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Reduced density matrix functional theory from an ab initio seniority-zero wave function:
Exact and approximate formulations along adiabatic connection paths
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Currently, there is a growing interest in the development of a new hierarchy of methods based on the concept
of seniority, which has been introduced quite recently in quantum chemistry. Despite the enormous potential
of these methods, the accurate description of both dynamical and static correlation effects within a single and
in-principle-exact approach remains a challenge. In this work, we propose an alternative formulation of reduced
density-matrix functional theory (RDMFT) where the (one-electron reduced) density matrix is mapped onto
an ab initio seniority-zero wave function. In this theory, the exact natural orbitals and their occupancies are
determined self-consistently from an effective seniority-zero calculation. The latter involves a universal higher
seniority density matrix functional for which an adiabatic connection (AC) formula is derived and implemented
under specific constraints that are related to the density matrix. The pronounced curvature of the (constrained)
AC integrand, which is numerically observed in prototypical hydrogen chains and the helium dimer, indicates
that a description of higher seniority correlations within second-order perturbation theory is inadequate in this
context. Applying multiple linear interpolations along the AC or connecting second-order perturbation theory to
a full-seniority treatment via Padé approximants are better strategies. Such information is expected to serve as a
guide in the future design of higher seniority density-matrix functional approximations.
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I. INTRODUCTION

The accurate description of chemical compounds which
manifest both weak and strong correlation effects (also
referred to as dynamical and static correlation effects, re-
spectively [1,2]) remains a long-standing challenge in the
quantum chemistry community. One angle of attack to tackle
the electronic structure problem is to construct orbital-based
wave functions, expressed as linear combination of Slater
determinants. Most quantum chemistry methods are built
upon Hartree-Fock (HF) theory and include corrections from
excited-state configurations, thus leading to configuration in-
teraction (CI) and coupled cluster (CC) methods [3]. If all
configurations are considered, it is called the full configu-
ration interaction (FCI) and all the correlation effects are
captured. Unfortunately, the computational cost associated to
FCI scales exponentially with the system size, such that the
configuration space is commonly truncated to single and dou-
ble excited-state configurations (CISD and CCSD). Despite
the success of those approximations (CC is considered as the
“gold standard” method in quantum chemistry [4,5]), strong
correlation effects are still insufficiently described. A similar
conclusion holds for the Kohn-Sham density functional theory
(KS-DFT) [6,7], whose density functional approximations are
not able to describe strong correlation effects [8–10]. Instead
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of using the electronic density as a basic variable, one can
consider the one-particle reduced density matrix (1RDM),
thus leading to the reduced density matrix functional theory
(RDMFT) [11–14]. Several 1RDM functionals based on the
occupation numbers of the natural orbitals have been devel-
oped [15–24], in particular the Piris natural orbital functionals
PNOFi (i = 1, 7) [25–36]. In order to treat both the static
and dynamical correlations simultaneously, several hybrid
schemes, where wave function theory is combined with the
aforementioned reduced quantity theories [37–47], have been
proposed. Quite recently, Pernal [48] also suggested using the
adiabatic connection (AC) formalism to recover the electron
correlation that is missing in multiconfigurational wave func-
tions [49–52].

Post-HF methods are adequate for treating weakly cor-
related systems. When it comes to describing strongly
correlated systems, a more appealing strategy consists in
dropping the orbital picture and, instead, constructing wave
functions as products of geminals (i.e., pairs of electrons)
[53–61]. A hierarchy of these methods can be found in
Ref. [62]. Starting from the idea of pairing electrons, one can
divide the entire many-electron Hilbert space into subspaces
by using the concept of seniority number. The latter corre-
sponds to the number of unpaired electrons in a determinant
[63,64]. If all electrons are paired (i.e., all spatial orbitals are
either doubly occupied or unoccupied), the wave function is
referred to as seniority-zero wave function. It is described
exactly by performing a doubly occupied configuration
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interaction (DOCI) calculation [65], where the seniority-zero
part of the Hamiltonian [66] is diagonalized.

Even though seniority-zero wave functions can describe
accurately strong (static) correlation effects, their evaluation
is computationally demanding and a proper description of
dynamical correlation effects requires taking into account
higher seniorities [67] or mixing excitation degrees and se-
niority numbers [68]. Other promising approaches that retain
the computational cost of a mean field and are adequate for
the treatment of strong correlation have been proposed, like
the so-called antisymmetric product of one-reference-orbital
geminals (AP1roG) [62,69–71] equivalent to the pair-coupled
cluster theory (pCCD) [72,73], or more recently the pair para-
metric two-electron reduced density matrix approach [74].
Open-shell extensions of pCCD have also been developed in
Ref. [75]. Orbital optimization is essential in these approaches
for the accurate description of both ground [71,72,76–78] and
excited states [79–82]. Despite promising results, AP1roG
and related geminal-based wave functions are not adequate to
capture dynamical correlation [83]. Indeed, dynamical corre-
lation is not described by electron-pair states but by higher
seniority contributions. The latter can be determined from
perturbation theory [84–94], coupled-cluster theory [94–102],
the extended random phase approximation [103,104], DFT
[105–107], or the AC formalism [108]. In the spirit of post-HF
methods, post-antisymmetrized geminal power approaches
are also promising, not only on classical computers [109–112]
but also on quantum computers [113].

In this work, we propose to formally define exact seniority-
zero wave function calculations in the context of reduced
density matrix functional theory (RDMFT). More precisely,
by analogy with KS-DFT, we will map the 1RDM onto a ref-
erence ab initio seniority-zero wave function. In this context,
the higher seniority correlation effects will be described by a
density matrix functional. The paper is organized as follows.
In Sec. II, we present an exact reformulation of RDMFT as
an effective seniority-zero theory. The self-consistent calcu-
lation of both the natural orbitals and their occupancies will
be discussed in this context. In order to give further insight
into the complementary higher seniority density-matrix cor-
relation functional, which is a central object in the theory,
two different adiabatic connection paths are constructed in
Sec. III. Details about the computational implementation of
the adiabatic connections are provided in Sec. IV, which is
followed by a detailed discussion in Sec. V of the results
obtained for the prototypical H4 and H8 chains, as well as
the helium dimer. Conclusions and perspectives are given in
Sec. VI.

II. THEORY

A. Seniority-zero wave function and Hamiltonian

The concept of seniority has been introduced recently in
quantum chemistry by Scuseria and coworkers [63]. It con-
sists in partitioning the FCI Fock space into subspaces that
are defined from the following seniority number operator:

�̂ =
∑

p

(n̂p↑ + n̂p↓ − 2n̂p↑n̂p↓), (1)

where n̂pσ ≡ ĉ†
pσ ĉpσ [σ =↑,↓] is a spin-orbital occupation

operator written in second quantization. As readily seen from
Eq. (1), the seniority operator �̂ simply counts the number
of unpaired electrons in a given configuration. It has been
shown that the seniority-zero sector, which is denoted S0 in
the following and for which 〈�̂〉S0 = 0 contributes signifi-
cantly to the description of static correlation [63]. In the DOCI
approximation [65], FCI is applied to the seniority-zero sub-
space, which means that determinants with empty or doubly
occupied orbitals only are considered in the calculation. In
such a case, the wave function ansatz reads

S0 � � ≡
∑

p1<...<pN/2

Cp1...pN/2

N/2∏
i=1

ĉ†
pi↑ĉ†

pi↓|vac〉, (2)

where |vac〉 denotes the vacuum state and N is the (even)
number of electrons. Note that the 1RDM of a seniority-zero
wave function is diagonal in its orbital basis:

D�
pq =

∑
σ

〈�|ĉ†
pσ ĉqσ |�〉 �∈S0= δpqn�

p , (3)

where

n�
p = 2

∑
p1<...<pN/2

|Cp1...pN/2 |2
N/2∑
i=1

δppi . (4)

In other words, these orbitals are the seniority-zero natural
orbitals, by construction. By analogy with the multiconfigura-
tional self-consistent field (MCSCF) method [3], they can be
optimized variationally, in addition to the DOCI coefficients
{Cp1...pN/2} [108]. In the present work, we aim at deriving
an in-principle-exact variational energy expression such that
the minimizing seniority-zero orbitals match the exact natural
orbitals of the true (higher seniority) physical many-body
wave function. As briefly sketched in the following and further
formalized in the next subsections, we need for that purpose
to introduce a density matrix functional correction to the (ap-
proximate) seniority-zero energy.

Let us start with the general (ab initio) second-quantized
Hamiltonian expression,

Ĥ =
∑

pq

∑
σ

hpqĉ†
pσ ĉqσ + Ŵee, (5)

Ŵee = 1

2

∑
pqrs

〈pq|rs〉
∑
σσ ′

ĉ†
pσ ĉ†

qσ ′ ĉsσ ′ ĉrσ , (6)

where hpq = 〈ϕp|ĥ|ϕq〉 = ∫ dr ϕp(r)[− 1
2∇2

r + vne(r)]ϕq(r)
and 〈pq|rs〉 = ∫∫ drdr′ϕp(r)ϕq(r′)ϕr (r)ϕs(r′)/|r − r′| are
the one-electron (kinetic and nuclear potential energies) and
two-electron repulsion integrals, respectively. The DOCI
Hamiltonian, that we refer to as seniority-zero Hamiltonian in
the following, is obtained simply by removing all but the terms
that preserve the seniority-zero character of the trial wave
function in Eq. (2). As a result, the one-electron Hamiltonian
reduces to its diagonal part while only two orbitals (that may
be identical) should remain in the two-electron repulsion
operator:

Ĥ → ĤS0 =
∑

p

hppn̂p + Ŵ S0
ee , (7)
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where

Ŵ S0
ee =

∑
p>q

〈pq|pq〉n̂pn̂q −
∑
p>q

∑
σ

〈pq|qp〉n̂pσ n̂qσ

+
∑

pq

〈pp|qq〉P̂†
p P̂q, (8)

n̂p = n̂p↑ + n̂p↓, and P̂†
p = ĉ†

p↑ĉ†
p↓ is the creation operator of

a pair of electrons in the pth orbital. Interestingly, we rec-
ognize in the seniority-zero interaction operator the direct
Jpq = 〈pq|pq〉, exchange Kpq = 〈pq|qp〉, and exchange-
time-inversion Lpq = 〈pp|qq〉 integrals which are central in
the implementation of the Piris natural orbital functionals
[32,93]. Note that, in the present work, we use real algebra
and therefore Lpq = Kpq. In addition, unlike in Ref. [66], we
do not proceed in Eq. (8) with the simplification n̂p↑ ≡ n̂p↓ ≡
n̂p/2, which holds on the seniority-zero subspace. This is only
for convenience, as we will implement later on an adiabatic
connection path between the (approximate) seniority-zero and
exact (higher seniority) Hamiltonians [see Sec. III A].

