and Z have an embedding of the form
E jam if the following conditions are satisfied: (i) {A,X } ⊀�
{B,Y}, {A,X } ⊀� {C,Z} {B,Y} ⊀� {C,Z}, A � X , B �
Y , and C � Z ,15 and (ii) F (X )

⋂
F (Z ) ⊆ F (B).

The first of these conditions corresponds to space-time
constraints for a tripartite Bell scenario. Here A, B, and C
can be thought of as settings with X , Y , and Z corresponding
outcomes. The first condition then represents the spacelike
separation of the three parts of the experiment, with each
setting embedded in the space-time past of the corresponding
outcome. The second condition is an additional restriction on
the space-time location of the RVs related to the particular
jamming scenario we wish to consider, demanding that the

joint future of X and Z is in the future of B. These conditions
define a family of embeddings; the locations of A, B, C,
X , Y , and Z in Fig. 3 satisfy the conditions. Tripartite Bell
experiments carried out in spacelike separated configurations
satisfying the first conditions of E jam are normally associated
with a set of no-signaling constraints on the possible correla-
tions. However, given both conditions of E jam, Refs. [29,30]
consider a relaxed set of no-signaling conditions, as
follows.

Definition 27 [relaxed tripartite no-signaling conditions
[29] (NS3′)]. The relaxed no-signaling conditions NS3′ asso-
ciated with an embedding of the form E jam correspond to the
following constraints on the observed distribution PXY Z|ABC :

PXY |AB(x, y|a, b) :=
∑

z

PXY Z|ABC (x, y, z|a, b, c) =
∑

z

PXY Z|ABC (x, y, z|a, b, c′) ∀x, y, a, b, c, c′,

PY Z|BC (y, z|b, c) :=
∑

x

PXY Z|ABC (x, y, z|a, b, c) =
∑

x

PXY Z|ABC (x, y, z|a′, b, c) ∀y, z, a, a′, b, c,

PX |A(x|a) :=
∑

y,z

PXY Z|ABC (x, y, z|a, b, c) =
∑

y,z

PXY Z|ABC (x, y, z|a, b′, c′) ∀x, a, b, b′, c, c′,

PZ|C (z|c) :=
∑

x,y

PXY Z|ABC (x, y, z|a, b, c) =
∑

x,y

PXY Z|ABC (x, y, z|a′, b′, c) ∀z, a, a′, b, b′, c. (9)

Note that these conditions imply PY |ABC (y|abc) is indepen-
dent of a and c, so PY |B is well defined. The idea behind these
relaxed conditions is that they allow PXZ|ABC to depend on
B (which would normally be forbidden) on the grounds that
the joint future of X and Z is contained in that of B in the
embedding E jam, and hence information about B can remain
in its future (as explained in Sec. III B).

Since the conditions NS3′ involve only the observed cor-
relations, they do not by themselves tell us about causation.
Therefore, without making further assumptions about the un-
derlying causal model, they cannot be necessary and sufficient
conditions to rule out superluminal signaling or causal loops.
For instance, a set of correlations violating NS3′ could arise
from a single unobserved common cause of all six vari-
ables without any direct causes, which would not lead to any
superluminal signaling. When referring to such conditions
on correlations as no-signaling conditions, we often implic-
itly assume some notion of free choice for the settings (see
[30,50,51] for definitions of free choice). In the causal mod-
eling framework, free choice can be modeled by taking the
settings A, B, and C to be exogenous i.e., as having no prior
causes. Given the exogeneity of A, B, and C, NS3′ capture the
signaling possibilities through interventions on these variables
(cf. Corollary 1), such as C does not affect XY given AB, etc.
Thus, in the language of the present paper, the result of [29]

15The conditions A ≺ X , B ≺ Y , and C ≺ Z are more natural than
the last three relations, but, as in [30], we allow for the possibility of
instantaneous measurements here.

can be stated as saying that given an embedding of the form
E jam and with A, B, and C exogenous, the conditions NS3′ are
sufficient to prevent superluminal signaling by interventions
on A, B, and C.

A stronger claim is made by Horodecki and Ramanathan
[30], that the conditions NS3′ are necessary and sufficient
for ensuring no superluminal signaling and no causal loops
with such an embedding, and they termed the correlations
satisfying NS3′ relativistic causal correlations. Within the
framework introduced in this paper, if interventions are also
allowed on X , Y , and Z , the sufficiency of NS3′ for ruling
out superluminal signaling in the space-time embedding E jam

does not hold. The reason is that there are causal models sat-
isfying NS3′ as well as having X affects Y . The latter involves
intervention on a nonexogenous node X and implies that Alice
can signal to Bob. With an embedding of the form E jam, this
is superluminal. This is also captured by our definition of
compatibility (Definition 16), according to which the relation
X affects Y is not compatible with an embedding of the form
E jam.

The claim of [30] is not just about the impossibility of
superluminal signaling but also about ruling out causal loops.
As we have seen, correlations satisfying NS3′ that allow for
jamming must be fine-tuned regardless of the causal struc-
ture. In fine-tuned causal models, several distinct classes of
causal loops are possible, some of which are operationally
undetectable (or hidden; cf. Definition 19) while others are
operationally detectable but nevertheless do not lead to su-
perluminal signaling as we show in the associated Letter
[33] (see also Example 11). The former, by virtue of being
operationally undetectable, can never be ruled out only from
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the correlations (NS3′ or otherwise) or affects relations. Op-
erationally detectable causal loops require the consideration
of nontrivial affects relations between sets of RVs, which are
not detectable from the correlations alone. For instance, NS3′
cannot detect the existence of causal loops between outcome
variables (e.g., X is a cause of Y and Y is a cause of X ) since
when a common cause is included, this common cause can
explain the correlations. Therefore, the claim of [30] that NS3′
rules out causal loops does not hold within our framework,
even when restricting the study to the case where the settings
are exogenous. More generally, in the absence of alterna-
tive frameworks for formalizing these questions, it remains
unclear how conditions on correlations such as NS3′ could be
necessary and sufficient for ruling out causal loops without
further assumptions.

Furthermore, although we can rule out certain types of
operationally detectable causal loops by demanding certain
properties of the space-time embedding, e.g., affects causal
loops of types 1–3 (cf. Lemmas 10 and 11), the absence
of operationally detectable causal loops is not necessary to
ensure no superluminal signaling (cf. Example 11). While
NS3′ is necessary to prevent superluminal signaling within the
embedding E jam, it is not necessary to rule out affects causal
loops in this embedding: It is possible to have an acyclic
causal model over the settings A, B, and C and outcomes X , Y ,
and Z that violates NS3′ and leads to superluminal signaling
in the embedding E jam. The implication that superluminal sig-
naling implies causal loops holds within the theory of special
relativity. Here we do not want to assume it, which allows us
to consider more general relations between these principles,
and our framework can hence be used also in theories with,
for instance, a preferred frame. A more detailed analysis of
previous works such as [29,30] and the possibilities of super-
luminal signaling or causal loops in the jamming scenario are
carried out in [38].

VIII. SUMMARY AND CONCLUSIONS

We have developed a general mathematical framework for
studying causality by clearly separating between operational
and space-time related notions and characterizing their com-
patibility. This has foundational relevance for understanding
causality in quantum and more general theories, as well as
practical applications for cryptography, information process-
ing tasks in space-time, and causal discovery. We have mainly
focused on two notions of causality: the operational notion of
causality defined through an extension of the causal modeling
approach [1,16] and relativistic causality which is associated
with a space-time structure.

We formulated the operational notion of causality under
minimal assumptions while allowing for causal influences
to be fine-tuned, cyclic, and mediated by latent nonclassical
systems. On the other hand, relativistic causality can be un-
derstood as the condition that causal influences can propagate
only from past to future in the space-time, where it has several
implications such as it is impossible to signal outside the
future, it is possible to signal everywhere in the future and
nowhere else, in Minkowski space-time it is impossible to
have causal loops, and it is impossible to broadcast classical
information outside the future. Often one or more of these

implications are taken in isolation to represent the condition
of relativistic causality. Within the theory of special relativity
these are related (e.g., the possibility of superluminal signal-
ing leads to causal loops), but without assuming relativity they
may not be and hence need to be independently formalized.

Within our framework we have formalized several of the
above concepts and shown that these are distinct conditions
in general. Our compatibility condition (Definition 16) en-
sures that a causal model does not lead to signaling outside
the future when embedded in a space-time structure. An
alternative compatibility condition discussed in Sec. V D cap-
tures the idea of broadcasting classical variables within the
space-time future. Cyclic causal models involve causal loops
and when embedded in space-time, as described in Sec. V B,
these allow for causal influences going in both directions
between two distinct space-time points. Thus, the embedded
cyclic causal structure can be understood as a closed timelike
curve. Applying this framework, we have shown in the asso-
ciated Letter [33] that it is mathematically possible to have
such CTCs in Minkowski space-time and that their existence
can be operationally detected without leading to superluminal
signaling. This establishes that no superluminal signaling and
no causal loops or closed timelike curves are in general differ-
ent conditions. In the present paper we have gone beyond this
particular example and identified several different classes of
operationally detectable causal loops (or affects causal loops)
in our framework and characterized properties of their space-
time embeddings. Should one such operational detection be
made (which we do not expect) it would certify the physical
existence of retrocausation. Such constructions are possible
because our framework does not require all causal influences
to respect the partial order of the space-time but only that
signaling possibilities are constrained by the space-time.

In particular, this work also serves as a causal modeling
framework for a class of postquantum theories (jamming the-
ories) previously proposed in the literature [29,30] which are
known to be more general than standard GPTs. Previously,
these theories have been analyzed focusing on the correlations
they generate, but a causal modeling framework enables us
to systematically study the effect of active interventions on
arbitrary physical systems in such theories, which provides
more information about the underlying causal structure than
correlations alone. Using this, we analyzed previous claims
regarding the compatibility of such theories with principles
such as no superluminal signaling and no causal loops, which
suggests that these claims cannot hold without further as-
sumptions. In Ref. [38] we apply the framework developed
here to such postquantum jamming scenarios to characterize
the signaling possibilities and different properties of theories
admitting such correlations.

To allow us to deal with fine-tuned causal structures, we
introduced higher-order affects relations. Our results show
these to be a useful tool for inferring causation in the pres-
ence of fine-tuning that also has operational meaning in terms
of signaling through joint interventions on multiple systems.
When a particular phenomenon has two possible causal expla-
nations, one of which is fine-tuned, the fine-tuned explanation
is often considered undesirable because it usually more com-
plicated and involves features that cannot be operationally
verified. Fine-tuning complicates causal reasoning and the
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majority of the literature on causal models typically assumes
the absence of fine-tuning. Explanations of quantum correla-
tions in terms of classical causal models are typically rejected
as such explanations involve fine-tuning [10], and instead
faithful explanations in terms of quantum causal models are
often preferred. On the other hand, fine-tuning occurs in many
cryptographic scenarios, as well as jamming correlations (cf.
Proposition 1 and Example 7). Using a causal modeling ap-
proach allows for a clear distinction to be made between
undesirable and potentially useful forms of fine-tuning. The
former correspond to causal influences that can never be
operationally detected, while the latter can be operationally
detected by considering more general joint interventions on
sets of random variables. In this work we have shown that
several causal modeling concepts that are equivalent in the ab-
sence of fine-tuning become distinct concepts in the presence
of fine-tuning. We presented several technical results relating
these various concepts in general fine-tuned and cyclic causal
models with latent nonclassical causes, which can have useful
applications for the causal discovery problem in the presence
of fine-tuning.

In our framework, we have modeled space-time as a dis-
crete partially ordered set on which we embedded a separate
operational causal model and considered compatibility be-
tween the two notions. There are two different ways in which
this space-time can be interpreted. One is to regard it as a
fundamental background on which physics given by the causal
model is embedded such that every observed node in the
model can be associated with a location in the space-time.
Then our results tell us that the absence of signaling outside
the future when the causal model is embedded in the space-
time does not allow us to identify the space-time order relation
with the causal order and that these are distinct concepts. A
second interpretation is to understand the space-time order
as an emergent property of the physics given by the causal
model. For instance, our compatibility condition could be
interpreted as a way to infer which space-time orders could
occur alongside the operational predictions of the model, if we
consider the direction of signaling in the model to constrain
the order relations of the space-time. Our works (the present
paper and [33]) show that even in cyclic causal models, it can
be possible to single out a preferred direction (namely, the
direction of signaling) from the operational predictions of the
model while at the same time certifying that the underlying
causal model is cyclic.

The present work focuses on the signaling possibilities
allowed by the causal model, rather than the strength of
signaling or correlations, even though the framework devel-
oped here can in principle model both. In [54] the strength
of correlations was considered as a way to capture proper-
ties such as distance that are associated with an underlying
space-time, with the hope that space-time can be seen as
emergent. In approaches to quantum gravity, such as causal
set theory [55–57], an active line of research is to de-
rive geometric properties of a continuum space-time from
order-theoretic properties of discrete graphs that capture the
causal relations of the space-time. The present work, along
with a related follow-up work [28], suggests a possible
direction of inquiry for connecting the research on non-
classical causal models with such approaches to quantum

gravity, and we leave these interesting directions for future
work.

To summarize, our results highlight the importance of
separating (a) operational and space-time related notions of
causality, (b) correlation, causation, and signaling (by con-
sidering interventions), and (c) distinct notions of causality
within the operational and space-time categories mentioned
in (a).

IX. OPEN QUESTIONS

The work presented here provides a platform for analyzing
a number of problems in quantum foundations and causality
in a different light. We discussed specific interesting and open
questions related to the characterization of causal loops within
our framework in Remark 9. Here we place our work within a
broader context and discuss the associated open questions.

A. Other notions of causality

While this work elucidates the relationships between a
number of different notions of causality, there are many more
that may be considered. For instance, another operational no-
tion of causality is that of process terminality [58], which says
that discarding all the outputs of a causal process is equivalent
to discarding the process. Further, approaches such as the
process matrix framework [31] aim to formulate causality
more generally in the absence of a fixed background space-
time (which we have assumed here). Other setup assumptions
in these approaches mean that, for instance, postquantum
jamming scenarios cannot be modeled.16 Here several con-
ditions such as causal orderedness, causal separability, and
satisfaction of causal inequalities have been proposed, which
serve as causality criteria under different assumptions. The
precise relationships between all these notions of causality,
their operational meaning, and implications for the physics
of information processing remain open. In a related work
involving one of the present authors [28], the present ap-
proach of disentangling operational and space-time notions of
causation and characterizing their compatibility is applied to
operational scenarios described by the process matrix frame-
work [31]. There, further connections between indefinite and
cyclic causation are established in quantum scenarios and a
more general class of space-time embeddings is considered
that allows for spacetime embeddings of quantum systems
where the systems are not nonlocalized to a single space-time
location but may possibly be delocalized over a space-time
region. These results (along with previous works such as
[27]) relating indefinite causation to definite cyclic causation
indicate that cyclic and nonclassical causal models can have
applications also to scenarios where a background space-time
structure is not assumed. Although we do not consider it here,
our framework can also be used to analyze frame-dependent

16The process framework assumes a tensor product structure
between the local operations of various parties, and once communi-
cation between parties is forbidden, the framework can only produce
correlations compatible with standard no-signaling theories and not
the relaxed no-signaling conditions of [30] that permit jamming.
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notions of causality associated with Minkowski space-time
(e.g., whether compatibility and other properties of an embed-
ding can depend on the choice of classical reference frame).17

Another intriguing prospect for future research would be to
consider compatibility between operational causal models and
space-time related information in more exotic regimes where
a global space-time structure may not exist but agents infer
space-time information using their local (possibly quantum)
reference frames [32,59,60].

B. Affects relations and d-separation

We use affects relations (Definition 6), based on the notion
of interventions, to distinguish between correlation and causa-
tion. In acyclic causal structures [1,16] and in classical cyclic
causal structures [24], existing frameworks prescribe how the
postintervention distribution can be calculated from the ob-
served distribution and/or the underlying causal mechanisms.
In nonclassical cyclic causal structures, such a characteriza-
tion is not available. In Sec. IV we used the d-separation
condition (Definition 4) on the observed distribution to ob-
tain a partial characterization which suffices for the current
purpose, but this does not fully specify the postintervention
distribution. In Appendix C we outline a possible method
for obtaining the postintervention distribution given the un-
derlying causal mechanisms. (Although this method may not
always recover the d-separation condition in Definition 4,
this does not impact the results of this paper.) Generaliz-
ing our framework to also include nonclassical cyclic causal
models that do not obey the d-separation condition, by us-
ing the causal mechanisms as primitives, would allow our
results regarding space-time compatibility and affects loops
to be applied to this larger class of models. This would
provide a general framework for causally modeling fine-
tuned and cyclic nonclassical causal models such that any
postintervention scenario can be completely specified by the
original causal model.18 Another observation made in Ap-
pendix C is that the presence of causal loops could allow us
to distinguish between faithful nonclassical explanations and
unfaithful classical explanations (e.g., using nonlocal hidden
variables) of quantum correlations, which cannot be opera-
tionally distinguished otherwise. This suggests that it might
be possible to operationally distinguish hidden variable in-
terpretations of quantum theory such as Bohmian mechanics
from inherently quantum interpretations, in the presence of
causal loops. Formalizing this observation would be another
interesting line of investigation.

17For example, one can consider a different partially ordered set
to represent space-time structure from the perspective of different
frames such that classical frame transformations such as Lorentz
transformations could be viewed as invertible maps between these
partially ordered sets.

18In the current framework, the causal model is defined in terms of
the observed distribution and therefore not all affects relations can
be deduced from the model’s specification. When characterized in-
stead in terms of the causal mechanisms, the affects relations should
become deducible.

C. Causal loops and paradoxes

In this work we have considered space-time to be modeled
by a partial order. The theory of general relativity allows for
the possibility of more exotic space-time structures. These
possibilities led to investigations of closed timelike curves
and there are mathematical models of CTCs that are logically
consistent and do not lead to time travel paradoxes [61–65].
Two inequivalent models have been developed to make sense
of information flow in the presence of CTCs: Deutsch’s CTCs
(DCTCs) [61] and postselected CTCs (PCTCs) [62–65].
Deutsch’s CTCs and PCTCs are known to have different
amounts of computational power [65,66] and to provide dif-
ferent resolutions to the grandfather and unsolved theorem
paradoxes [65]. In our framework, grandfather-type paradoxes
are forbidden by the assumption that a valid joint probability
distribution observed variables exists, which implies that the
underlying causal mechanisms (e.g., functional equations in
the classical case) must be mutually consistent.19

The unproved theorem paradox, on the other hand, is not
ruled out in the current framework and can depend on how
the framework is further instantiated with causal mechanisms.
For example, in classical cyclic causal models, an assumption
regarding the unique solvability of the underlying functional
dependences is often considered. In particular, this could be
seen as the requirement that any information involved in
a loop (such as the unproved theorem) must be fully and
uniquely determined by the mechanisms of the causal model,
thereby eliminating the paradox of a proof that “came from
nowhere.” An analogous condition on the causal model for
ruling out the unproved theorem paradox in the quantum case
is far from clear, since the causal mechanisms in this case
are not deterministic functional equations. These questions
can be explored within a full formalization of our framework
in terms of causal mechanisms, along the lines discussed in
the previous paragraph (and Appendix C). It is interesting to
consider whether there are connections between the CTCs that
can be embedded in Minkowski space-time without superlu-
minal signaling (such as Example 11) and DCTCs or PCTCs,
or which physical principles rule out such CTCs.

D. Causality in time-symmetric formulations of quantum theory

Unitary quantum mechanics is time symmetric, while oper-
ational quantum theory has the possibility of irreversible mea-
surements. There are several proposals for modeling quantum
and more general experiments in a time-symmetric manner
while still making operational predictions and retrodictions
about measurements [67–71]. Predictions and retrodictions
indicate the direction of inference, not necessarily of causa-
tion, and the role of causality (in terms of a causal modeling
paradigm) is not fully understood in these frameworks. A
notable approach for making operational statements in a time-
symmetric setting is the two-time state formalism [67,72,73],

19An example of a paradoxical scenario is a 2-cycle between bi-
nary variables X and Y where the influence X −→ Y defines the
functional dependence Y = X and Y −→ X gives the dependence
X = Y ⊕ 1. These equations are mutually inconsistent and there is
no joint distribution PXY compatible with these dependences.
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which describes measurements on pre- and postselected quan-
tum states, where the former can be thought of as evolving
forward in time and the latter backward in time. It is inter-
esting to consider how this time-symmetric approach can be
modeled in a causal framework.

E. Causal discovery in the presence of fine-tuning

Causal discovery is the problem of inferring a fully or
partially unknown causal structure from observed correla-
tions, possibly combined with additional information about
interventions. Fine-tuning makes this task more challeng-
ing and causal discovery algorithms typically assume that
the underlying causal model is not fine-tuned [1,2], even in
cases where the underlying model is classical and has no
unobserved nodes. Relaxations of this assumption have been
considered where certain forms of fine-tuning (but not all)
have been allowed [74]. Intuitively, use of higher-order affects
relations appears useful for causal discovery in the presence
of fine-tuning, and the examples of Sec. IV C show the use-
fulness of HO affects to distinguish between causal structures
with the same correlations. We believe this deserves future
exploration.