For two-electron systems in the ground state, ĤS0 be-
comes exact if written in the exact natural orbital basis. In
this particular case, the seniority-zero wave function is the
Löwdin-Shull one [114,115]. In the general case, ĤS0 is
an approximation to the true Hamiltonian Ĥ . Nevertheless,
the seniority-zero picture may become exact, in the spirit of
KS-DFT, if it reproduces the true physical (with all higher
seniorities included) 1RDM. As readily seen from Eq. (3), it
immediately implies that the seniority-zero and true natural
orbitals should match. In addition, the to-be-determined ficti-
tious seniority-zero wave function �S0 should reproduce the
natural orbital occupations of the true physical ground-state
wave function �0:

n�S0

p = n�0
p . (9)

By analogy with DFT for lattice models [116], we can impose
the orbital occupation constraint of Eq. (9) [which can be
seen as a density constraint in the natural orbital space] by
adjusting the one-electron energies,

hpp → hpp + εp, (10)

thus leading to the following seniority-zero Schrödinger-like
equation:[∑

p

(hpp + εp)n̂p + Ŵ S0
ee

]
|�S0〉 = ES0 |�S0〉, (11)

where {hpp + εp}, which is unique up to a constant, can be
seen as the analog (in the natural orbital space) of the KS
potential for seniority-zero wave functions. Note that the
extension of the Hohenberg-Kohn theorem to lattice Hamil-
tonians holds also in this context (see Appendix A). If we
compare with the KS Hamiltonian for Hubbard [116], the
one-electron hopping operator (which is a model for the ki-
netic energy operator) is now replaced by the two-electron
seniority-zero repulsion operator Ŵ S0

ee . The annihilation-
creation of electron pairs [third term on the right-hand side
of Eq. (8)] delocalizes the electrons in the natural orbital
space, thus ensuring that all DOCI coefficients are in principle

nonzero. This observation becomes central when establish-
ing a one-to-one correspondence between {hpp + εp}, that we
simply refer to as potential in the following, and the ground-
state seniority-zero wave function.

In the rest of this work, we will show how the natural
orbitals and the potential {εp} can be determined, in principle
exactly, from a universal density matrix functional. This func-
tional enables the exact evaluation of the true ground-state
energy from the fictitious seniority-zero wave function �S0 .

B. Natural orbital functional theory and orbital rotations

In RDMFT [11], the exact ground-state energy can in prin-
ciple be obtained variationally as follows,

E = min
D

{Tr[hD] + W (D)}, (12)

where Tr denotes the trace, h ≡ {hpq} is the one-electron
(kinetic and nuclear potential) Hamiltonian matrix, and D ≡
{Dpq} is a trial (spin-summed) N-representable 1RDM. For
simplicity, 1RDMs will simply be referred to as density
matrices in the following. Within Levy’s constrained-search
formalism [117], the interaction energy functional reads

W (D) = min
�→D

〈�|Ŵee|�〉. (13)

Like in natural orbital functional theory (NOFT) [33], we
adopt the natural orbital representation of the density matrix
in the rest of this work. Moreover, for convenience, we will
use an exponential parametrization of the natural orbitals, like
in the MCSCF method [3]. Let {ϕp(r)} be an arbitrary (or-
thonormal) molecular orbital basis. Any natural orbital basis
can be obtained from the latter by rotation,

ϕp(r) → ϕp(κ)(r) =
∑

q

[e−κ]qpϕq(r), (14)

where κ = −κ† ≡ {κpq}p>q. Note that in second quantization,
Eq. (14) can be reformulated as follows [3],

ĉ†
p(κ)σ = e−κ̂ ĉ†

pσ eκ̂ , (15)

where κ̂ =∑p>q κpq
∑

σ (ĉ†
pσ ĉqσ − ĉ†

qσ ĉpσ ) is the real anti-
Hermitian singlet rotation operator. The interaction functional
in Eq. (13) can now be rewritten as follows:

W (D ≡ (κ, n)) = min
�→(κ,n)

〈�|Ŵee|�〉

= 〈Ŵee〉�(κ,n),

(16)

where n ≡ {np} are the natural orbital occupancies and the
constraint � → (κ, n), which reads∑

σ

〈�|ĉ†
p(κ)σ ĉq(κ)σ |�〉 = npδp(κ)q(κ)

notation⇔ � −→
{ϕp(κ)}

diag[n],
(17)

means that the rotated orbitals {ϕp(κ)} are the natural orbitals
of � (with occupations n). In the light of Eq. (17), it seems
relevant (but it is not compulsory) to expand the minimizing
wave function of Eq. (16) in the rotated orbital basis:

|�(κ, n)〉 ≡
∑

I

CI (κ, n)|	I (κ)〉, (18)
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where |	I (κ)〉 is a “rotated” Slater determinant (i.e., it is
constructed from the rotated orbitals {ϕp(κ)}). Note that ac-
cording to Eq. (15), rotated determinants are connected to the
unrotated ones 	I ≡ 	I (κ = 0) as follows,

|	I (κ)〉 = e−κ̂ |	I〉. (19)

We should also stress that, unlike its seniority-zero approxi-
mation, the full two-electron repulsion operator in Eq. (6) is
invariant under orbital rotation, i.e.,

2Ŵee =
∑
pqrs

〈pq|rs〉κ
∑
σσ ′

ĉ†
p(κ)σ ĉ†

q(κ)σ ′ ĉs(κ)σ ′ ĉr(κ)σ , (20)

where 〈pq|rs〉κ = 〈p(κ)q(κ)|r(κ)s(κ)〉 are the two-electron
integrals evaluated from the rotated orbitals.

For reasons that will become clearer in the following, we
now proceed with a picture change in Eq. (16):

� → �̃ = e+κ̂�, (21)

where the rotation operator κ̂ is constructed from the κ matrix
[see below Eq. (15)] which is fixed when evaluating the inter-
action functional of Eq. (16). When applied to the minimizing
wave function, the picture change gives [see Eq. (19)]

e+κ̂ |�(κ, n)〉 ≡
∑

I

CI (κ, n)|	I〉. (22)

Therefore, in the new picture, the correct CI coefficients
CI (κ, n) are used in the (incorrect) unrotated natural orbital
basis. The formal advantage is that trial wave functions can
now be expanded in the (arbitrary and) fixed orbital basis {ϕp}.
Obviously, we now need to employ picture-changed operators.
For example,

〈�|Ŵee|�〉 = 〈�̃|Ŵee(κ)|�̃〉, (23)

where the full (natural orbital-dependent) picture-changed
two-electron interaction operator Ŵee(κ) reads, according to
Eqs. (15) and (21), and the expression of Ŵee in Eq. (20),

Ŵee(κ) = e+κ̂ Ŵee e−κ̂

= 1

2

∑
pqrs

〈pq|rs〉κ
∑
σσ ′

ĉ†
pσ ĉ†

qσ ′ ĉsσ ′ ĉrσ . (24)

Note that Ŵee(κ) is expressed in terms of the unro-
tated creation-annihilation operators because, according to
Eq. (15), e+κ̂ ĉ†

p(κ)σ e−κ̂ = ĉ†
pσ . Finally, since

δp(κ)q(κ) = 〈ϕp(κ)||ϕq(κ)〉 = 〈ϕp||ϕq〉 = δpq, (25)

according to Eq. (14), the constraint in Eq. (17) becomes in
the new picture [see Eqs. (15) and (21)],∑

σ

〈�̃|ĉ†
pσ ĉqσ |�̃〉 = npδpq

notation⇔ �̃ → diag[n],

(26)

which means that the unrotated orbitals should be the natural
orbitals of the trial wave function �̃ (with occupations n).

To conclude, if we employ the picture change of Eq. (21),
the universal interaction density matrix functional of Eq. (16)
can be rewritten as follows [see Eqs. (23) and (26)],

W (κ, n) = min
�̃ → diag[n]

〈�̃|Ŵee(κ)|�̃〉. (27)

We will use the above expression for introducing seniority-
zero wave functions in RDMFT.

C. Seniority-zero interaction density matrix functional

On the basis of Eq. (27), we define the seniority-zero ana-
log of the interaction functional as follows,

W S0 (κ, n) = min
�̃ → diag[n]

〈�̃|Ŵ S0
ee (κ)|�̃〉, (28)

where, in analogy with Eq. (8), all but the seniority-zero com-
ponents have been removed from the two-electron repulsion
operator Ŵee(κ):

Ŵ S0
ee (κ) =

∑
p>q

〈pq|pq〉κn̂pn̂q −
∑
p>q

∑
σ

〈pq|qp〉κn̂pσ n̂qσ

+
∑

pq

〈pp|qq〉κP̂†
p P̂q.

(29)

Let us now introduce, in the light of Sec. II A, the ground-state
wave function �S0 (κ, n) of the seniority-zero Hamiltonian
Ŵ S0

ee (κ) +∑p εp(κ, n)n̂p with natural orbital occupations n.
For any wave function � fulfilling the (not necessarily natu-
ral) orbital occupation constraint

{〈�|n̂p|�〉} = n, (30)

that we simply denote � → n, we have, according to the
variational principle,

〈�S0 (κ, n)|Ŵ S0
ee (κ) +

∑
p

εp(κ, n)n̂p|�S0 (κ, n)〉

� 〈�|Ŵ S0
ee (κ) +

∑
p

εp(κ, n)n̂p|�〉,
(31)

thus leading to

〈�S0 (κ, n)|Ŵ S0
ee (κ)|�S0 (κ, n)〉 �

�→n
〈�|Ŵ S0

ee (κ)|�〉. (32)

As a result, the density matrix constraint in the minimization
of Eq. (28), which is obviously fulfilled by �S0 (κ, n), can be
relaxed, thus becoming the orbital occupation constraint of
Eq. (30). This leads to the final Levy’s constrained-search ex-
pression for the seniority-zero interaction energy functional:

W S0 (κ, n) = min
�→n

〈�|Ŵ S0
ee (κ)|�〉 (33)

= 〈�S0 (κ, n)|Ŵ S0
ee (κ)|�S0 (κ, n)〉. (34)

As the orbital occupation constraint is analogous to a density
constraint on a lattice [116,118], we can use convenient tools
from DFT such as the Lieb maximization [118,119] in order to
evaluate the functional. Indeed, for any “potential” ε ≡ {εp},
applying the variational principle to the seniority-zero Hamil-
tonian Ŵ S0

ee (κ) +∑p εpn̂p with ground-state energy ES0 (κ, ε)
gives

ES0 (κ, ε)

� 〈�S0 (κ, n)|Ŵ S0
ee (κ) +

∑
p

εpn̂p|�S0 (κ, n)〉, (35)
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thus leading to the alternative expression [see Eqs. (30) and
(34)]

W S0 (κ, n) = max
ε

{ES0 (κ, ε) − (ε|n)}, (36)

where (ε|n) =∑p εpnp. The practical implementation of
Eq. (36) will be discussed further in Secs. IV and V.