F. Indefinite space-time locations

In the present work we have embedded causal models in a
space-time structure by assigning a single space-time location
to each observed system. More generally, we can have, in both
theory and practice, systems whose space-time locations have
some classical or quantum uncertainty or protocols involving
quantum systems that are delocalized over space and in time
[28,75–78]. It would therefore be of interest to generalize
our methods to allow for such superpositions. In a related
work [28], a method to do this for finite-dimensional quan-
tum systems in a discrete space-time (i.e., a partially ordered
set as considered here) is proposed, which has applications
for physically characterizing so-called indefinite causal order
processes [31].
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APPENDIX A: IDENTIFYING CONDITIONAL
INDEPENDENCES AND AFFECTS RELATIONS:

EXAMPLES

Here we provide examples that better illustrate some of the
definitions and rules of the framework, in particular, how one
can deduce the conditional independences and affects rela-
tions in a given causal model. For this the following lemmas
will be useful; these can be regarded as generalizations of
Corollary 2 and Lemma 2 from the unconditional zeroth order
case to the case of general conditional higher-order affects
relations and are proven in Appendix D 4.

Lemma 12. For any pairwise disjoint subsets X , Y , Z , and
W of the observed nodes S of a causal model, we have

(i) (XZW ⊥d Y )Gdo(XZ ) ⇒ XZ does not affect Y given W
and

(ii) (XZW ⊥d Y )Gdo(XZ ) ⇒ X does not affect Y given
{do(Z ),W }.

Lemma 13. For any pairwise disjoint subsets X , Y , Z , and
W of the observed nodes S of a causal model, we have

(i) (XZW �⊥⊥ Y )Gdo(XZ ) ⇒ XZ affects Y given W and
(ii) (XZW �⊥⊥ Y )Gdo(XZ ) and (ZW ⊥d Y )Gdo(Z ) ⇒ X affects Y

given {do(Z ),W }.
We now summarize how one may use these results to

deduce some of the conditional independences and affects
relations from a given causal model.

(a) Conditional independences. Given a causal graph G
with the set of observed nodes S, some of the conditional
independences satisfied by the joint distribution PS can be
identified using Definition 4, i.e., by listing all the conditional
independences implied by d-separation relations in G. Further
independences may be found if there are dashed arrows ema-
nating from exogenous nodes, since X ��� Y implies X does
not affect Y (by Definition 7), which implies X ⊥⊥ Y if X is
exogenous (cf. Corollary 1). Lemma 1 can also be used to
list further independences not directly implied by d-separation
in G. There may still be more conditional independences in
PS that cannot be listed using the methods mentioned above.
Since we allow for fine-tuning and latent systems, there could
in principle be arbitrarily many independences in P, but those
mentioned above are sufficient for compatibility with the
causal model.

(b) Affects relations. The existence of an affects relation
X affects Y given {do(Z ),W } can be deduced by applying
Lemma 13 (for the zeroth-order case, X affects Y is de-
duced by applying Lemma 2). The nonaffects relation X does
not affect Y given {do(Z ),W } can be deduced by applying
Lemma 12 and also the contrapositives of Lemmas 3–5. For
example, (X ⊥d YW )Gdo(X ) implies that X does not affect Y
given {do(Z ),W } by the second statement of Lemma 3. In
the zeroth-order case, the nonaffects relation X does not af-
fect Y is deduced by applying Corollary 2. The direction
of the lemmas is important to note here; for instance, the
converse of Lemma 2 cannot be used to deduce that X does
not affect Y since this implication does not hold, unless
X is exogenous (cf. nonimplication 2 of Fig. 7 and Corol-
lary 1). Therefore, one can check for nonindependences and
d-separations in the postintervention causal model to identify
affects and nonaffects relations, respectively. One may be
able derive further results of this sort or exploit structural
aspects of particular causal models to derive additional in-
dependences and affects relations. Again, due to fine-tuning
and latent systems, in general, this identification may not be
exhaustive even after this is done. However, in the case of
causal models with no latent nodes (which are, by definition,
classical), it would indeed be exhaustive, as explained in
Remark 3.

In case some or all of the causal mechanisms are also given
in addition to the observed distributions, it may be possible
to identify further independences and affects relations in the
model. We now apply these rules to specific examples where
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FIG. 13. Table of all possible d-separations, conditional independences, and affects relations for jamming, fine-tuned collider, and type 4
affects causal loop examples (Appendixes A 1–A 3), all of which involve the three observed RVs A, B, and C. All affects relations, when they
do exist, are irreducible.

it is possible to deduce all the conditional independences and
affects relations involved; these are tabulated in Fig. 13 for
three of the four of the examples considered here, all of which
correspond to fine-tuned causal models. The fourth example
corresponds to a faithful but cyclic causal model and therefore
the d-separation condition in Definition 4 and zeroth-order
affects relations (given by the causal arrows themselves) com-
pletely characterize the scenario.

1. Jamming [Fig. 9(a)]

In the jamming causal structure G jam of Fig. 9(a) and
Example 7, Definition 4 does not impose any conditional
independences on the observed distribution PABC since � is
unobserved.20 However, from Definition 7 of dashed arrows
we know that B affects neither A nor C individually and we
are given that B affects AC. Using the exogeneity of B (cf.
Corollary 1), this implies the independences A ⊥⊥ B and C ⊥⊥
B and the nonindependence B ⊥⊥ AC in G jam. Now consider
an intervention on A. The postintervention causal structure
G jam

do(A) only has the edges B ��� C and � � C (along with
IA −→ A of course). The d-separation (A ⊥d C)Gjam

do(A)
implies

the independence (A ⊥⊥ C)Gjam
do(A)

(Definition 4) and also that

A does not affect C (Corollary 2). Similarly, we can derive
the relations C does not affect A, A does not affect BC, C
does not affect AB, and AC does not affect B. Combined
with the lack of any zeroth-order affects relations between
any two of the RVs, this implies that there are no affects
relations of order greater than or equal to 1 (by the con-
trapositive of Lemma 4). Further, using Lemma 1 and the
exogeneity of B, we can derive AB does not affect C as

20If � in Fig. 9(a) were observed, A and C would be d sepa-
rated given {B,�} and we would have the conditional independence
PAC|B� = PA|B�PC|B�.

follows. In the causal structure G jam
do(AB), A is d separated from

B and C, while B and C are independent of each other due to
the exogeneity of B and the dashed arrow connecting them.
Using the lemma, this gives (AB ⊥⊥ C)Gjam

do(AB)
, which can be

explicitly written as PGjam
do(AB)

(C|A, B) = PGjam
do(AB)

(C). The right-

hand side can be simplified in the following two steps: first
as PGjam

do(AB)
(C) = PGjam

do(A)
(C), noting that G jam

do(AB) and G jam
do(A) are

effectively the same graph due to the exogeneity of B, and
then the d-separation (A ⊥d C)Gjam

do(A)
implies the independence

PGjam
do(A)

(C|A) = PGjam
do(A)

(C), which along with A does not affect

C (as noted earlier) gives PGjam
do(A)

(C) = Pjam
G (C). Putting this

together, we get PGjam
do(AB)

(C|A, B) = Pjam
G (C), i.e., {A.B} does

not affect C. Similarly, one can obtain BC does not affect A.
All these are summarized in Fig. 13.

2. Fine-tuned collider [Fig. 14(a)]

In the causal structure of Fig. 14(a), the independence
A ⊥⊥ C follows from the d-separation condition (Definition
4), while A ⊥⊥ B and C ⊥⊥ B follow from the dashed arrow
structure. These are the same independences as the case in
the previous example of jamming with unobserved � (where
A ⊥⊥ C was an additional independence in the jamming ex-
ample but follows from d-separation in this case). Thus the
distribution PABC from Example 7 is compatible with both the
jamming [Fig. 9(a)] and the fine-tuned collider [Fig. 14(a)]
causal structures.21 However interventions on the two causal
structures yield different results. We have AC affects B for the
fine-tuned collider (since AC consists of exogenous nodes and
is correlated with B) but not for the jamming case. We also
have A affects BC and C affects AB for the fine-tuned collider

21Note that this is essentially the one-time pad example from
earlier.
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FIG. 14. Some fine-tuned and/or cyclic causal structures: (a) a fine-tuned collider, (b) a type 4 affects causal loop, and (c) a type 1 affects
causal loop.

even though A and C do not individually affect B due to the
dashed arrow structure. This follows from the exogeneity of A
and C and the joint correlations A = B ⊕ C. Further, AB does
not affect C since these sets become d separated upon inter-
vention on AB and by a similar reasoning, BC does not affect
A and B does not affect AC (in contrast with the jamming case
where B affects AC). As for higher-order affects relations, A
affects B given do(C) and C affects B given do(A) are the only
ones, and these follow by applying Lemma 13 to this example.
Again, these conclusions are summarized in Fig. 13.

3. Type 4 affects causal loop [Fig. 14(b)]

Example 11 outlined a cyclic causal model proposed
in [33] for demonstrating the mathematical possibility of
compatibly embedding affects causal loops in Minkowski
space-time. Here we reproduce further details of this model
and discuss its properties it in the context of the more general
framework developed in the present paper. Consider the cyclic
causal structure GACL4 of Fig. 14(b) along with the following
classical causal mechanisms where all four variables are taken
to be binary: A = �, B = A ⊕ C, and C = B ⊕ �, where the
exogenous variable � is uniformly distributed. One can check
that the distribution PABC obtained through these mechanisms
would be the same as that of the jamming as well as the
fine-tuned collider examples above, but the affects relations
differ from those of these examples and instead correspond
to those of Example 11, which is an affects causal loop of
type 4. To obtain these affects relations, first note that in
the causal model of GACL4

do(A) , � is no longer a parent of A,
but using the remaining causal mechanisms B = A ⊕ C and
C = B ⊕ � (which remain the same), we can still obtain
A = �. Therefore, the intervention on A does not change the
observed distribution and A and B continue to be independent
in GACL4 as well as GACL4

do(A) , and in both graphs the marginal
distributions over A, B, and C are uniform, which gives A
does not affect B. On the other hand, B does not affect A can
be established simply from the d-separation (B ⊥d A)GACL4

do(B)
. In

the causal model of GACL4
do(C) , neither B nor � is the parent of

C, but the remaining mechanisms A = � and B = A ⊕ C give
C = B ⊕ �. Again, the observed distribution here is the same
as the preintervention distribution, which gives C does not
affect B. By a similar argument, B does not affect C can also
be established. Further, we have both B affects AC (as in the
jamming case) and AC affects B (as in the fine-tuned collider)
since PGACL4

do (AC)(B|A,C) and PGACL4
do (B)(A,C|B) are determinis-

tic while PGACL4 (B) and PGACL4 (A,C) are uniform. We also have
A affects BC and C affects AB as in the fine-tuned collider,
which can be verified using the causal mechanisms given.22

As in the jamming case, we also get AB does not affect C
and BC does not affect A. The higher-order affects relations
here are identical to the previous example and obtained in a
similar manner; these are given in Fig. 13. Furthermore, even
though this corresponds to an affects causal loop, the existence
of which can be operationally certified, this causal model
admits a nontrivial and compatible embedding in Minkowski
space-time as explained, i.e., it does not lead to superluminal
signaling [33] (see also Example 11).

4. Type 1 affects causal loop [Fig. 14(c)]

Consider a faithful causal model associated with the cyclic
causal structure of Fig. 14(c). Here all four nodes are observed
and hence classical. The faithfulness implies that the only
conditional independences are those implied by d-separation.
Since B ⊥d D|AC and A ⊥d C|BD are the only d-separations,
B ⊥⊥ D|AC and A ⊥⊥ C|BD are the only conditional indepen-
dences. Further, the faithfulness also implies that every causal
arrow is associated with an affects relation, which is also
reflected in the fact that all arrows are solid arrows, and we
have A affects B, B affects C, C affects D, and D affects A,
which form an affects causal loop of type 1 (there is an affects
relation is both directions between every pair of RVs). One
can easily check that the only irreducible affects relations are
the zeroth-order affects relations between single RVs, as one
would expect for faithful causal models. To further illustrate
the kind of causal loops allowed in this framework, consider
the pairwise correlations A = B, B = C, C = D, and D �= A.
Since this system of equations has no solutions, there exists
no joint distribution PABCD from which the pairwise marginals
producing these correlations can be obtained. Such examples
correspond to grandfather-type paradoxes and cannot be mod-
eled in frameworks that demand the existence of a valid joint
probability distribution over all variables involved in a causal

22Note that in the absence of the causal mechanisms, many of the
affects or nonaffects relations may not be identifiable. For example,
to deduce that AB does not affect C in the jamming case, we used
Lemma 1 along with the fact that B was exogenous in G jam. However,
the same argument cannot be applied here since B is not exogenous
in GACL4.

032204-33



V. VILASINI AND ROGER COLBECK PHYSICAL REVIEW A 106, 032204 (2022)

loop. On the other hand, examples of solid arrow directed
cycles where the functional dependences of the loop variables
admit solutions such as A = B = C = D (with any probabil-
ity) or the examples considered in [45] for other cyclic causal
structures can be modeled in our framework. Additionally,
there can also be type 1 and type 2 affects causal loops that
do not involve any solid arrows, for example, through a con-
catenation of structures such as that of Fig. 9(b). We discuss
causal loops in more detail in Appendix C, also in the case of
quantum causal structures.

APPENDIX B: FURTHER CLASSES OF AFFECTS CAUSAL
LOOPS AND THEIR SPACE-TIME EMBEDDINGS

As motivated in the main text (see the paragraph after Def-
inition 25), we can consider further classes of affects causal
loops that are distinct from ACL1–ACL6. The intuition is
that the chain of irreducible affects relations involved in these
previous definitions is such that for any two adjacent affects
relations in the chain the second set of the first is contained in
the first set of the second. Relaxing this containment condition
can lead to a violation of Theorem 3, as also explained in the
main text. So we can consider relaxing this condition and only
requiring a nontrivial intersection between the sets (which
would make the chain incomplete), as long as we include
additional conditions on the affects relations that will again
guarantee cyclicity of the causal structure. Here we propose
four more classes of affects causal loops ACL7–ACL10 based
on this idea and illustrate them with examples which also
show that there can in general be more classes of affects causal
loops even beyond these.

Definition 28 [affects causal loops, type 7 (ACL7)]. A set
of affects relations A is said to contain a type 7 affects causal
loop if the following conditions are satisfied.

(i) There exist disjoint sets of RVs S1 and S2 such that S1

affects S2 belongs to A and is irreducible.
(ii) There exists a chain of irreducible affects relations

(possibly incomplete) Cs2 from some subset s2 ⊆ S2 to S1, i.e.,
there exists sets of RVs s2 ⊆ S′

2, S3, S′
3, . . . Sn, S′

n and s1 ⊆ S1

such that {S′
2 affects S3, S′

3 affects S4, . . ., S′
n−1 affects Sn, S′

n
affects s1} ⊆ A , where all the affects relations are irreducible,
every pair of sets connected by an affects relation is disjoint,
Si

⋂
S′

i �= ∅ for all i ∈ {3, . . . , n}, and S2
⋂

S′
2 = s2. Each pair

(Si, S′
i ) such that Si �⊆ S′

i for i ∈ {2, . . . , n} is called an incom-
plete node of the affects chain Cs2 ; a complete affects chain
has no incomplete nodes.

(iii) For each affects chain Cs2 that connects the subset s2

of S2 back to S1 as above and each incomplete node (Si, S′
i ) in

Cs2 (for i ∈ {2, . . . , n}), there exists a complete affects chain
DC

s2
in A from Si\(Si

⋂
S′

i ) to Si.
Definition 29 [affects causal loops, type 8 (ACL8)]. A set

of affects relations A is said to contain a type 8 affects causal
loop if the following conditions are satisfied.

(i) There exist disjoint sets of RVs S1 and S2 such that S1

affects S2 belongs to A and is irreducible.
(ii) For each element e2 ∈ S2 there exists a chain of

irreducible affects relations (possibly incomplete) Ce2 that
connects it back to S1, i.e., for each e2 there exist sets of RVs
e2 ∈ S′

2, S3, S′
3, . . . Sn S′

n and s1 ⊆ S1 such that {S′
2 affects

S3, S′
3 affects S4, . . ., S′

n−1 affects Sn, S′
n affects s1} ⊆ A ,

where all the affects relations are irreducible, every pair of
sets connected by an affects relation is disjoint, Si

⋂
S′

i �= ∅
for all i ∈ {3, . . . , n}, and S2

⋂
S′

2 = e2.
(iii) For each element e2 ∈ S2, each affects chain Ce2 that

connects it back to S1 as above, and each incomplete node
(Si, S′

i ) in Ce2 (for i ∈ {2, . . . , n}), there exists a complete
affects chain DC

e2
in A from Si\(Si

⋂
S′

i ) to Si.
The following theorem (proven in Appendix D 5) general-

izes Theorem 3 to ACL7 and ACL8 and justifies categorizing
them as affects causal loops.

Theorem 4. Any set of affects relations A containing an
affects causal loops of type 7 or 8 can only arise from a causal
model over a cyclic causal structure.

More generally, for a given affects chain Cs2 in Definition
28 and an incomplete node (Si, S′

i ) in Cs2 , instead of a sin-
gle complete affects chain DC

s2
we could consider a set of

incomplete affects chains that serve the same purpose and
for which an analogous theorem holds. For example, for each
incomplete node (Si, S′

i ) of Cs2 there can exist an incomplete
affects chain DC

s2
in A from Si\(Si

⋂
S′

i ) to Si such that for
each incomplete node (Rj, R′

j ) of DC
s2

there exists another
complete affects chain in A from Rj\(Rj

⋂
R′

j ) to Rj . This
could go on recursively for arbitrarily many chains depend-
ing on the number of RVs appearing in A . This recursive
definition defines yet another class ACL9, and an analogous
recursive version of ACL8 would define another class ACL10.
Theorem 4 for ACL9 and ACL10 follows through similar
arguments, so we note this point without proof. We illustrate
these classes with some examples, along with an example
to show that these (ACL1–ACL10) do not cover all possible
affects causal loops.

Example 12 (type 7 affects causal loop). Consider the set
of irreducible affects relations A = {X affects Y , Y affects
AB, A affects X , C affects AB, B affects C}. One can check
that A does not contain affects causal loops of types 1–6,
since no affects relation in A is such that every element of
the second set has a complete affects chain leading it back
to the first set. It however contains at least one type 7 affects
loop. For the affects relation Y affects AB, we have the in-
complete chain CA = {A affects X , X affects Y } that connects
A to Y with the incomplete node (S2 = AB, S′

2 = A). Then
S2\(S2

⋂
S′

2) = {B} and we have the complete affects chain
DC

A = {B affects C, C affects AB} that connects S2\(S2
⋂

S′
2)

to S2 as required.
Example 13 (type 9 affects causal loop). Consider the set

of irreducible affects relations A = {X affects Y , Y affects
AB, A affects X , C affects AB, B affects CD, D affects E , E af-
fects CD}. This set is similar to the previous example, but does
not contain a type 7 causal loop (or ACLs of any lower types).
It does contain a type 9. For the affects relation Y affects AB,
there is an incomplete chain CA = {A affects X , X affects Y }
that connects A to Y as before. However, we have no complete
chains from S2\(S2

⋂
S′

2) = {B} to S2 = AB as before, only
the incomplete chain DC

A = {B affects CD, C affects AB}. The
incomplete node (Rj, R′

j ) of DC
A is (Rj = CD, R′

j = C) and
we have a complete affects chain {D affects E , E affects CD}
from Rj\(Rj

⋂
R′

j ) = {D} to Rj .
Example 14 (affects causal loop not covered by types 1–

10). Consider the set of irreducible affects relations A = {X
affects Y , Y affects AB, A affects X , C affects AB, B affects

032204-34



GENERAL FRAMEWORK FOR CYCLIC AND FINE-TUNED … PHYSICAL REVIEW A 106, 032204 (2022)

CD, BD affects AC}. With some effort, one can convince
oneself that A does not contain affects causal loops of types
1–10. It nevertheless implies cyclicity, as follows. Applying
Corollary 3, we have that X is a cause of Y , Y is a cause of
either A or B, and A is a cause of X . If Y is a cause of A, we
already have a directed cycle, so consider the case where Y is
a cause of B. Using the remaining affects relations, we have
C is a cause of either A or B and B is a cause of either C or
D. Irrespective of whether C is a cause of either A or B, if B
is a cause of C, we would have a directed cycle, so we must
take B to be a cause of D to avoid this. The last affects relation
implies that B is a cause of either A or C. Irrespective of the
choice here and the choice of whether C is a cause of A or
of B, we can verify that we will always have a directed cycle.
Hence this set of affects relations is an affects causal loop that
is not of a previously defined type.

Consider now the space-time embedding for the affects
relations of Example 12 in Minkowski space-time. Imposing
compat (Definition 16) on the affects relations A = {X af-
fects Y , Y affects AB, A affects X , C affects AB, B affects C}
implies that Y must contain the joint inclusive future of A
and B but A is in the past of X , which is in the past of Y .
The only way this can be satisfied is if B is in the future of A
such that the joint inclusive future of A and B coincides with
the inclusive future of B. The last two affects relations then
imply that B and C must be embedded at the same location
and since we have B affects C, this embedding is trivial. This
implies that there is no nontrivial and compatible embedding
of these affects relations in Minkowski space-time. In other
words, the absence of affects causal loops of types 1–6 does
not guarantee the existence of a nontrivial and compatible
space-time embedding. The presence of type 3 and above
ACLs does not rule out the existence of such an embedding
as we have seen in Example 11, in contrast to the case of
type 1 and type 2 ACLs (Lemma 10). This suggests that for
each individual type i of affects causal loops other than types 1
and 2, the existence of a nontrivial and compatible space-time
embedding is neither necessary nor sufficient for there to be
no affects causal loops of that type. By Lemma 11, for type
3, the existence of a nondegenerate and compatible space-
time embedding is sufficient but not necessary to rule out
ACL3.