Finally, we would like to emphasize that, even though the
orbital occupation constraint of Eq. (30) is written, for conve-
nience, in an arbitrary and fixed (unrotated) orbital basis, the
seniority-zero interaction functional is a universal functional
of the density matrix. In other words, unlike in DFT for lattice
Hamiltonians [116], the (natural, in the present context) or-
bital basis on which the theory relies (through its dependence
in κ) is an additional basic variable that has to be optimized for
a given system, exactly like in NOFT. This point can be further
highlighted by making the dependence of the functional on
the natural orbitals more explicit. Indeed, since e−κ̂�S0 (κ, n)
is the ground state of [see Eqs. (15) and (31)]

e−κ̂

(
Ŵ S0

ee (κ) +
∑

p

εp(κ, n)n̂p

)
eκ̂

=
∑
p>q

〈pq|pq〉κn̂p(κ)n̂q(κ)

−
∑
p>q

∑
σ

〈pq|qp〉κn̂p(κ)σ n̂q(κ)σ

+
∑

pq

〈pp|qq〉κP̂†
p(κ)P̂q(κ) +

∑
p

εp(κ, n)n̂p(κ), (37)

with occupation numbers in the rotated basis [see Eq. (30)]

{〈e−κ̂�S0 (κ, n)|n̂p(κ)|e−κ̂�S0 (κ, n)〉}
= {〈�S0 (κ, n)|n̂p|�S0 (κ, n)〉}
≡ n, (38)

it may be denoted as

e−κ̂�S0 (κ, n) ≡ �
S0 ({ϕp(κ)}, n) (39)

and described as the (ab initio) seniority-zero analog of the
ground-state wave function, both being written in the same
basis of natural orbitals {ϕp(κ)} with occupations n. As the
seniority-zero Hamiltonian of Eq. (37) is a universal func-

tional of the density matrix, so are �
S0 ({ϕp(κ)}, n) and the

resulting seniority-zero interaction functional [see Eq. (34)]:

W S0 (κ, n)

= 〈�S0 ({ϕp(κ)}, n)|e−κ̂Ŵ S0
ee (κ)eκ̂ |�S0 ({ϕp(κ)}, n)〉

= 〈�S0 ({ϕp(κ)}, n)|Ŵee|�S0 ({ϕp(κ)}, n)〉
≡ W S0 ({ϕp(κ)}, n). (40)

For practical purposes, the (less intuitive) expressions in
Eqs. (33) and (36) are much more appealing as they do not
require the implementation of a specific (seniority-zero in
this context) wave function ansatz. Indeed, starting from a
regular (seniority-zero) HF calculation, the functional can be
evaluated by setting to zero, within the post-HF treatment, the
one- and two-electron integrals that do not preserve seniority.

The dependence in κ of the remaining integrals [see Eq. (29)]
enables the optimization of the natural orbitals, as further
discussed in the next section.

D. Exact self-consistent seniority-zero equations

Let us start from the regular NOFT [33] variational energy
expression that we simply rewrite as follows [see Eqs. (12)
and (16)]:

E = min
κ,n

{(h(κ)|n) + W (κ, n)}, (41)

where (h(κ)|n) =∑p hpp(κ)np and

hpp(κ) = 〈ϕp(κ)|ĥ|ϕp(κ)〉. (42)

If we now split the universal interaction functional into
seniority-zero and complementary (higher seniority) parts,

W (κ, n) = W S0 (κ, n) + (W (κ, n) − W S0 (κ, n))

= W S0 (κ, n) + W
S

(κ, n), (43)

the exact ground-state energy can be rewritten [see Eq. (33)]
as follows:

E = min
κ,n

{
min
�→n

{
(h(κ)|n� ) + 〈�|Ŵ S0

ee (κ)|�〉

+W
S

(κ, n� )
}}

, (44)

thus leading to

E = min
κ

{
min

�

{
(h(κ)|n� ) + 〈�|Ŵ S0

ee (κ)|�〉

+W
S

(κ, n� )
}}

, (45)

or, equivalently,

E = min
κ,�

{〈∑
p

hpp(κ)n̂p + Ŵ S0
ee (κ)

〉
�

+ W
S

(κ, n� )

}

(46)

where n� ≡ {〈�|n̂p|�〉}. We stress again that, unlike in DFT
for lattices [116,118], the energy is obtained in this context by
means of a double minimization. The first one (with respect to
the many-body wave function �) aims at reproducing the nat-
ural orbital occupancies. The second one (with respect to κ),
where the one- and two-electron integrals vary [see Eqs. (42)
and (29), respectively], enables the variational calculation of
the natural orbitals.

For convenience, we choose the initial (unrotated) orbital
basis to be the exact natural orbital basis of the system under
study. In other words, the minimum in Eq. (46) is reached
when κ = 0. By denoting

W
S

(n) ≡ W
S

(κ = 0, n), (47)

we can reformulate the variational principle as follows:

E = min
�

{
〈�|

∑
p

hppn̂p + Ŵ S0
ee |�〉 + W

S
(n� )

}

=
∑

p

hppn�S0

p + 〈�S0 |Ŵ S0
ee |�S0〉 + W

S
(n�S0 ). (48)

032203-5



SENJEAN, YALOUZ, NAKATANI, AND FROMAGER PHYSICAL REVIEW A 106, 032203 (2022)

From the corresponding Euler-Lagrange equation, we con-
clude that the minimizing wave function �S0 , which repro-
duces the exact natural orbital occupancies, is the ground-state
solution to the following self-consistent and seniority-zero
Schrödinger-like equation:

ĤS0 (n�S0 )|�S0〉 = ES0 |�S0〉, (49)

where

ĤS0 (n) =
∑

p

(
hpp + ∂W

S
(n)

∂np

)
n̂p + Ŵ S0

ee . (50)

Note that the lower bound in Eq. (48), which is the exact
ground-state energy, can be rewritten as follows,

E = 〈Ĥ〉�S0 + W
S

(n�S0 ), (51)

since �S0 is a seniority-zero wave function.
Interestingly, we conclude from Eq. (50) that the diagonal

one-electron integral correction introduced in Eq. (11), for the
purpose of reproducing the exact natural orbital occupancies,
is a density matrix functional quantity which can be evaluated
as follows:

εp = ∂W
S

(n)

∂np

∣∣∣∣∣
n=n�S0

. (52)

Further physical insight can be obtained from the seniority
separation in Eq. (43), which can be rewritten as follows:

W
S

(n) = 〈�(n)|Ŵee|�(n)〉 − 〈�S0 (n)|Ŵ S0
ee |�S0 (n)〉

= 〈�(n)|Ŵee|�(n)〉 − 〈�S0 (n)|Ŵee|�S0 (n)〉
= 〈�(n)|Ĥ |�(n)〉 − 〈�S0 (n)|Ĥ |�S0 (n)〉, (53)

where both physical �(n) and seniority-zero �S0 (n) wave
functions share, in addition to the occupation numbers n,
the same n-independent natural orbital basis which, in the
present case, is the unrotated orbital basis. As a result, the
“potential” εp describes the higher seniority contributions to
the energy variation induced by infinitesimal changes in the
natural orbital occupation np.

Let us finally emphasize that W
S

(n) is evaluated with
the exact natural orbitals. According to Eqs. (45) and (48),
the latter can be determined from the following stationarity
condition,[

(∂h(κ)/∂κpq|n�S0 ) + 〈�S0 |∂Ŵ S0
ee (κ)/∂κpq|�S0〉

+∂W
S

(κ, n�S0 )

∂κpq

]
κ=0

= 0, (54)

which can be rewritten more explicitly as follows [see Ap-
pendix B],

2Fpq
(
n�S0

p − n�S0

q

)+
〈
ϕq

∣∣∣∣∣δW
S

({ϕp}, n�S0 )

δϕp

〉

−
〈
ϕp

∣∣∣∣∣δW
S

({ϕq}, n�S0 )

δϕq

〉

+
∑

r

[2〈r p|rq〉 − 〈r p|qr〉]

×[〈(n̂r − 〈n̂r〉�S0 )n̂p〉�S0 − 〈(n̂r − 〈n̂r〉�S0 )n̂q〉�S0 ]

+4
∑

r

〈pq|rr〉

×[(1 − δr p)〈P̂†
r P̂p〉�S0 − (1 − δrq)〈P̂†

r P̂q〉�S0 ] = 0,

(55)

where Fpq ≡ Fpq({ϕr}, n�S0 ), and

Fpq({ϕr}, n) = hpq + 1

2

∑
r [2〈r p|rq〉 − 〈r p|qr〉]nr (56)

is the density matrix functional Fock matrix element. Note
that regular HF and NOFT equations can be recovered from
Eq. (55). In both cases, the two summations over the natural
orbitals r should be removed, either because they are equal
to zero (HF case) or because they are incorporated into the
(full) interaction functional W ({ϕp}, n) [NOFT case]. In the
HF case, the complementary (higher seniority) density matrix

functional W
S

({ϕp}, n) is neglected and the usual Fock oper-
ator expression for doubly occupied orbitals is recovered:

Fpq
HF−→ hpq +

occ.∑
r

[2〈r p|rq〉 − 〈r p|qr〉], (57)

thus leading to the HF equations. In the NOFT case, one
would proceed with the following substitutions,

Fpq
NOFT−→ hpq,

W
S

({ϕp}, n)
NOFT−→ W ({ϕp}, n),

(58)

thus leading to the regular NOFT equations for the natural
orbitals [33]. In the latter case, the occupation numbers are di-
rectly used as basic variables, i.e., they are not calculated from
an auxiliary many-body wave function, unlike in the present
approach. The construction of density matrix functional ap-

proximations to W
S

({ϕp}, n) as well as the self-consistent
implementation of Eq. (55), which are essential for turning
the theory into a practical computational method, are left for
future work. In the rest of this work, we assume that the exact
natural orbitals of the system under study are known and we
focus on the evaluation of the complementary (higher senior-

ity) natural orbital occupation functional energy W
S

(n�S0 )
[see Eq. (48)].

III. ADIABATIC CONNECTION FORMALISMS

We focus in the following on the practical evaluation of the

complementary higher seniority correlation energy W
S

(n�S0 )
[see Eq. (51)] which has been described in the previous sec-
tions as an implicit functional of the density matrix. For that
purpose, we derive in Sec. III A an exact adiabatic connection
(AC) formula in the basis of the exact natural orbitals. Along
such a (so-called constrained) AC path, the occupation of
the (true) natural orbitals is held constant. Approximations
along the AC (based either on second-order perturbation the-
ory or linear interpolations) are then discussed in Sec. III B.
For analysis purposes, we finally investigate in Sec. III C a
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simpler AC where the natural orbital occupations constraint
is relaxed. In this case, the reference seniority-zero wave
function does not reproduce the true density matrix anymore.
Nevertheless, integrating over the full relaxed AC path will
still provide the exact ground-state energy. For comparison
with the constrained AC, we also derive a second-order per-
turbation theory along the relaxed AC. The performance of
the various approximations will be discussed in the separate
Sec. V.