APPENDIX C: DO-CONDITIONALS FROM CAUSAL
MECHANISMS IN QUANTUM CYCLIC CAUSAL MODELS

In Sec. IV we outlined how interventions and do-
conditionals (i.e., the post intervention distribution) are
defined in our framework, and Theorem 1 provides some con-
ditions under which the post- and preintervention distributions
can be related. Ideally though, one would expect that it should
be possible to fully specify the postintervention distribution if
we are given all the underlying causal mechanisms involved
in the causal structure. For example, in the classical case,
the structural equations of the causal model [1] provide these
causal mechanisms. Here for each node X in the causal struc-
ture, the dependence of X on its parents par(X ) corresponds to
a stochastic map, which can be written in terms of a determin-
istic function X = fX (par(X ), EX ) by including an additional
exogenous random variable EX for each node X . This is

called a structural equation. If the structural equations for all
the nodes and the distributions of the parentless nodes are
known, then the complete postintervention distribution can be
calculated. This has been shown to be the case for classical
cyclic causal models in [24]. An intervention do(x) on X
corresponds to updating the structural equation for X to X = x
while keeping the remaining structural equations the same.
Another important result for the classical case derived in [24]
is that the d-separation property or the global directed Markov
condition of Definition 4 is recovered whenever all the ran-
dom variables are discrete and the structural equations of the
causal model satisfy a property known as ancestrally unique
solvability (auSEP). Roughly, this property demands that the
structural equation for each node must admit a unique solution
given the values of the node’s ancestors. We need not define
this concept formally for our purposes here.

Ideally, we would like to extend these ideas to quantum
and postquantum cyclic causal structures, where the causal
mechanisms involve measurements and transformations on
nonclassical systems, which cannot be expressed using de-
terministic structural equations. In the nonclassical case, it
is unclear what conditions allow for the d-separation con-
dition to be recovered. Even to make this question precise
in the nonclassical case, one would need to specify the ana-
log of structural equations for such causal models, which
is an open problem. Here we present a possible method
for defining general cyclic causal models from given (pos-
sibly non-classical) causal mechanisms and for calculating
observed and interventional distributions in the model, with-
out assuming d-separation. We explain the method using the
following example before sketching how it might generalize
to a larger class of causal models.

Example 15 (quantum cyclic causal model). Consider the
cyclic variation of the bipartite Bell causal structure illustrated
in Fig. 15(a). Let the common cause � correspond to the Bell
state |ψ�〉 = 1√

2
(|00〉 + |11〉). Suppose that A and B are the

settings of local measurements on the two subsystems such
that when these variables take the value 0, it denotes a mea-
surement in the {|0〉, |1〉} basis on the associated subsystem,
and the value 1 denotes a measurement in the {|+〉, |−〉} basis.
Here X and Y are the binary outcomes of these measurements
where |0〉 or |+〉 corresponds to outcome 0 and |1〉 or |−〉
corresponds to 1. The additional constraints coming from the
causal loop are that B = X and A = Y . This specifies all
the causal mechanisms. How do we calculate the observed
distribution PXYAB?

1. Method based on postselection

One method is to first calculate the observed correlations
for the specified state and measurements in the original Bell
scenario [Fig. 1(b)] and then postselect on the observations
that obey the loop conditions B = X and A = Y . More for-
mally, this corresponds to transforming the original cyclic
causal structure of Fig. 15(a) to the acyclic causal structure
of Fig. 15(b) by cutting off the edges A � X and B � Y
and replacing them with the edges A∗ � X and B∗ � Y by
introducing two exogenous nodes A∗ and B∗. Then the in-
puts A∗ and B∗ and outputs X and Y along with the shared
system � define a Bell scenario, while the variables A = Y

032204-35



V. VILASINI AND ROGER COLBECK PHYSICAL REVIEW A 106, 032204 (2022)

A

X Y

B

Λ

A

A∗

X Y

B

B∗Λ

A

X Y

B

Λ

(a) (b) (c)

(d)

FIG. 15. Cyclic quantum causal model. (a) Cyclic variation of the bipartite Bell causal structure [Fig. 1(b)]. (b) Method to calculate the
observed distribution of (a) when � is nonclassical involves this intermediate causal structure. This is obtained from (a) by copying the nodes
A and B and removing the directed cycle as shown. This gives an acyclic causal structure for which the distribution PXYABA∗B∗ can be calculated
using known methods. Then postselecting on A = A∗ and B = B∗ gives the distribution PXYAB for the original cyclic causal structure of (a).
(c) Classical causal fine-tuned structure that can generate all nonclassical correlations of the bipartite Bell causal structure. Creating a causal
loop in this case by adding the arrows X � B and Y � A does not lead to the same predictions as (a), which corresponds to adding these
arrows to the original Bell causal structure. This method is explained in the text. (d) The table provides the observed distribution for Example
10 calculated using the proposed method. The only values of A, B, X , and Y that are compatible with the loop conditions A = Y and B = X
are those listed here, and the fifth column lists the measurements and outcomes that these values correspond to, according to Example 10.
Here PQM

XYAB denotes the probabilities of the measurements and outcomes listed in the fifth column calculated using the Born rule. These values
are subnormalized, and upon renormalization, the observed distribution PXYAB for the cyclic causal structure in (a) is obtained. Note that the
d-separation condition in Definition 4 is satisfied in this case.

and B = X can simply be seen as local postprocessings of
the outcomes. We can then calculate the observed probabil-
ities for this acyclic causal structure using the Born rule and
postselect on A∗ = A and B∗ = B, which effectively achieves
the postselection A = Y and B = X in the original Bell sce-
nario [Fig. 1(b)]. This distribution needs to be renormalized
to obtain the observed distribution PXYAB. This is calculated
in Fig. 15 and can be used to find all the affects relations. An
intervention on A would cut off the arrow from Y to A. This
means A does not affect X since A is effectively exogenous in
the postintervention causal structure and will be uncorrelated
with X since � is the maximally entangled state. Similarly,
B does not affect Y . However, AB affects XY since a joint
intervention on A and B takes us back to the original Bell sce-
nario in which these sets are correlated, and correlation in the
postintervention causal structure implies an affects relation
(cf. Lemma 2) and it can be checked that this affects relation

is irreducible. We also have X affects B and Y affects A due to
the loop conditions A = Y and B = X . In addition, naturally,
also XY affects AB, which is also irreducible. With a bit more
effort, one can also check that we have A affects Y and B
affects X . Therefore, we have two type 1 affects causal loops
(Definition 20) {A affects Y, Y affects A}, and similarly for B
and X . We also have a type 4 affects causal loop (Definition
23) formed by the irreducible relations {AB affects XY , XY af-
fects AB}. In this example, Gdo(A,B) corresponds to a quantum
causal structure (the Bell scenario) while Gdo(X,Y ) is a simple
classical causal structure. Then the (observed) arrows � of
G can be classified into dashed and solid arrows as A ��� X ,
B ��� Y , X −→ B, and Y −→ A. The postintervention distri-
bution is fully specified here because all interventions (except
that on � alone) are associated with acyclic postintervention
graphs and for interventions on the exogenous �, the post-
and preintervention distributions coincide.
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2. Applying the method to fine-tuned explanations
of nonclassical correlations

It is known that certain nonclassical correlations arising
in the bipartite Bell causal structure cannot be obtained in
the same causal structure if the common cause � is classi-
cal. However, these correlations can be easily generated in
the classical fine-tuned causal structure of Fig. 15(c), which
differs from the original causal structure by the inclusion of
fine-tuned causal influences from each party’s input to the
other party’s output. We now explain how this is achieved
and then apply the postselection method explained above to
create a causal loop in Fig. 15(c) by adding X −→ B and
Y −→ A. This will demonstrate that, even though the same
nonclassical correlations and affects relations can be obtained
in the original Bell causal structure and its fine-tuned classi-
cal counterpart [Fig. 15(c)], the two causal structures behave
differently in the presence of causal loops.

First consider the Popescu-Rohrlich (PR) box, which is
one of the maximally nonclassical correlations of the Bell
causal structure. It is defined by the condition X ⊕ Y = A · B,
where all the variables are binary. This is easily generated in
the classical causal structure of Fig. 15(c) by the structural
equations � = E , Y = E , and X = E ⊕ A · B (where E is
binary and uniformly distributed). Other nonclassical corre-
lations can be obtained by adding some noise to this PR box
example. Let � = (E , F ) correspond to two variables E and
F , both binary and the former distributed uniformly. Then the
structural equations Y = E and X = E ⊕ F ⊕ A · B for differ-
ent distributions over the exogenous variable F correspond to
the PR box mixed with different levels of noise23

X = A · B ⊕ E ⊕ F,

Y = E . (C1)

Therefore, the causal mechanisms that allow us to produce
nonclassical correlations PXYAB in the acyclic causal structure
[Fig. 15(c)] are the functional dependences (C1) along with
a specification of the distributions over the exogenous vari-
ables E and F that constitute �. Here E is uniform while F
can vary depending on the correlation to be generated. We
now construct the causal loop by including the additional
arrows X � B and Y � A and by effectively postselecting
on the loop condition A = Y and B = X . These, along with
the causal mechanisms (C1) of the acyclic case, define the
mechanisms for the cyclic causal structure. We will now see
that these causal mechanisms are incompatible with each
other. We have Y = E , X = E ⊕ F ⊕ A · B, A = Y , and B =
X , which gives X = E · X ⊕ E ⊕ F and Y = E . Therefore,
for (E , F ) = (0, 0) we have (X,Y ) = (0, 0) and for (E , F ) =
(0, 1) we have (X,Y ) = (1, 0). However, for (E , F ) = (1, 0)
we get X = X ⊕ 1, which does not have a solution. For
(E , F ) = (1, 1) we get X = X , which is not a unique solution.
Therefore, if we demand unique solvability, we must require
E = 0 deterministically, which contradicts the initial assump-

23Note that the model can be symmetrized by including an ad-
ditional, uniformly distributed binary variable G in the description
of � = (E , F, G) and using the structural equations X = E ⊕ (G ⊕
1)(A · B ⊕ F ) and Y = E ⊕ G(A · B ⊕ F ).

tion that E is uniform. Even if we do not require uniqueness,
we cannot have (E , F ) = (1, 0), and forbidding this would
make E and F correlated and nonuniform.

Therefore, in the classical fine-tuned explanation of the
Bell correlations, adding the loop is not consistent with the
causal mechanisms that generate the nonclassical correlations
in the absence of the loop; in particular, they are in conflict
with the preparation of the exogenous variable �. If we have
a consistent loop, then intervention on A and B will no longer
recover the original nonclassical correlations. This is in con-
trast to the faithful case analyzed in Fig. 15 (and explained
previously in the text), when do(A, B) returns the nonclassical
correlations of the Bell scenario. This suggests that certain
(nonlocal) hidden variable explanations for quantum correla-
tions (in a Bell experiment) can in principle be distinguished
from the explanation provided by standard quantum mechan-
ics in the presence of causal loops. We have only shown this
for a particular set of functions or causal mechanisms for
generating the former and it would be interesting to consider
if this generalizes in particular to causal mechanisms provided
by Bohmian mechanisms [37], a nonlocal hidden variable
theory.

3. Generalizing to other causal structures

The idea behind the postselection method employed for
Example 15 above can in principle be generalized to other
nonclassical cyclic causal structures where every directed cy-
cle includes at least one edge W � Z connecting classical
nodes W and Z . The intuition is that cutting off such an edge
in every directed cycle and replacing it with an edge W ∗ � Z ,
by introducing an additional exogenous variable W ∗, would
result in a directed acyclic graph (DAG). One can then apply
the generalized causal model framework of [16] to obtain
the observed distribution in this DAG and then postselect on
W = W ∗ for all the edges that were cut off. Then a way to
recover the d-separation condition (using the result of [24])
would be to check whether these exists a classical causal
model for the same cyclic causal structure that produces iden-
tical observed correlations and satisfies the auSEP property.
Note that this classical causal model need not yield the same
postintervention distributions. In the example of Fig. 15(a),
an intervention on A and B gives the Bell scenario, which
as we know produces nonclassical correlations that cannot
be obtained in the corresponding classical causal model [10].
Finally, it would be interesting to compare this method with
the framework of postselected closed timelike curves [65].

Remark 10. We note that assuming the d-separation condi-
tion of Definition 4 as a primitive property of the framework
rules out certain cyclic causal structures from being described
in our current framework. In the classical case, these are
precisely those cyclic causal models that do not satisfy auSEP
or those involving continuous random variables (due to the
result of [24]). An example of such a causal model is given
in [79], and [24] proposes a generalization of d-separation
called σ separation through which a generalized global di-
rected Markov condition is derived that applies to classical
causal models involving continuous variables and/or do not
satisfy auSEP. This reduces to d-separation in the acyclic case.
Therefore, one option would be to replace d-separation with
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σ separation in Definition 4 to generalize our framework for
cyclic causal models. Doing so would not affect the results
of the main paper, but would only enlarge the class of causal
models to which they can be applied.

APPENDIX D: PROOFS OF ALL RESULTS

1. Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. The conditional independence
S1 ⊥⊥ S2|S3 stands for PS1S2|S3 = PS1|S3 PS2|S3 , which implies

PS1|S2S3 = PS1|S3 . (D1)

The three d-separation relations S ⊥d Si for i ∈ {1, 2, 3} im-
ply that S is d separated from every subset of the union S1S2S3.
This implies the following independences by Definition 4
of compatibility of the distribution P with the causal model
represented by G:

PS|S′ = PS ∀S′ ⊆ S1S2S3. (D2)

Now consider the conditional distribution PS2|SS1S3 . We have

PS2|SS1S3 = PS2SS1S3

PSS1S3

= PS3 PS2|S3 PS1|S2S3 PS|S1S2S3

PSS1S3

= PS3 PS2|S3 PS1|S3 PS

PSPS1S3

= PS2|S3 , (D3)

where we have used Eqs. (D1) and (D2) in the third line,
noting that PS|S1S3 = PS ⇒ PSS1S3 = PSPS1S3 . Equation (D3)
is equivalent to PSS1S2|S3 = PSS1|S3 PS2|S3 , which denotes the
conditional independence SS1 ⊥⊥ S2|S3. The conditional inde-
pendence S1 ⊥⊥ SS2|S3 can be derived analogously due to the
symmetry between S1 and S2.

Finally, we have

PS2|SS3 = PS2SS3

PSS3

= PS3 PS2|S3 PS|S2S3

PSPS3

= PS2|S3 , (D4)

and similarly PS1|SS3 = PS1|S3 . Together with Eq. (D3), this
implies PS2|SS1S3 = PS2|SS3 . This is equivalent to PS1S2|SS3 =
PS1|SS3 PS2|SS3 , which denotes the final conditional indepen-
dence S1 ⊥⊥ S2|SS3. �

Proof of Theorem 1. For rule 1 we first note that the
graph Gdo(X ) differs from GX only by the inclusion of the
additional nodes IXi and corresponding edge IXi � Xi for each
Xi ∈ X . Therefore, the d-separation relation (Y ⊥d Z|XW )GX

for the latter implies the same relation (Y ⊥d Z|XW )Gdo(X ) for
the former. Using the compatibility condition of Definition
4 for the graph Gdo(X ), this implies the conditional indepen-
dence of Y and Z given XW for the distribution PGdo(X ) , i.e.,
PGdo(X ) (y, z|x,w) = PGdo(X ) (y|x,w)PGdo(X ) (z|x,w). This condi-
tional independence is equivalently expressed by the required
equation (5).

For rule 2, GX ,Z is the graph where all incoming arrows to X
and outgoing arrows from Z are removed in G. Hence, the d-
separation condition (Y ⊥d Z|XW )GX ,Z

implies that the only
paths between Y and Z in the graph GX that are not blocked
by X and W are paths involving an outgoing arrow from Z .
These are precisely the paths that get removed in going from
GX to GX ,Z , resulting in the required d-separation there. The
same statement holds for the graph Gdo(X ) (by the argument
used in the proof of rule 1) and also for the graph Gdo(X ),IZ ,

which corresponds to adding the nodes IZi and edges IZi � Zi

to Gdo(X ) for each Zi ∈ Z . The latter holds true since the ad-
dition of the IZi nodes and IZi � Zi edges cannot create any
additional paths between Z and Y that are left unblocked by
X and W . This implies that the only paths between Y and the
set IZ := {IZi}i not blocked by X and W in Gdo(X ),IZ are paths
from IZ going through Z and involving an outgoing arrow
from Z , i.e., paths involving the subgraph IZ � Z � · · · . All
these paths would get blocked when conditioning additionally
on Z . This gives (Y ⊥d IZ |XW Z )Gdo(X ),IZ

, which through the
compatibility condition (Definition 4) implies the conditional
independence (Y ⊥⊥ IZ |XW Z )Gdo(X ),IZ

, equivalently expressed
as

PGdo(X ),IZ
(y|x,w, z, IZ = idle)

= PGdo(X ),IZ
(y|x,w, z, IZ = do(z)) ∀y, x,w, z. (D5)

Using Eqs. (4a) and (4b), we have PGdo(X ),IZ
(y|x,w, z, IZ =

idle) = PGdo(X ) (y|x,w, z) and PGdo(X ),IZ
(y|x,w, z, IZ = do(z)) =

PGdo(XZ ) (y|x,w, z), respectively, for all y, x,w, z. Along with
Eq. (D5), this gives the required equation (6). In other words,
once X , W , and Z are given, Y does not depend on whether
the given value z of Z was obtained through an intervention
[IZ = do(z)] or passive observation (i.e., where IZi = idle for
all i, which is the causal model where no interventions are
made on elements of Z).

For rule 3, consider the graph Gdo(X )IZ , which is the postin-
tervention graph with respect to the nodes X augmented
with IZi � Zi for all Zi ∈ Z . In this graph, suppose we had
the d-separation relation (Y ⊥d IZ |XW )Gdo(X )IZ

. By Defini-
tion 4, this would result in the conditional independence
(Y ⊥⊥ IZ |XW )Gdo(X )IZ

, which can be expressed as

PGdo(X )IZ
(Y |W, X, IZ = idle)

= PGdo(X )IZ
(Y |W, X, IZ = do(z)) ∀z.

Using the defining rules (4a) and (4b) then gives
PGdo(X )IZ

(Y |W, X, IZ = idle) = PGdo(X ) (Y |W, X ) and PGdo(X )IZ

(Y |W, X, IZ = do(z)) = PGdo(XZ ) (Y |W, X, Z = z) ∀z and
consequently PGdo(XZ ) (Y |W, X, Z ) = PGdo(X ) (Y |W, X ), which
is the required equation (7). Therefore, showing that the
d-separation condition (Y ⊥d Z|XW )GX ,Z (W )

implies the
d-separation relation (Y ⊥d IZ |XW )Gdo(X )IZ

would complete
the proof. This is shown by contradiction. Suppose that
(Y ⊥d Z|XW )GX ,Z (W )

and (Y �⊥d IZ |XW )Gdo(X )IZ
. Then there

must exist a path from a member IZi of IZ to a member
Yj of Y in Gdo(X )IZ that is unblocked by X and W . There
are two possibilities for such a path: Either it contains
the subgraph IZi � Zi � · · ·Yj or it contains the subgraph
IZi � Zi

�· · ·Yj . Referring to these possibilities as cases 1
and 2 respectively, let P be the shortest such path. We will
show that a contraction arises in each case.

Case 1. Consider the first case where P contains the sub-
graph IZi � Zi � · · · Yj . Note (Y �⊥d IZ |XW )Gdo(X )IZ

(which
we have assumed) implies (Y �⊥d Zi|XW )Gdo(X ) . Along with
the assumption that (Y ⊥d Zi|XW )GX ,Z (W )

, this implies that
there exists a path from Zi to Y in Gdo(X ) unblocked by X
and W that passes through some member Zk of Z (W ) which
would blocked when the incoming arrows to Zk are removed.
This leads to the following subcases where the path from
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Zi to Yj in Gdo(X ) contains the following subgraphs: case 1a,
Zi � · · · � Zk

�· · ·Yj ; case 1b, Zi � · · · �Zk

�· · ·Yj ; or
case 1c, Zi � · · · � Zk � · · ·Yj .

Each of these cases is not possible for the following rea-
sons. In case 1a, some descendant of Zk must be in W for
the path to be unblocked in Gdo(X ), but by definition Z (W )
(which contains Zk) is the set of all nodes in Z that do not
have descendants in W . In case 1b, the path between Zi and
Zk must contain a collider. For this path to be unblocked by X
and W in Gdo(X ) the collider node must have a descendant in
W , but the other requirement that this path must be blocked in
GX ,Z (W ) implies that the same collider node must be a member
of Z (W ), which by definition does not have any descendants
in W , yielding a contradiction. In case 1c, there is either a
directed path from Zk ∈ Z to Yj ∈ Y in Gdo(X ) or a collider in
the path between Zk and Yj . The latter is ruled out by the same
argument used in case 1b. If there is a directed path from Zk to
Yj , then there is a directed path from IZk to Yj in Gdo(X )IZ , i.e.,
there is a path from a member of Z to Y that is unblocked by
X and W in Gdo(X )IZ and that is shorter than the shortest path
P , which is not possible.