A. Exact constrained adiabatic connection

In order to obtain further insight into the higher seniority
natural orbital occupation functional of Eq. (47), we propose
to construct an AC path between the fictitious seniority-zero
�S0 wave function and the physical (fully interacting) one
�0 in the exact natural orbital basis of the latter {ϕp}. For
that purpose, we consider the following partially interacting
(ground-state) Schrödinger equation,

Ĥλ|�λ
0 〉 = Eλ

0 |�λ
0 〉, (59)

where λ varies continuously in the range 0 � λ � 1. Note that
we label as “0” the ground state along the AC since the excited
states will come into play (later in Sec. III B) when solving Ĥλ

in perturbation theory.
Let us denote

Ĥλ ≡ Ĥλ(ελ) (60)

and Eλ
0 ≡ Eλ

0 (ελ), where the partially interacting Hamiltonian
reads as follows, for an arbitrary potential ε ≡ {εp},

Ĥλ(ε) =
∑

p

εpn̂p + Ŵ S0
ee + λV̂, (61)

V̂ = Ŵee − Ŵ S0
ee +

∑
p
=q

hpqn̂pq, (62)

and n̂pq =∑σ â†
pσ âqσ . The potential ελ ≡ {ελ

p} is determined
along the AC from the natural orbital occupation constraint

{〈n̂p〉�λ
0
} ≡ n�λ

0 = n�0 = n�S0
, (63)

which, in complete analogy with Eq. (36), can be rewritten as
a Lieb maximization problem [119]:

ελ = arg max
ε

{
Eλ

0 (ε) − (ε|n�0 )
}
, (64)

where Eλ
0 (ε) is the ground-state energy of Ĥλ(ε).

As readily seen from Eq. (61), for λ = 1, the true phys-
ical Hamiltonian is recovered when ελ=1

p = hpp [the orbital
occupation constraint of Eq. (63) is fulfilled in this case], thus
leading to

Eλ=1
0 = E = (ελ=1|n�0 ) + 〈Ŵee〉�0 , (65)

where we used the fact that, by construction,

〈n̂pq〉�0

p
=q= 0. (66)

On the other hand, the seniority-zero wave function �S0 with
the same occupation numbers is recovered when λ = 0, thus
leading to the following simplified energy expression,

Eλ=0
0 = 〈Ŵ S0

ee

〉
�S0

+ (ελ=0|n�0 ). (67)

We stress that, by construction, the density matrix (which is
here evaluated in the exact physical natural orbital basis) is
diagonal in both λ = 0 and λ = 1 limits. However, unlike in
Ref. [48], we do not assume or expect the density matrix to
remain strictly diagonal along the AC. The present AC relies
on an orbital occupation constraint, not on a density matrix
one. Nevertheless, for the systems discussed in Sec. V, we
have observed numerically that the off-diagonal elements of
the 1RDM do not deviate substantially from zero when 0 <

λ < 1.
We can now evaluate along the AC path the complementary

higher seniority correlation energy of Eq. (53), in the particu-
lar case where n = n�0 = n�S0 . From the original expression

W
S ≡ W

S
(n�0 ) = 〈Ŵee〉�0 − 〈Ŵ S0

ee

〉
�S0

, (68)

which can be rewritten as follows [see Eq. (65) and Eq. (67)],

W
S = [Eλ

0 − (ελ|n�0 )
]
λ=1

− [Eλ
0 − (ελ|n�0 )

]
λ=0,

(69)

we obtain the following exact AC formula,

W
S =

∫ 1

0
dλ

[
∂Eλ

0

∂λ
−
(

∂ελ

∂λ

∣∣∣∣n�0

)]
(70)

=
∫ 1

0
dλWS,λ

, (71)

where, according to the Hellmann-Feynman theorem and the
orbital occupation constraint of Eq. (63), the higher seniority
integrand reads

WS,λ = 〈V̂〉�λ
0

(72)

= 〈Ŵee − Ŵ S0
ee

〉
�λ

0
+
∑
p
=q

hpq〈n̂pq〉�λ
0
. (73)

Note that WS,λ=0 = 0, by construction. Moreover, as pointed
out previously, 〈n̂pq〉�λ

0
vanishes in both fully interacting (λ =

1) and seniority-zero (λ = 0) limits but it can in principle
deviate from zero when 0 < λ < 1.

Once the λ-dependent integrand is determined, the total
ground-state energy can be evaluated, in principle exactly, as
follows [see Eq. (51)],

E = 〈Ĥ〉�S0 +
∫ 1

0
dλWS,λ

. (74)

The above formula and Eq. (73) are interesting in several
ways. First, as readily seen, the integrand plays a central role
in the description of higher seniority energy contributions.
Second, they can serve as a basis for the development of
approximations, as discussed further in the following.

B. Approximations along the adiabatic connection

As done before in the context of DFT [see, for exam-
ple, Refs. [120,121] and the references therein], we can
construct various approximate schemes by simplifying the
integrand expression. For example, by analogy with Görling-
Levy second-order perturbation theory (PT2) [122,123], we
may assume that the integrand varies linearly (with the slope
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obtained in the seniority-zero λ = 0 limit) along the AC:

WS,λ PT2≈ λ
∂WS,λ

∂λ

∣∣∣∣∣
λ=0

. (75)

According to Eq. (72) and perturbation theory that we apply to
Eq. (59) with an infinitesimal variation of the higher seniority
strength parameter λ, the first-order derivative of the integrand
can be expressed analytically as follows,

∂WS,λ

∂λ
= 2
〈
�λ

0

∣∣V̂∣∣∣∣∂�λ
0

∂λ

〉
(76)

= 2
∑
I>0

〈
�λ

0

∣∣V̂∣∣�λ
I

〉〈
�λ

I

∣∣ ∂Ĥλ

∂λ

∣∣�λ
0

〉
Eλ

0 − Eλ
I

, (77)

or, more explicitly [see Eqs. (60) and (61)],

∂WS,λ

∂λ
= 2

∑
I>0

〈
�λ

0

∣∣V̂∣∣�λ
I

〉
Eλ

0 − Eλ
I

× 〈�λ
I

∣∣V̂ +
∑

p

∂ελ
p

∂λ
n̂p

∣∣�λ
0

〉
, (78)

where the summation runs over the excited states of Ĥλ.
Note that in the λ = 0 limit, the excited states that con-

tribute to the perturbation expansion should be coupled to
the seniority-zero ground-state wave function �S0 through the
higher seniority Hamiltonian term V̂:

〈�S0 |V̂∣∣�λ=0
I

〉 
= 0. (79)

Obviously, pure seniority-zero solutions will be automati-
cally excluded from the expansion. In other words, only pure
higher seniority solutions [124–126] to Ĥλ=0 will contribute.
Note also that in complete analogy with Görling–Levy PT
[122,123], the integrand derivative can be rewritten as a PT2
energy correction. Indeed, according to the natural orbital
occupations constraint of Eq. (63),

0 = ∂〈n̂p〉�λ
0

∂λ
= 2
〈
�λ

0

∣∣n̂p

∣∣∣∣∂�λ
0

∂λ

〉
, (80)

thus leading to

〈
�λ

0

∣∣V̂∣∣∣∣∂�λ
0

∂λ

〉
= 〈�λ

0

∣∣V̂ +
∑

p

∂ελ
p

∂λ
n̂p

∣∣∣∣∂�λ
0

∂λ

〉

= 〈�λ
0

∣∣∂Ĥλ

∂λ

∣∣∣∣∂�λ
0

∂λ

〉
,

(81)

and, consequently [see Eq. (76)],

∂WS,λ

∂λ
= 2
〈
�λ

0

∣∣∂Ĥλ

∂λ

∣∣∣∣∂�λ
0

∂λ

〉
. (82)

Finally, from the first-order perturbation expansion in λ of �λ
0

[see Eq. (77)], we do recover (with a factor 2) a second-order

energy correction:

∂WS,λ

∂λ
= 2

∑
I>0

∣∣〈�λ
0

∣∣ ∂Ĥλ

∂λ

∣∣�λ
I

〉∣∣2
Eλ

0 − Eλ
I

= 2
∑
I>0

∣∣〈�λ
0

∣∣V̂ +∑p
∂ελ

p

∂λ
n̂p

∣∣�λ
I

〉∣∣2
Eλ

0 − Eλ
I

.

(83)

If we return to Eq. (75), integrating over the range 0 � λ �
1 [see Eq. (74)] leads to the following PT2-like total energy
expression,

E
PT2≈ 〈Ĥ〉�S0 + 1

2

∂WS,λ

∂λ

∣∣∣∣∣
λ=0

. (84)

As an alternative to PT2 for evaluating higher seniority
correlation energies, we may use linear interpolations (LIs) of
the AC integrand. In the simplest LI, we interpolate between
the seniority-zero (λ = 0) and fully interacting (λ = 1) limits.
We refer to this approximation as one-segment LI (1LI):

WS,λ 1LI≈ λWS,λ=1
, (85)

which gives the following energy expression after integration
over λ,

E
1LI≈ 〈Ĥ〉�S0 + 1

2
WS,λ=1

. (86)

We also consider in the present work a refined two-segment
LI (2LI) where we first linearly interpolate the integrand in
the range 0 � λ � 1/2 and then in 1/2 � λ � 1, i.e.,

WS,λ 2LI≈ 2λWS,λ=1/2 I[0,1/2[(λ)

+[2λ(WS,λ=1 − WS,λ=1/2
)

+2WS,λ=1/2 − WS,λ=1]× I[1/2,1](λ), (87)

where the indicator function is defined as follows,

IA(λ) =
{

1 λ ∈ A
0 λ /∈ A

. (88)

The corresponding 2LI energy, which is obtained by integrat-
ing over 0 � λ � 1, reads

E
2LI≈ 〈Ĥ〉�S0 + 1

2
WS,λ=1/2 + 1

4
WS,λ=1

. (89)

The performance of the various approximations we have in-
troduced within the present constrained AC (i.e., 1LI, 2LI, and
PT2) will be discussed in detail in Sec. V.

C. Relaxed adiabatic connection

For analysis purposes, we consider another (simpler) AC
formalism where the λ-independent physical potential ελ=1

p =
hpp is employed along the AC path, thus relaxing the natural
orbital occupations constraint of Eq. (63). In this relaxed AC,
the partially interacting Schrödinger equation reads(∑

p

hppn̂p + Ŵ S0
ee + λV̂

)∣∣�̃λ
0

〉 = Ẽλ
0

∣∣�̃λ
0

〉
. (90)
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The λ = 0 case corresponds to a DOCI-like calculation, where
a straight minimization of the energy 〈Ĥ〉 is performed over
seniority-zero wave functions (constructed here from the exact
natural orbitals):

Ẽλ=0
0 = min

�∈S0

〈Ĥ〉� = 〈Ĥ〉�̃S0 . (91)

Unlike the reference seniority-zero wave function �S0 intro-
duced previously, which is a functional of the ground-state
density matrix, the minimizing �̃S0 = �̃λ=0

0 solution does not
necessarily reproduce the exact natural orbital occupancies.
Since the true (physical) Schrödinger equation is recovered
from Eq. (90) when λ = 1, the exact ground-state energy can
be expressed as follows,

E = Ẽλ=1
0 = Ẽλ=0

0 +
∫ 1

0
dλ

∂ Ẽλ
0

∂λ
, (92)

or, equivalently [see Eq. (91)],

E = 〈Ĥ〉�̃S0 +
∫ 1

0
dλ W̃

S,λ

, (93)

where, according to the Hellmann-Feynman theorem and
Eq. (90), the relaxed AC integrand reads

W̃
S,λ = ∂ Ẽλ

0

∂λ
= 〈V̂〉�̃λ

0
. (94)

By analogy with Eqs. (75) and (84), an approximate PT2
scheme can be derived along the relaxed AC if we assume
that the integrand varies linearly in λ, i.e.,

W̃
S,λ PT2≈

relaxed AC
λ

∂W̃
S,λ

∂λ

∣∣∣∣∣∣
λ=0

, (95)

thus leading to the following PT2-like energy expression after
integration over λ:

E
PT2≈

relaxed AC
〈Ĥ〉�̃S0 + 1

2

∂W̃
S,λ

∂λ

∣∣∣∣∣∣
λ=0

. (96)

According to perturbation theory that we apply to the relaxed
AC Hamiltonian of Eq. (90) with an infinitesimal variation of
λ, the first-order derivative of the relaxed AC integrand reads
more explicitly

∂W̃
S,λ

∂λ
= 2

∑
I>0

〈
�̃λ

0

∣∣V̂∣∣�̃λ
I

〉〈
�̃λ

I

∣∣V̂∣∣�̃λ
0

〉
Ẽλ

0 − Ẽλ
I

. (97)

Note that, unlike the 1LI or 2LI approximations that have
been introduced in Sec. III B, PT2 relies solely on pure zero-
and higher seniority wave functions. As further discussed in
Sec. V, in relatively weak correlation regimes, PT2 system-
atically overestimates the higher seniority correlation energy,
when applied to the constrained AC. Its performance dramati-
cally improves when the relaxed AC path is followed instead.

IV. COMPUTATIONAL DETAILS

The reverse engineering procedure described in Eq. (64),
where the true natural orbital occupancies {n�0

p } are used as

input in the Lieb maximization, has been implemented to-
gether with the Block density matrix renormalization group
(DMRG) code [127–132]. The DMRG code is used to ob-
tain the ground-state energy of the λ-dependent Hamiltonian
[see Eqs. (59) and (61)] for any λ in 0 � λ � 1. The natural
orbitals were obtained by diagonalizing the 1RDM from the
reference calculation (FCI or DMRG) in the canonical orbital
basis. The DIIS algorithm has been used to find a set of
potential values {ελ

p} which satisfies

n
�λ

0 ({ελ
p})

p − n�0
p

!= 0. (98)

The threshold for convergence of the DMRG sweep energies
has been set to 10−10 hartree, and threshold for the Euclidian
norm of the residual in Eq. (98) has been set to 10−5. As
a proof of concept, we test our method on the metallic H4

linear chain (considering symmetric stretching) in the STO-
3G basis, the metallic H8 linear chain in the cc-pVDZ basis,
and the helium dimer [133] in the cc-pVDZ basis. In the latter
case, no basis set superposition error (BSSE) corrections have
been applied so that a direct comparison can be made with the
results of Ref. [96]. The number of renormalized states in the
DMRG calculation is set to m = 400 for He2 and m = 800
for H8. In the latter case, the DMRG energy with respect to
m converged with an order of 10−5 hartree (see Appendix D).
Molcas [134] has been used to compute the one- and two-
body electronic integrals. In order to further analyze the AC
integrand in the case of the H4 chain in the minimal basis (in
particular its variation along the AC), Psi4 [135] was used to
generate the electronic integrals and OpenFermion [136] was
used to construct the (λ-dependent) Hamiltonian that is then
diagonalized exactly in the subspace conserving the number
of particles and spin singlet.

V. RESULTS AND DISCUSSION

A. H4 chain in a minimal basis

1. AC and potential energy curves

Let us start with the H4 linear chain in the minimal
basis STO-3G. The “exact” (i.e., exact in the considered
minimal basis) and approximate integrands are shown in
Fig. 1 for interatomic distances R = 0.9 Å (top panel) and
R = 3.4 Å (bottom panel) corresponding to a weakly and
strongly correlated regimes, respectively. In analogy with
the one obtained in the approach of Pernal [49], our exact
AC integrand has a quadratic behavior with respect to λ.
However, it shows a much more pronounced curvature so that
the 1LI approximation, the PT2 approximation, or the linear
extrapolation schemes proposed in Ref. [48] are expected
to be less accurate. To improve over the PT2 approxima-
tion, the PT3 approximation as well as Padé approximants
have been considered for the constrained AC and are de-
tailed in Appendix C. As readily seen in Fig. 1, while the
PT3 and PT3-Padé approximations show some curvature, they
are still not sufficiently accurate. In contrast, the PT2-Padé
approximant—which is exact in the λ → 0 and λ → 1 limits
of the AC integrand—recovers a large part of the curvature by
construction.

We show in Fig. 2 the potential energy curves gener-
ated from both the AC with the natural orbital occupation
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FIG. 1. “Exact” and approximate higher seniority correlation
integrands evaluated along the constrained (simply referred to as
AC) and relaxed ACs for the H4 chain with interatomic distances
R = 0.9 Å (top panel) and R = 3.4 Å (bottom panel). Energies are in
atomic unit (hartree). See text for further details.

FIG. 2. Potential energy curves plotted for the H4 chain (with
equidistant hydrogen atoms) at both seniority zero (λ = 0), which
is equivalent to perturbation theory through first order, and higher
seniority (1LI, 2LI, or PT2) levels of approximation within the con-
strained AC. Results obtained from the relaxed AC are shown for
analysis purposes. See text for further details.

TABLE I. Equilibrium bond distance, total energy at equilib-
rium, and dissociation energy (in hartree) of the H4 chain computed
in the minimal STO-3G basis at the constrained and relaxed
seniority-zero (λ = 0) levels of approximation (which is equivalent
to perturbation theory through first order) and beyond. In the latter
case, PT2, 1LI, or 2LI energy corrections are applied [see Eqs. (84),
(86), and (89) for the constrained AC, and Eq. (96) for the relaxed
AC]. Comparison is made with FCI. The dissociation energy is
simply evaluated as the difference between the energies at R = 5 Å
and R = Req. See text for further details.

H4 Req (Å) Equilibrium energy Dissociation energy

λ = 0 0.86 −2.148979 0.617577
λ = 0 (relaxed AC) 0.87 −2.157561 0.626158
PT2 0.94 −2.201520 0.109404
PT2 (relaxed AC) 0.89 −2.179969 0.087854
1LI 0.88 −2.172768 0.378017
2LI 0.89 −2.178426 0.325506
λ = 1 (FCI) 0.89 −2.180501 0.314174

constraint (that we simply refer to as constrained AC in the
following) and its relaxed version, with and without higher
seniority correlation energy corrections [see Eqs. (84), (86),
(89), and (96)]. Equilibrium bond distances and total energies
as well as dissociation energies are also provided in Table I.
We see that the relaxed and constrained seniority-zero (λ = 0)
wave functions slightly underestimate the bond distance (in
comparison with FCI). However, they both overestimate (by
about 100%) the dissociation energy. The PT2 approximation
to the constrained AC systematically overestimates (roughly
by 100% for all bond distances) the higher seniority corre-
lation energy, with a large error on the total energy when
the chain is stretched. As shown in Table I, at this level of
approximation, the equilibrium bond distance is too long (in
comparison with FCI) and the dissociation energy is dra-
matically underestimated. On the other hand, approximating
the constrained AC integrand with a linear interpolation over
the entire interaction strength 0 � λ � 1 (1LI approximation)
gives much better (although too high) total energies. The equi-
librium bond distance is relatively accurate in this case (see
Table I). The error increases along the dissociation coordinate
R but remains substantially smaller than that of PT2. The 1LI
approximation substantially improves the description of the
dissociation energy. Linearly interpolating over the two seg-
ments 0 � λ � 1/2 and 1/2 � λ � 1 (2LI approximation) is,
by construction, designed to better account for the quadratic
behavior of the constrained AC integrand (see Fig. 1), thus
providing more accurate total energies for all bond distances,
as expected.

Let us now focus on the relaxed AC results. Unlike in
the constrained AC, the DOCI coefficients of the reference
seniority-zero wave function are determined by energy min-
imization. They are not expected to reproduce the “exact”
natural orbital occupancies but will obviously give a lower
(although not substantially better, even at equilibrium) total
energy when the higher seniority correlation energy is ne-
glected (see the “λ = 0” curves in Fig. 2). More interestingly,
around equilibrium, the relaxed AC integrand exhibits a very
weak curvature (see the top panel of Fig. 1) Therefore, the PT2
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FIG. 3. Potential values {ελ
p} computed along the constrained AC

[see Eq. (64)] for the H4 molecular chain in a minimal basis with
interatomic distances R = 0.9 Å (top panel) and R = 3.4 Å (bottom
panel). Energies are in atomic unit (hartree).

approximation to the relaxed AC (see Fig. 2) gives very accu-
rate total energies for bond distances shorter than R = 1.75 Å.
Beyond this distance, the results dramatically deteriorate and,
for R > 3.4 Å, the relaxed and constrained ACs give the same
total energies at the PT2 level of approximation. As a result,
the PT2 description of the dissociation energy worsens even
further when relaxing the AC (see Table I). As shown in Fig. 2,
in the latter case, the seniority-zero total energy is the same
(whether the AC is relaxed or not). Moreover, for R = 3.4 Å,
the two AC integrands are indistinguishable not only around
λ = 0, as expected from the PT2 results, but also for larger
higher seniority interaction strength values λ (see the bottom
panel of Fig. 1). Slight differences only appear in the vicinity
of λ = 1.