Finally, consider case 2 where the path P contains
the subgraph IZi � Zi

�· · ·Yj . The initial assumption that
(Y �⊥d IZ |XW )Gdo(X )IZ

implies that the collider node Zi must
have descendants in the conditioning set W , i.e., Zi �∈
Z (W ). However, in this case we will violate the assumption
that (Y ⊥d Z|XW )GX ,Z (W )

. On the other hand, to satisfy this
d-separation, we would require Zi ∈ Z (W ), but this would vi-
olate (Y �⊥d IZ |XW )Gdo(X )IZ

. Hence we have shown that (Y ⊥d

Z|XW )GX ,Z (W )
and (Y �⊥d IZ |XW )Gdo(X )IZ

can never be simulta-
neously satisfied and hence that (Y ⊥d Z|XW )GX ,Z (W )

implies
(Y �⊥d IZ |XW )Gdo(X )IZ

, which in turn implies the required
Equation (7). �

2. Proofs of Lemmas 3–8 and Corollary 3

Proof of Lemma 3. (i) We prove this by contradiction. The
relation X is not a cause of Y is equivalent to the absence of
any directed paths from X to Y in G, i.e., (X ⊥d Y )Gdo(X ) and
consequently (X ⊥d Y )Gdo(XZ ) , for any subset Z of observed
nodes, pairwise disjoint to X and Y . Since Z is effectively ex-
ogenous in Gdo(XZ ), (X ⊥d Y )Gdo(XZ ) implies (X ⊥d Y |Z )Gdo(XZ ) .
Applying rule 3 of Theorem 1 (noting the relation between
GZ̄X̄ and Gdo(XZ )) to the latter implies that PGdo(XZ ) (Y |X, Z ) =
PGdo(Z ) (Y |Z ), which is equivalent to X does not affect Y given
do(Z ).

(ii) This follows from the first part of Lemma 8 (proven
later in this Appendix) and the first part of this lemma. By
Lemma 8, X affects Y given {do(Z ),W } implies X affects YW
given do(Z ), which in turn implies that X must be a cause of
either Y or W , by the first part, proven above. �

Proof of Lemma 4. To establish the lemma, we show that
it is not possible to have Z does not affect Y given W and
XZ does not affect Y given W whenever X affects Y given
{do(Z ),W }. Writing out these three conditions, we have

PGdo(Z ) (Y |Z,W ) = PG (Y |W ), (D6a)

PGdo(XZ ) (Y |X, Z,W ) = PG (Y |W ), (D6b)

PGdo(XZ ) (Y |X, Z,W ) �= PGdo(Z ) (Y |Z,W ). (D6c)

Equations (D6a) and (D6b) imply PGdo(XZ ) (Y |X, Z,W ) =
PGdo(Z ) (Y |Z,W ), in contradiction with Eq. (D6c). �

Proof of Lemma 5. By Lemma 4, if X affects Y given
{do(Z ),W } then there are only three possibilities: (i) Z affects
Y given W and XZ does not affect Y given W , (ii) Z does
not affect Y given W and XZ affects Y given W , and (iii) Z
affects Y given W and XZ affects Y given W , i.e., the only
case where the required conclusion does not follow is (i).
Then the proof will be complete if we show that whenever
X consists only of exogenous nodes, the undesired case does
not arise. We show this by establishing that for exogenous
X , Z affects Y given W implies XZ affects Y given W .
Suppose by contradiction that XZ does not affect Y given
W , i.e., PGdo(XZ ) (Y |X, Z,W ) = PG (Y |W ). By the exogeneity
of X , this becomes PGdo(Z ) (Y |X, Z,W ) = PG (Y |W ) or equiv-
alently PGdo(Z ) (Y, X, Z,W ) = PG (Y |W )PGdo(Z ) (X, Z,W ). Sum-
ming over values of X and rearranging gives PGdo(Z ) (Y |Z,W ) =
PG (Y |W ), which is equivalent to Z does not affect Y given W .
Therefore, Z affects Y given W implies XZ affects Y given W
whenever X is exogenous. �

Proof of Lemma 6. By definition, if X affects Y given
{do(Z ),W } is reducible, then there exists a proper subset sX

of X such that sX does not affect Y given {do(Zs̃X ),W }. We
now show that for every such sX , its complement s̃X := X\sX

is such that s̃X affects Y given {do(Z ),W }. We show this
by contradiction. Assume that s̃X does not affect Y given
{do(Z ),W } while X affects Y given {do(Z ),W } and sX does
not affect Y given {do(Zs̃X ),W }. Explicitly, these correspond
to the following conditions, noting that sX s̃X = X :

PGdo(s̃X Z ) (Y |s̃X , Z,W ) = PGdo(Z ) (Y |Z,W ), (D7a)

PGdo(XZ ) (Y |X, Z,W ) �= PGdo(Z ) (Y |Z,W ), (D7b)

PGdo(XZ ) (Y |X, Z,W ) = PGdo(s̃X Z ) (Y |s̃X , Z,W ). (D7c)

Equations (D7a) and (D7c) imply that
PGdo(XZ ) (Y |X, Z,W ) = PGdo(Z ) (Y |Z,W ), which contradicts
Eq. (D7b). �

Proof of Lemma 7. The proof is similar to that of Lemma 6.
The relations X1 affects Y given {do(Z ),W } and X2 does not
affect Y given {do(ZX1),W } are equivalent to

PGdo(X1Z ) (Y |X1, Z,W ) �= PGdo(Z ) (Y |Z,W ), (D8a)

PGdo(X1X2Z ) (Y |X1, X2, Z,W ) = PGdo(X1Z ) (Y |X1, Z,W ). (D8b)

These yield PGdo(X1X2Z ) (Y |X1, X2, Z,W ) �= PGdo(Z ) (Y |Z,W ),
which is equivalent to X1X2 affects Y given {do(Z ),W }. �

Proof of Lemma 8. (i) We prove this through the contrapos-
itive. Suppose that X does not affect YW given do(Z ), i.e.,

PGdo(XZ ) (Y,W |X, Z ) = PGdo(Z ) (Y,W |Z ). (D9)

Summing over values of Y on both sides, we have
PGdo(XZ ) (W |X, Z ) = PGdo(Z ) (W |Z ), i.e., X does not affect W
given do(Z ). Hence

PGdo(XZ ) (Y,W |X, Z )/PGdo(XZ ) (W |X, Z )

= PGdo(Z ) (Y,W |Z )/PGdo(Z ) (W |Z )

⇒PGdo(XZ ) (Y |X, Z,W ) = PGdo(Z ) (Y |Z,W ), (D10)

which is equivalent to X does not affect Y given {do(Z ),W }.
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(ii) Suppose that X affects Y given {do(Z ),W } is irre-
ducible, i.e.,

PGdo(XZ ) (Y |X, Z,W ) �= PGdo(s̃X Z ) (Y |s̃X , Z,W ) ∀sX ⊂ X, (D11)

where sX s̃X := X . If X affects YW given do(Z ) is reducible,
then there exists a partition of X = sX s̃X such that

PGdo(XZ ) (Y,W |X, Z ) = PGdo(s̃X Z ) (Y,W |s̃X , Z ). (D12)

As in the proof of part (i), this implies that
PGdo(XZ ) (Y |X, Z,W ) = PGdo(s̃X Z ) (Y |s̃X , Z,W ), which contradicts
(D11). Therefore, X affects Y given {do(Z ),W } is irreducible
implies X affects YW given do(Z ) is irreducible.

(iii) For the forward direction, it is again convenient to
use the contrapositive, i.e., to show that the relations X does
not affect Y given {do(Z ),W } and X does not affect W given
do(Z ) imply X does not affect YW given do(Z ). The first two
statements are

PGdo(XZ ) (Y |X, Z,W ) = PGdo(Z ) (Y |Z,W ),

PGdo(XZ ) (W |X, Z ) = PGdo(Z ) (W |Z ).
Multiplying these gives

PGdo(XZ ) (Y |X, Z,W )PGdo(XZ ) (W |X, Z )

= PGdo(Z ) (Y |Z,W )PGdo(Z ) (W |Z ),

which rearranges to

PGdo(XZ ) (Y,W |X, Z ) = PGdo(Z ) (Y,W |Z ),

which is X does not affect YW given do(Z ).
For the reverse direction, we note that we have shown X

affects W given do(Z ) implies X affects YW given do(Z ) in
the proof of part (i) of this lemma. From the main statement of
part (i) we also have X affects Y given {do(Z ),W } implies X
affects YW given do(Z ). Therefore, we have X affects Y given
{do(Z ),W } or X affects W given do(Z ) implies X affects YW
given do(Z ). �

Proof of Corollary 3. (i) Given that X affects Y given do(Z )
is irreducible, we know that for every sX ⊂ X , sX affects Y
given do(Zs̃X ), where sX s̃X := X . In particular, this means
that for every element eX ∈ X , eX affects Y given do(ZẽX ).
Then by using Lemma 3, we know that eX is a cause of Y ,
which by Definition 1 means that there exists a directed path
from eX to at least one element eY ∈ Y , which in turn means
that eX is a cause of eY .

(ii) By parts (i) and (ii) of Lemma 8, X affects Y given
{do(Z ),W } implies X affects YW given do(Z ) and the irre-
ducibility of the former implies the irreducibility of the latter,
which in turn implies (by the first part of the current lemma)
that for every eX ∈ X , there exists eYW ∈ YW such that eX is
a cause of eYW . �

3. Proofs of Theorems 2 and 3 and Lemma 9

Proof of Theorem 2. (i) If compat(S,A ) holds then RX =
F (X ) for all X ∈ S . Hence, by Definition 14 of accessible
regions for sets of ORVs, we have compat1′(S,A ). The re-
maining affects relations in A ′ are all of the form X affects
X ′ where X ′ is a copy of X , and so, since the location of X ′
is in RX = F (X ), compat1′(S ′,A ′) also holds.

(ii) The condition compat1′(S ′,A ′) when applied to the
affects relations of the form X affects X ′ when X ′ is a copy

of X tells us that F (X ′) ⊆ F (X ) for every copy X ′ of X ,
while Definition 13 tells us that F (X ′) ⊆ RX for every copy
X ′ of X . If RX � F (X ) then it would be possible for a
copy of X to be accessible outside its future, and hence that
F (X ′) � F (X ), contradicting compat1′(S ′,A ′). Therefore,
RX ⊆ F (X ) must hold. �

Proof of Theorem 3. Noting that all affects causal loops of
types 1–4 are also affects causal loops of type 5, proving the
theorem for ACL5 and ACL6 would imply the required result
for ACL1–ACL6.

(i) Proof for ACL5. Applying Corollary 3 to all affects
relations in Si ⊆ Ŝi, i = 1, . . . , n, such that {Ŝ1 affects S2, Ŝ2

affects S3, . . ., Ŝn−1 affects Sn, Ŝn affects S1} ⊆ A , we know
that each element of Ŝi must be a cause of some element of
Si+1 modn. Following the chain, this implies that each element
e1 ∈ S1 ⊆ Ŝ1 is a cause of some element e2 ∈ S1. If e2 = e1

we are done. If not, we can continue the chain from e2 until
we return to an element e3 ∈ S1. If e3 = e1 or e3 = e2 we
are done; otherwise we continue. Since S1 is finite, we must
eventually return to an element of S1 we already considered,
establishing a causal loop.