2. Potential and integrand slope along the AC

For further comparison of the constrained and relaxed ACs
at equilibrium and stretched geometries, we show in Fig. 3
“exact” potential values ελ

p over the natural orbital space (1 �
p � 4) and along the constrained AC (i.e., for 0 � λ � 1).
As readily seen from the top panel of Fig. 3, variations in
λ are quite substantial when R = 0.9 Å. We recall that the
λ-independent potential {ελ=1

p } is employed in the relaxed AC,

thus suggesting that constrained and relaxed AC curves should
indeed be different at equilibrium (the impact of the potential
on the shape of the AC integrand will be further rationalized
in the following). In contrast, in the stretched R = 3.4 Å
geometry, the dependence in λ of the potential is drastically
reduced (see the bottom panel of Fig. 3). Indeed, in this case,
the deviation |ελ

p − ελ=1
p | from the fully interacting (λ = 1)

potential never exceeds 7 millihartrees, against 0.5 hartrees
at equilibrium (see the top panel of Fig. 3). This explains
why the constrained and relaxed AC curves are essentially
on top of each other when R = 3.4 Å (see the bottom panel
of Fig. 1). At this point we should emphasize that the natu-
ral orbitals become singly occupied in the dissociation limit.
As a result, in the present minimal basis, the density matrix
becomes the identity matrix and the natural orbitals can be
arbitrarily rotated. In the stretched R = 3.4 Å geometry, the
natural orbital occupations are closed (but not strictly equal) to
1. Even though the natural orbitals are slightly more localized,
their expansion over the atomic orbitals resembles that of the
canonical HF orbitals in this case.

In order to further rationalize the shape of the constrained
and relaxed AC integrands, it is actually instructive to look
at their slopes in λ along the AC. Exact analytical expres-
sions are trivially obtained from static perturbation theory
[see Eqs. (83) and (97), respectively]. At equilibrium, the
substantial variations in λ of the potential along the con-
strained AC are expected to be reflected in the excitation
energies Eλ

I − Eλ
0 (i.e., the denominators in the perturbation

expansion). We do observe this feature numerically, as shown
in the top panels of Figs. 4 and 5 for the first and fourth excited
states, respectively. Unlike the former, the latter couples to the
ground state along the AC and the resulting contribution to
the perturbation expansion is significant. Note that, as readily
seen in Eqs. (83) and (97), AC integrand slopes will always be
negative, like a second-order ground-state energy correction
in perturbation theory. In the relaxed AC, the fourth excita-
tion energy is much smaller than that of the constrained AC
away from the fully interacting λ = 1 limit, especially in the
vicinity of the seniority-zero (λ = 0) limit. This is the reason
why the constrained AC integrand has a much steeper slope
at λ = 0 (see the top panel of Fig. 1). Finally, the expected
quasi-independence in λ of the excitation energies along the
relaxed AC, which leads to a relatively weak dependence in λ

of the integrand slope (especially for λ � 0.5), explains why
the PT2 approximation is relatively accurate in this case (see
the top panel of Fig. 1). Turning to the stretched R = 3.4 Å
geometry, the above-mentioned weak dependence in λ of the
potential along the constrained AC explains why the relaxed
AC essentially gives the same excitation energies (see the
bottom panels of Figs. 4 and 5) and, ultimately, to the same AC
curves. The slight differences observed in the vicinity of the
fully interacting λ = 1 limit (see the bottom panel of Fig. 1)
can be traced back to the coupling (through higher seniority
contributions to the Hamiltonian) between the ground and first
excited states, as shown in the bottom panel of Fig. 4. We can
also relate the sudden drop in slope, which is a peculiar feature
that both constrained and relaxed ACs exhibit when approach-
ing the latter limit, to both the increase of the coupling and
the drop of the first excitation energy. This feature appears
when the bond distance is larger than R = 2 Å (not shown). As
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FIG. 4. Detailed first-excited-state contribution to the derivative
in λ of the constrained (solid and dashed lines) and relaxed (solid
dots) AC integrands [see Eqs. (83) and (97)]. The two upper and
lower panels correspond to the H4 chain with bond distances R =
0.9 Å and R = 3.4 Å, respectively. See text for further details.

shown in Fig. 2, this is precisely the distance at which the PT2
description of the constrained AC is not accurate anymore.

B. H8 chain and Helium dimer

We now turn to the longer H8 chain and the helium dimer
for which the constrained AC has been implemented in the cc-

FIG. 5. Same as Fig. 4 for the fourth excited state. Constrained
and relaxed AC results are essentially on top of each other when
R = 3.4 Å (two lower panels).

pVDZ basis. As the number of orbitals is too large to perform
an exact diagonalization, we used the DMRG method to per-
form the Lieb maximization and compute the corresponding
AC integrand.

For comparison with Pernal’s AC formalism [48], we plot
in the top panel of Fig. 6 accurate and approximate AC inte-
grands for the stretched H8 chain with equidistant hydrogen
nuclei (R = 1.8 Å). Many features that have been discussed

TABLE II. Higher-seniority correlation energy W
S

computed along the constrained AC at various levels of approximation (see Sec. III B)
for the H8 chain, the Helium dimer, and the H4 chain. Relative deviations from the reference results are given in parentheses. The reference
method is DMRG for He2 and H8, and FCI for H4. The total energies are reported in Table III.

W
S

H8 chain (R = 1.8 Å) He2 (R = 3.1 Å) H4 chain (R = 0.9 Å) H4 chain (R = 3.4 Å)

Reference −0.466432 −0.055487 −0.034278 −0.320665
PT2 −0.975657(109%) −0.089689(62%) −0.054791(60%) −0.547304(71%)
PT3 −0.702535(51%) −0.075878(37%) −0.046463(36%) −0.433155(35%)
PT2-Padé −0.422700(−9%) −0.051760(−7%) −0.031894(−7%) −0.320182(−0.1%)
PT3-Padé −0.771226(65%) −0.078647(42%) −0.047984(40%) −0.457629(42%)
1LI −0.308280(−34%) −0.040870(−26%) −0.025332(−26%) −0.255112(−20%)
2LI −0.424164(−9%) −0.051930(−6%) −0.032126(−6%) −0.309438(−3%)
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FIG. 6. Constrained and relaxed AC integrands computed at var-
ious levels of approximation for the H8 molecular chain (top panel)
and the He2 molecule (bottom panel). DMRG results (simply re-
ferred to as “AC” and “relaxed AC”) are used as reference. Energies
are in atomic unit (hartree). For the large interatomic distance R =
30 Å, the AC integrand of He2 is zero (not shown).

previously for the H4 chain (at equilibrium) are essentially
recovered. We note, in particular, the pronounced curvature
of the constrained AC integrand that, by construction, PT2
and 1LI completely miss. As shown in Table II, like in H4

or the stretched He2 molecule (see also the bottom panel of
Fig. 6), the former and latter approximations substantially
overestimate and underestimate the higher seniority correla-
tion energy, respectively. As expected, a better description of
the constrained AC is obtained at the 2LI level of approxi-
mation (see Table II) or with the PT2-Padé approximant (see
Appendix C). These approximations thus lead to a better total
energy, obtained by adding the higher-seniority correlation
energy to the expectation value of the Hamiltonian com-
puted with the converged seniority-zero wave function (see
Table III).

FIG. 7. Stretching energy E (R) − E (R = 5 Å) curves of the he-
lium dimer computed at both seniority-zero (λ = 0) and higher
seniority (through linear interpolations of the constrained AC inte-
grand) levels of approximation. The relaxed seniority-zero (λ = 0)
curve is shown for analysis purposes. The DMRG curve, which is
bound (see Table IV), is used as reference. See text for further details.

If we relax the constraint on the natural orbital occupations,
the curvature of the AC integrand is drastically reduced, like
in the H4 chain at equilibrium, thus leading to a relatively
good description of the (relaxed) AC at both PT2 and 1LI
levels of approximation. Interestingly, similar features have
been reported by Pernal [48] for the stretched H8 chain within
a different AC formalism where, instead, a regular generalized
valence bond (GVB) wave function is used as reference (see
Fig. 2 of Ref. [48]). Still, we note that, for λ = 1, the relaxed
AC integrand is (in absolute value) larger by a factor 3 than
that of Pernal. This difference originates from the fact that, in
the present (relaxed or constrained) AC, the reference (λ = 0)
seniority-zero wave function is constructed from the “exact”
physical natural orbitals (i.e., those obtained in the λ = 1
limit of the AC). Since orbital optimization is of primary
importance in variational seniority-zero calculations [71,76],
relaxing the natural orbitals constraint, like in Pernal’s AC
[48], would further reduce the higher seniority correlation
energy. The resulting seniority-zero wave function would be
optimal energy wise but it would reproduce neither the exact
natural orbitals nor their occupancies.

This “dilemma” is also reflected in the stretching energy
curves of the helium dimer (see Fig. 7 and Table IV). In com-
parison with standard DMRG (which gives similar results to
FCI [96]), the reference (λ = 0) seniority-zero calculation of
the constrained AC dramatically overbinds: The equilibrium

TABLE III. The total energies using Hartree–Fock, FCI, and DMRG are reported, together with the expectation value of the Hamiltonian
computed with the converged seniority-zero wavefunction, for the H8 chain, the Helium dimer, and the H4 chain.

Total energy H8 chain (R = 1.8 Å) He2 (R = 3.1 Å) H4 chain (R = 0.9 Å) H4 chain (R = 3.4 Å)

Hartree-Fock −3.817791 −5.710322 −2.124260 −1.268200
〈Ĥ〉�S0 −3.663506 −5.719709 −2.146038 −1.545865
DMRG −4.129982 −5.775196 – –
FCI – – −2.180317 −1.866530
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TABLE IV. Equilibrium bond distance, total energy at equi-
librium, and stretching energy (in hartree) of the He2 molecule
computed in the cc-pVDZ basis at the constrained and relaxed
seniority-zero (λ = 0) levels of approximation (which is equivalent
to perturbation theory through first order) and beyond. In the latter
(constrained) case, 1LI and 2LI energy corrections are applied [see
Eqs. (86) and (89)]. Comparison is made with DMRG. The stretching
energy is evaluated as the difference between the energies at R = 5 Å
and R = Req. See text for further details.

He2 Req (Å) Equilibrium energy Stretching energy

λ = 0 2.2 −5.721112 0.003138
λ = 0 (relaxed AC) 2.5 −5.736052 0.000786
1LI 2.5 −5.761040 0.001440
2LI 2.7 −5.771703 0.000395
λ = 1 (DMRG) 3.1 −5.775196 0.000006

bond distance is underestimated by 0.9 Å and the stretching
energy is wrong by a factor 103. This observation clearly
shows the importance of the complementary higher seniority
density-matrix correlation functional in this context. Even
though the 2LI approximation recovers a substantial amount
of the missing correlation energy at equilibrium (see the
bottom panel of Fig. 6 and Table II), it fails in describing dy-
namical correlations at longer bond distances, thus leading to
an overestimation by a factor 102 of the stretching energy. Bet-
ter approximations to the higher seniority correlation energy
are definitely needed in this case. For the sake of complete-
ness, we verified numerically that, in the dissociated R = 30
Å geometry, the AC integrand equals zero for all λ values (not
shown), as expected for two separate two-electron systems
(each of them being described exactly by a seniority-zero
wave function). Note that the errors at λ = 0 (seniority-zero
limit) are substantially reduced when switching from the con-
strained to the relaxed AC, but they remain significant. As
expected from the comparison of Table IV (see the equilib-
rium energies) with Fig. 1 of Ref. [96], where the dissociation
curve of the helium dimer has been computed (without BSSE
corrections) with a variationally optimized antisymmetrized
product of strongly orthogonal geminals (APSG), these errors
would be further (and drastically) reduced by relaxing, in
addition, the natural orbital constraint. An accurate descrip-
tion of van der Waals interactions would still require both
post-seniority-zero treatment and BSSE corrections [96].

In summary, using as reference a seniority-zero wave func-
tion that reproduces the exact 1RDM (by analogy with DFT,
where the Kohn-Sham determinant is used for reproducing
the exact density) complicates the evaluation of the missing
higher seniority correlation energy, which is substantial, be-
cause the corresponding correlation integrand does not vary
linearly along the AC.

VI. CONCLUSIONS AND PERSPECTIVES

An alternative exact formulation of RDMFT, where the
(one-electron reduced) density matrix is mapped onto an ab
initio seniority-zero many-body wave function, has been de-
rived. The optimization of both the DOCI coefficients and
the natural orbitals has been discussed at the formal level.

Exact and approximate adiabatic connection (AC) formulas
have been derived and implemented in order to describe the
complementary higher seniority density matrix functional cor-
relation energy. Our proof-of-concept numerical calculations
clearly show that relying on a seniority-zero wave function
that reproduces the exact density matrix makes the description
of higher seniority correlation energies nontrivial. The latter
are indeed substantial in this case, and the corresponding AC
integrand has a pronounced curvature. As a result, neither
second-order perturbation theory nor a single-segment linear
interpolation will be adequate in this context.

In order to turn the present approach into a practical com-
putational method for modeling strongly correlated molecular
systems, various practical issues need to be addressed. First
of all, one should design density matrix functional approx-
imations to the higher seniority interaction energy which
is obtained by subtracting the seniority-zero density matrix
functional energy from the regular full interaction one. The
latter might be described with standard functionals, such as
the Piris natural orbital functionals (PNOFs) [32,33], possibly
with perturbative corrections [93], in order to fully describe
intrapair and interpair correlations. Power-type functionals
[20] might also be used, or functionals describing intergem-
inal correlation effects [133,137]. Turning to the design of
seniority-zero density matrix functional approximations, us-
ing the Richardson-Gaudin wave function as a model, as
recently proposed by Johnson et al. [138], is an appealing
idea. In order to evaluate numerically a seniority-zero in-
teraction energy in the present context, the single-particle
energies would be determined from the orbital occupation
constraint while the pairing strength could still be evaluated
variationally, like in Ref. [138]. Ultimately, we should be
able to construct a complementary higher seniority functional
that depends explicitly on the natural orbitals and their oc-
cupations, thus allowing for a self-consistent computation of
the natural orbitals and the seniority-zero wave function [see
Eqs. (49), (50), and (55)]. The challenge, as one follows the
above-mentioned strategies, is to ensure that the two (fully
and seniority-zero-only interacting) density matrix functional
approximations are merged in a consistent way. For exam-
ple, using PNOF5 [30] in this context would be irrelevant
as it does not include any higher seniority correlation effect
[90,139]. However, the on-top density functionals used in
Refs. [107,140] to recover the dynamical correlation missing
in the �NO approach could be used, as the on-top pair density
is expressed as a functional of the natural orbitals and their
occupations (see Eq. (34) of Ref. [107]). Note also that the
resulting higher seniority functional should in principle vanish
in the two-electron case.

Alternatively, a direct computation of the higher seniority
correlation energy, which then becomes an implicit functional
of the density matrix, can be performed using the AC formulas
in Eqs. (71) and (73). In analogy with recent works by Pernal
[48] and then Vu et al. [108], the extended random phase
approximation could be used for computing AC integrands.
One could also follow a different AC path, where the seniority
number gradually increases until the full configuration space
is covered, in the spirit of Refs. [63,141]. Ideally, the “poten-
tial” (i.e., the single-particle energies in the AC Hamiltonian)
should be adjusted along the AC so that the natural orbital
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occupation constraint is fulfilled. Note that natural orbitals
and occupations could be extracted from a regular (and lower
cost) NOFT calculation using PNOFs or power functionals,
for example. The above-mentioned implementation schemes
should obviously be explored further. This is left for future
work.

Finally, the computational burden of performing DOCI
calculations within our seniority-zero reformulation of
RDMFT can be bypassed by considering recent advances in
practical DOCI calculations, such as variational 2RDM-based
approximations [108,142–144], CIPSI [79], FCIQMC solvers
[145], a proper choice of Richardson-Gaudin states [146], the
pair parametric two-electron reduced density matrix approach
[74], or even using quantum computers [147]. One can also
truncate the configuration space by considering a maximal
degree of excitation [68], or by defining an active space for
each electron pair as in the �NO method [140]. pCCD and
Ap1rog are also appropriate candidates with mean-field cost
[62,69,70,72,73], although they might break down if quadru-
ple excitations are not negligible as they approximate the
amplitudes T4 by T 2

2 .
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APPENDIX A: HOHENBERG-KOHN THEOREM
IN THE NATURAL ORBITAL SPACE

The natural orbital basis is fixed in the following. Let
us consider two potentials {εp} and {ε′

p} that differ by more
than a constant, and the following ground-state seniority-zero
interacting Schrödinger equations:(

Ŵ S0
ee +

∑
p

εpn̂p

)
|�〉 = E |�〉 (A1)

and (
Ŵ S0

ee +
∑

p

ε′
pn̂p

)
|� ′〉 = E ′|� ′〉. (A2)

If we assume that � = � ′, then it comes from Eqs. (A1) and
(A2) that ∑

p

(ε′
p − εp)n̂p|�〉 = (E ′ − E )|�〉. (A3)

The ground-state wave function � can in principle be de-
termined from any seniority-zero Slater determinant 	J that
overlaps with � through a diffusion process:

|�〉 ∼ lim
τ→+∞ e−Ĥτ |	J〉, (A4)

where Ĥ = Ŵ S0
ee +∑p εpn̂p is the seniority-zero Hamiltonian

in Eq. (A1). Applying Ĥ repeatedly (through the exponential)
will allow electrons to jump from doubly occupied orbitals
in 	I to unoccupied ones. Exchange-time-inversion integrals
[see Eq. (8)] are central in this process. Thus we deduce the
following decomposition:

|�〉 =
∑
I∈S0

CI |	I〉, (A5)

which is expected to cover the entire seniority-zero subspace.
In other words, all CI coefficients are expected to be nonzero,
whatever the index I is. Therefore, inserting Eq. (A5) into
Eq. (A3) leads to∑

p

(ε′
p − εp)n	I

p = (E ′ − E ),∀I, (A6)

where n	I
p is the occupation of the natural orbital p in 	I . If

we now assign N − 2 electrons to a fixed set of natural orbitals
{pi}1�i� N

2 −1 and let the remaining two electrons occupy any
other orbital q, it comes from Eq. (A6):

2(ε′
q − εq)

q/∈{pi}= (E ′ − E ) − 2

N
2 −1∑
i=1

(ε′
pi

− εpi ), (A7)

thus leading to

ε′
q − εq

q/∈{pi}= c, (A8)

where c is a constant. As a result, applying Eq. (A6) to a
different situation where none of the {pi} orbitals are occupied
leads to

E ′ − E = Nc. (A9)

If we now keep only two electrons within the {pi} orbital
subspace, while redistributing the remaining N − 2 electrons
among the other orbitals, we finally obtain from Eqs. (A6) and
(A8):

2(ε′
q − εq)

q∈{pi}= (E ′ − E ) − 2
(N

2
− 1
)

c, (A10)

or, equivalently [see Eq. (A9)],

ε′
q − εq

q∈{pi}= c. (A11)

According to Eqs. (A8) and (A11), the two potentials differ
by a constant, which is impossible. Therefore, � 
= � ′.

If we now assume, for simplicity, that seniority-zero
ground-state energies are not degenerate, then〈

Ŵ S0
ee +

∑
p

εpn̂p

〉
�

<

〈
Ŵ S0

ee +
∑

p

εpn̂p

〉
� ′

(A12)

and 〈
Ŵ S0

ee +
∑

p

ε′
pn̂p

〉
� ′

<

〈
Ŵ S0

ee +
∑

p

ε′
pn̂p

〉
�

, (A13)

according to the Rayleigh-Ritz variational principle. If we as-
sume that � and � ′ have the same natural orbital occupations,
then

0 <
〈
Ŵ S0

ee

〉
�

− 〈Ŵ S0
ee

〉
� ′ < 0, (A14)
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which is impossible, thus establishing the one-to-one corre-
spondence between the ground-state natural orbital occupa-
tions {n�

p } and the potential {εp}.

APPENDIX B: STATIONARITY CONDITION
FOR THE NATURAL ORBITALS

The purpose of this Appendix is to prove Eq. (55). We
start from Eq. (14) whose expansion through first order in the
orbital rotation parameters gives

ϕp(κ)(r) = ϕp(r) +
∑

q

κpqϕq(r) + O(κ2), (B1)

or, equivalently,

ϕr(κ)(r) = ϕr (r) +
∑
s<r

κrsϕs(r) −
∑
s>r

κsrϕs(r) + O(κ2),

(B2)

thus leading to

∂ϕr(κ)(r)

∂κpq

∣∣∣∣
κ=0

= δr pϕq(r) − δrqϕp(r). (B3)

As a result, the first term on the left-hand side of Eq. (54) can
be written as follows [see Eq. (42)]:

(∂h(κ)/∂κpq|n�S0 )
∣∣
κ=0

= 2
∑

r

〈ϕr |ĥ|∂ϕr(κ)/∂κpq〉
∣∣
κ=0n�S0

r

= 2hpq
(
n�S0

p − n�S0

q

)
. (B4)

Turning to the second term on the left-hand side of Eq. (54),
we may rewrite the expectation value for the seniority-zero
interaction as [see Eq. (29)]

〈�S0 |Ŵ S0
ee (κ)|�S0〉 = 1

2

∑
p
=q

〈pq|pq〉κ〈n̂pn̂q〉�S0

−1

2

∑
p
=q

∑
σ

〈pq|qp〉κ〈n̂pσ n̂qσ 〉�S0

+
∑

pq

〈pp|qq〉κ〈P̂†
p P̂q〉�S0 , (B5)

or, equivalently [we use the simplified expression
〈n̂pσ n̂qσ ′ 〉�S0 = (1/4)〈n̂pn̂q〉�S0 which holds for seniority-
zero wave functions],