(ii) Proof for ACL6. Applying Corollary 3 to the first con-
dition of ACL6 (Definition 25), we have that for every RV
e1 ∈ s1 there exists a RV e2 ∈ S2 such that e1 is a cause of
e2. Applying the Corollary 3 to the second condition, we have
that e2 ∈ S2 ⊆ Ŝ2 must be a cause of some element e2 ∈ s1.
Either e1 = e2 and we are done or we continue the chain as in
the proof for ACL5. �

Proof of Lemma 9. (i) By definition, any set of affects
relations that does not contain an affects causal loop is such
that the cyclicity of the underlying causal structure is not guar-
anteed by the affects relations. In other words, it is possible to
have the same set of affects relations in a causal model with an
acyclic causal structure G. Every causal model over an acyclic
causal structure admits a nontrivial space-time embedding
since an acyclic causal structure is a directed acyclic graph and
every DAG implies a partial order. This embedding would be
such that the causal arrows � of G flow from past to future in
the embedded space-time, which ensures no signaling outside
the space-time’s future.

(ii) In faithful causal models, any RV X is a cause of a RV
Y if and only if X affects Y . [This follows because if X is
a cause of Y then X �⊥ Y in Gdo(X ). Since faithful, X �⊥⊥ Y in
Gdo(X ) and then Lemma 2 gives X affects Y . The converse is
Lemma 3 (which does not rely on faithfulness).] The existence
of a causal loop between X and Y corresponds to X being
a cause of Y and Y being a cause of X , which is equivalent
to X affects Y and Y affects X . The latter is the definition
of a type 1 affects causal loop (Definition 20). Hence, under
the faithfulness assumption, the absence of a type 1 ACL is
equivalent to the acyclicity of the underlying causal structure.
As argued in part (i) above, any acyclic causal structure can
be nontrivially and compatibly embedded in any space-time
structure. �

4. Proofs of Lemmas 12 and 13

Proof of Lemma 12. (i) We use Definition 4 on
the d-separation relation (XZW ⊥d Y )Gdo(XZ ) to obtain the
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conditional independence

PGdo(XZ ) (Y |X, Z,W ) = PGdo(XZ ) (Y ). (D13)

Then noting that (XZW ⊥d Y )Gdo(XZ ) implies (XZ ⊥d

Y )Gdo(XZ ) , we can apply Corollary 2 to the latter d-separation
relation to obtain PGdo(XZ ) (Y ) = PG (Y ). Combined with the
above equation, this gives

PGdo(XZ ) (Y |X, Z,W ) = PG (Y ). (D14)

Now we show that PG (Y ) = PG (Y |W ) must hold in this case,
which would (using the above equation) imply that XZ does
not affect Y given W . Suppose by contradiction that PG (Y ) �=
PG (Y |W ), which would imply that (Y �⊥d W )G . The assumed
d-separation (XZW ⊥d Y )Gdo(XZ ) implies that (W ⊥d Y )Gdo(XZ ) .
The only way that we could have d connection between Y and
W in G but not in Gdo(XZ ) is through the existence of a directed
path between XZ and Y in G which gives (XZ ⊥d Y )Gdo(XZ ) ,
contradicting our assumption (XZW ⊥d Y )Gdo(XZ ) . This estab-
lishes the first part.

(ii) We show that (XZW ⊥d Y )Gdo(XZ ) implies
(ZW ⊥d Y )Gdo(Z ) , which in turn implies that Z does not
affect Y given W . Then along with the first part of the lemma,
this gives us (XZW ⊥d Y )Gdo(XZ ) ⇒ XZ does not affect Y
given W and Z does not affect Y given W . Then using Lemma
4, this implies that X does not affect Y given {do(Z ),W },
which is the required conclusion.

Suppose that (XZW ⊥d Y )Gdo(XZ ) but (ZW �⊥d Y )Gdo(Z ) .
There are two ways that this is possible.

(a) (Z �⊥d Y )Gdo(Z ) . By assumption, we have
(XZW ⊥d Y )Gdo(XZ ) , which implies (Z ⊥d Y )Gdo(XZ ) . The
only way we can then have (Z �⊥d Y )Gdo(Z ) is through the
existence of a directed path from X to Y in Gdo(Z ). This gives
(X ⊥d Y )Gdo(XZ ) , which contradicts our assumption.

(b) (W �⊥d Y )Gdo(Z ) . The assumption (XZW ⊥d Y )Gdo(XZ ) im-
plies (W ⊥d Y )Gdo(XZ ) . If the d connection (W �⊥d Y )Gdo(Z ) is
due to a directed path from W to Y in Gdo(Z ), this path must go
through X in order to ensure that (W ⊥d Y )Gdo(XZ ) . However,
this would violate the original assumption (XZW ⊥d Y )Gdo(XZ )

as it would lead to a directed path from X to Y in Gdo(XZ ).
On the other hand, if the d connection (W �⊥d Y )Gdo(Z ) is due
to a common cause, it is not possible to have the d con-
nection (W ⊥d Y )Gdo(XZ ) , which also contradicts the assumed
d-separation.

The above establishes that (XZW ⊥d Y )Gdo(XZ ) implies
(ZW ⊥d Y )Gdo(Z ) , and (ZW ⊥d Y )Gdo(Z ) implies Z does not af-
fect Y given W follows from the first part of the proof (with Z
playing the role of XZ). �

Proof of Lemma 13. (i) The given dependence
(XZW �⊥⊥ Y )Gdo(XZ ) is equivalent to

∃x, x′, y, z, z′,w,w′ s.t. PGdo(XZ ) (Y = y|X = x, Z = z,W = w)

�= PGdo(XZ ) (Y = y|X = x′, Z = z′,W = w′). (D15)

Suppose that XZ does not affect Y given W , i.e.,

PGdo(XZ ) (Y = y|X = x, Z = z,W = w)

= PG (Y = y|W = w) ∀x, y, z,w. (D16)

Clearly it is not possible to satisfy both of the above
equations and (XZW �⊥⊥ Y )Gdo(XZ ) must imply XZ affects Y
given W .

(ii) First, the d-separation (ZW ⊥d Y )Gdo(Z ) implies that Z
does not affect Y given W , which follows from part (i) of
Lemma 12. From part (i) above, we have (XZW �⊥⊥ Y )Gdo(XZ )

implies XZ affects Y given W . We now show that Z does not
affect Y given W and XZ affects Y given W implies that X
affects Y given {do(Z ),W }, which would complete the proof.
Writing out the first two conditions, we have

PGdo(Z ) (Y |Z,W ) = PG (Y |W ), (D17)

PGdo(XZ ) (Y |X, Z,W ) �= PG (Y |W ). (D18)

Together, these imply that PGdo(XZ ) (Y |X, Z,W ) �=
PGdo(Z ) (Y |Z,W ), i.e., X affects Y given {do(Z ),W }. �

5. Proof of Theorem 4

Proof of Theorem 4. The proofs for ACL7 and ACL8 are
similar. We describe the proof for ACL8 here and at the end
explain how it also applies to ACL7. Applying Corollary 3
to the affects relations {S′

2 affects S3, S′
3 affects S4, . . ., S′

n−1
affects Sn, S′

n affects s1} ⊆ A in the second condition of
ACL8 (Definition 29), we have that for each element e′

2 ∈ S2

there exists an element e3 ∈ S3 of which it is a cause, for each
element e′

3 ∈ S3 there exist an element e4 ∈ S4 of which it is
a cause, . . ., for each element e′

n ∈ Sn there exist an element
e1 ∈ s1 ⊆ S1 of which it is a cause. This does not immediately
imply that there is a directed path from S′

2 to s1, since, for
example, the element e′

3 ∈ S3 of which e′
2 ∈ S2 is a cause

might not belong to the next set S′
3 in the chain, i.e., we could

have e3 ∈ S3\(S3
⋂

S′
3) if (S3, S′

3) forms an incomplete node
of Ce2 . In this case, the third condition of Definition 29 tells us
that there is another complete affects chain DC

e2
that connects

S3\(S3
⋂

S′
3) to S3. Since this is a complete affects chain, we

can apply the same argument as in the proof of Theorem
3 to conclude that for each element in S3\(S3

⋂
S′

3) there
exists an element e∗

3 ∈ S3 of which it is a cause. We consider
two cases depending on whether we have e∗

3 ∈ S3\(S3
⋂

S′
3)

or e∗
3 ∈ S3

⋂
S′

3. We will show that in the former case the
affects relations in the secondary chain DC

e2
already guarantee

cyclicity, while the latter case these (the set formed by such
secondary chains, one for every incomplete node) guaran-
tee cyclicity when taken together with those in the primary
chain Ce2 .

In the first case, DC
e2

corresponds to a type 5 affects causal
loop since it involves a complete chain of irreducible affects
relations from a set S3\(S3

⋂
S′

3) onto itself. The cyclicity
claim for this case then follows from Theorem 3. Therefore,
we now consider the case where for each incomplete node
(Si, S′

i ) of Ce2 the corresponding element e∗
i ∈ Si belongs to

the intersection of the sets Si
⋂

S′
i . Then, applying Corollary 3

repeatedly to each pair of affects relations in {S′
2 affects S3, S′

3
affects S4, . . ., S′

n−1 affects Sn, S′
n affects s1} ⊆ A , we can con-

clude that for every element e′
2 ∈ S′

2 there exists an element
e1 ∈ s1 ⊆ S1 such that e′

2 is a cause of e1. By Definition 29,
condition (ii), we considered such a set A of affects relations
for every element e2 ∈ S2, defining S′

2 such that it contains e2.
Since the above argument holds for all sets of affects relations
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A defined as above and for all elements of S′
2, this implies

that for every element e2 ∈ S2 there exists a corresponding
element e1 ∈ S1 of which it is a cause. Applying Corollary
3 to condition (i) of Definition 29, i.e., the irreducible affects
relation S1 affects S2, we have that for every element e1 ∈ S1

there exists a corresponding element e2 ∈ S2 of which it is
a cause. This was also the case for ACL1–ACL6 as shown
in Theorem 3, so the statement of the present theorem then
follows from the proof of Theorem 3.

For ACL7, the first condition says that there is an irre-
ducible affects relation S1 affects S2 in A and the second
condition of Definition 28 guarantees the existence of an
affects chain from s2 ⊆ S2 to S1. The subtlety here is to note
that if s2 ⊂ S2, then (S2, S′

2) will be an incomplete node of

Cs2 . By the above proof for ACL8, we have concluded either
that the affects relations {S′

2 affects S3, S′
3 affects S4, . . ., S′

n−1
affects Sn, S′

n affects s1} ⊆ A along with the third condition
of ACL8 (which is similar for ACL7) imply cyclicity of the
causal structure or that for every element e′

2 ∈ S′
2 there exists

an element e1 ∈ s1 ⊆ S1 such that e′
2 is a cause of e1. If the

node (S2, S′
2) is also incomplete as noted above, one can ex-

tend the same arguments using the third condition to conclude
that either the causal structure is cyclic or for every element
e2 ∈ S2 there exists an element e1 ∈ s1 ⊆ S1 such that e2 is a
cause of e1. The same condition was obtained at the end of
the preceding paragraph, in the proof for ACL8, and shown
to imply cyclicity. Therefore, this establishes the theorem also
for ACL7. �
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chanics and the covariance of physical laws in quantum
reference frames, Nat. Commun. 10, 494 (2019).

[60] E. Castro-Ruiz, F. Giacomini, A. Belenchia, and Č. Brukner,
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