〈�S0 |Ŵ S0
ee (κ)|�S0〉

= 1

4

∑
rs

[2〈rs|rs〉κ − 〈rs|sr〉κ](1 − δrs)〈n̂r n̂s〉�S0

+
∑

rs

〈rr|ss〉κ〈P̂†
r P̂s〉�S0

= 1

4

∑
rs

[2〈rs|rs〉κ − 〈rs|sr〉κ]〈n̂r n̂s〉�S0

+
∑

rs

〈rr|ss〉κ(1 − δrs)〈P̂†
r P̂s〉�S0 , (B6)

where we used the fact that 〈P̂†
r P̂r〉�S0 = 1

4
〈n̂r n̂r〉�S0 . Since,

according to Eq. (B3),

1

2
∂〈rs|rs〉κ/∂κpq|κ=0 = δr p〈qs|rs〉 − δrq〈ps|rs〉

+ δsp〈rq|rs〉 − δsq〈r p|rs〉, (B7)

1

2
∂〈rs|sr〉κ/∂κpq|κ=0 = δr p〈qs|sr〉 − δrq〈ps|sr〉

+ δsp〈rq|sr〉 − δsq〈r p|sr〉, (B8)

and

1

2
∂〈rr|ss〉κ/∂κpq|κ=0 = δr p〈qr|ss〉 − δrq〈pr|ss〉

+ δsp〈rr|qs〉 − δsq〈rr|ps〉, (B9)

we obtain from Eq. (B6)

〈�S0 |∂Ŵ S0
ee (κ)/∂κpq|�S0〉∣∣

κ=0

=
∑

r

[2〈r p|rq〉 − 〈r p|qr〉][〈n̂r n̂p〉�S0 − 〈n̂r n̂q〉�S0 ]

+4
∑

r

〈pq|rr〉

×[(1 − δr p)〈P̂†
r P̂p〉�S0 − (1 − δrq )〈P̂†

r P̂q〉�S0 ].

(B10)

Finally, by expressing the third term on the left-hand side of
Eq. (54) as follows:

∂W
S

(κ, n�S0 )

∂κpq

∣∣∣∣∣
κ=0

= ∂W
S

({ϕr(κ)}, n�S0 )

∂κpq

∣∣∣∣∣
κ=0

=
∑

r

∫
dr

∂ϕr(κ)(r)

∂κpq

∣∣∣∣
κ=0

δW
S

({ϕr}, n�S0 )

δϕr (r)

≡
∑

r

〈
∂ϕr(κ)

∂κpq

∣∣∣∣
κ=0

∣∣∣∣∣δW
S

({ϕr}, n�S0 )

δϕr

〉

=
〈
ϕq

∣∣∣∣∣δW
S

({ϕp}, n�S0 )

δϕp

〉

−
〈
ϕp

∣∣∣∣∣δW
S

({ϕq}, n�S0 )

δϕq

〉
, (B11)

we recover Eq. (55) from Eqs. (B4), (B10), (54), and (56).

APPENDIX C: PT2/PT3-BASED PADÉ APPROXIMANTS
TO THE AC INTEGRAND

By analogy with the interaction-strength interpolation
schemes that have been developed in the context of DFT
[121,148–152], we propose two PT-based Padé approximants
to the AC integrand. In the first one, which is referred to as
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PT2-Padé approximant and reads

WS,λ PT2-Padé≈ − W1Wλ=1

Wλ=1 − W1

×

⎛
⎜⎜⎝1 − 1

1 − (Wλ=1 − W1)

Wλ=1
λ

⎞
⎟⎟⎠, (C1)

where we denote Wλ=1 = WS,λ=1
and W1 = ∂WS,λ

/∂λ|λ=0,
and the λ → 0 and λ → 1 limits of the AC integrand are
described exactly through first order (in λ) and zeroth order (in
λ − 1), respectively. At this level of approximation, the energy
(which is obtained after integration over λ) is exact through
second order in λ, and hence the name of the approximant.

The second approximant, which is referred to as PT3-Padé
and relies exclusively on the λ → 0 limit of the AC, reads

WS,λ PT3-Padé≈ −W2
1

W2

⎛
⎜⎜⎝1 − 1

1 − W2

W1
λ

⎞
⎟⎟⎠, (C2)

where W2 = 1
2∂2WS,λ

/∂λ2|λ=0. It reproduces the correct ex-
pansion of the integrand through second order in λ,

WS,λ PT3≈ λW1 + λ2W2, (C3)

and therefore is exact through third order in λ for the energy
(after integration over λ),

E
PT3≈ 〈Ĥ〉�S0 + 1

2
W1 + 1

3
W2, (C4)

and hence the name of the approximant. For completeness, we
derived the PT2-Padé and PT3-Padé energies that read

E
PT2-Padé≈ 〈Ĥ〉�S0 − W1Wλ=1

Wλ=1 − W1

− W1(Wλ=1)2

(Wλ=1 − W1)2
ln

∣∣∣∣1 − Wλ=1 − W1

Wλ=1

∣∣∣∣ (C5)

and

E
PT3-Padé≈ 〈Ĥ〉�S0 − W2

1

W2
− W3

1

W2
2

ln

∣∣∣∣1 − W2

W1

∣∣∣∣. (C6)

In the present work, W1 and W2 have been evaluated nu-
merically, for analysis purposes. In practice, exact analytical
expressions might be used instead [see Eq. (83) for W1].
Regarding W2, according to Eqs. (60) and (82), we have

1

2

∂2WS,λ

∂λ2
= 〈V̂λ〉 ∂�λ

0
∂λ

+ 〈�λ
0

∣∣V̂λ

∣∣∣∣∂2�λ
0

∂λ2

〉

+ 〈�λ
0

∣∣∂2ε̂λ

∂λ2

∣∣∣∣∂�λ
0

∂λ

〉
, (C7)

where we used the shorthand notations V̂λ = V̂ + ∂ε̂λ

∂λ
and

ε̂λ =∑p ελ
pn̂p. Since the last term on the right-hand side of

Eq. (C7) vanishes, according to the natural orbital occupations

constraint,

2
〈
�λ

0

∣∣∂2ε̂λ

∂λ2

∣∣∣∣∂�λ
0

∂λ

〉
=
∑

p

∂2ελ
p

∂λ2

∂〈n̂p〉�λ
0

∂λ
= 0, (C8)

the second-order derivative of the constrained AC integrand
can be written more explicitly in perturbation theory as fol-
lows [153],

1

6

∂2WS,λ

∂λ2

=
∑
I>0

∑
J>0

〈
�λ

0

∣∣V̂λ
∣∣�λ

J

〉〈
�λ

J

∣∣V̂λ
∣∣�λ

I

〉〈
�λ

I

∣∣V̂λ
∣∣�λ

0

〉
(
Eλ

0 − Eλ
I

)(
Eλ

0 − Eλ
J

)
− 〈�λ

0

∣∣V̂λ
∣∣�λ

0

〉∑
I>0

∣∣〈�λ
0

∣∣V̂λ
∣∣�λ

I

〉∣∣2(
Eλ

0 − Eλ
I

)2
+1

3

∑
I>0

〈
�λ

0

∣∣V̂λ
∣∣�λ

I

〉〈
�λ

I

∣∣( ∂2 ε̂λ

∂λ2

)∣∣�λ
0

〉
Eλ

0 − Eλ
I

. (C9)

Note that the last term on the right-hand side of Eq. (C9)
originates from the fact that, unlike in regular perturbation
theory, the perturbation operator contains second-order (and
higher) contributions [153–155]:

(λ + δ)V̂ + ε̂λ+δ = λV̂ + ε̂λ + δV̂λ

+δ2

2

∂2ε̂λ

∂λ2
+ O(δ3). (C10)

When rewritten as follows in terms of the first-order wave
function, it actually cancels out, as readily seen from Eq. (C8):

1

3

〈
∂�λ

0

∂λ

∣∣∣∣
(

∂2ε̂λ

∂λ2

)∣∣�λ
0

〉 = 0. (C11)

As a result, W2 can be evaluated exactly solely from the first-
order wave function, like in regular PT3:

1

6

∂2WS,λ

∂λ2
= 〈V̂λ〉 ∂�λ

0
∂λ

− 〈V̂λ〉�λ
0

〈
∂�λ

0
∂λ

∣∣∣ ∂�λ
0

∂λ

〉
. (C12)

APPENDIX D: CONVERGENCE OF THE DMRG ENERGY

The DMRG sweep energy for a given number of renor-
malized states m has a convergence criterion of 10−10 Eh.

TABLE V. DMRG energy in hartree with respect to the number
of renormalized states m.

H8 (R = 1.8 Å) He2 (R = 3.1 Å)
m DMRG energy m DMRG energy

100 −4.125716 20 −5.775195
200 −4.129171 40 −5.775195
300 −4.129746 100 −5.775195
400 −4.129900 200 −5.775195
500 −4.129949 300 −5.775195
600 −4.129969 400 −5.775195
700 −4.129978
800 −4.129982
1200 −4.129985
1600 −4.129986
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To assess the convergence with respect to m, we did several
calculations for different values of m reported in Table V.
According to Table V, m = 400 is more than enough for the
helium dimer, for which even 20 states are sufficient. For H8

in the cc-pVDZ basis, the DMRG energy is converged up to
10−5 hartree at m = 800, which we considered large enough
to neglect the effect of orbital ordering.

APPENDIX E: FIRST- AND SECOND-ORDER
DERIVATIVES OF THE CORRELATION INTEGRAND

The first-order derivative of the correlation integrand at
λ = 0 is required to compute the energy in the PT3 and
PT2-Padé approximations, in addition to the second-order
derivative at λ = 0 for the PT3-Padé approximations. They
have been estimated by fitting the correlation integrand using
the implementation of the nonlinear least-squares Marquardt-
Levenberg algorithm in gnuplot, in between λ = 0 and λ =
0.2. A polynomial of degree 2, i.e., aλ2 + bλ, has been

TABLE VI. Parameters (in hartree) obtained by fitting the corre-
lation integrand with the polynomial aλ2 + bλ in between λ = 0 and
λ = 0.2.

System a b

H4 (R = 0.9 Å) 0.0572817 −0.112019
H4 (R = 3.4 Å) 0.74256 −1.11383
He2 (R = 3.1 Å) 0.0997618 −0.185009
H8 (R = 1.8 Å) 1.7061 −1.97377

considered such that

∂WS,λ

∂λ

∣∣∣∣∣
λ=0

= b (E1)

and

∂2WS,λ

∂λ2

∣∣∣∣∣
λ=0

= a. (E2)

The values of a and b are reported in Table VI.
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