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The quantum tunneling current via an opaque barrier with an oscillating well reveals a wealth of physical
phenomena: eigenstate-assisted activation, the elevator effect, coherent destruction of tunneling, suppression of
activation, and the Sisyphus effect are a few examples. In this paper, we investigate these effects from a different
perspective—transmission via a quasibound super state (QBSS). It is shown that an oscillating well supports
a QBSS, which consists of numerous quasibound substates. Each one of these substates has a finite spectral
width, which corresponds to the escape probability. However, they construct a unique spectrum, which consists
of activated and suppressed quasi substates all of which are simultaneously excited. Thus, when the oscillating
well is integrated into an opaque barrier, one can borrow an analogy from stationary resonant tunneling (RT).
In the stationary RT scenario, current flows via a quasibound state. In the oscillating RT scenario, current flows
via a QBSS. This analogy can easily explain many of the system’s complex behaviors: the symmetry between
the current’s sensitivity to the incoming energy and the outgoing one, and even why some frequencies induce
activation while others suppress it. This analogy can be applied to improve the sensitivity of the system when
used for a frequency-controlled transistor for it predicts that when the incoming energy is shifted from the central
resonance of the QBSS, the device’s current becomes exponentially sensitive to the applied frequency. While the
oscillations’ frequency mainly determines the spectral distance between substates, the oscillations’ amplitude
determines the spectral width and center of the QBSS. Furthermore, it is suggested that this analogy can be
applied to investigate microbiological systems (the olfactory system) and optical devices.
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I. INTRODUCTION

A delta-function potential is often used as a model for a
small quantum structure like atoms, point defects, or quantum
dots. These “atom” models can be used in more complex
structures such as lattices and resonant-tunneling (RT) sys-
tems [1–10]. In RT systems, quantum particles tunnel through
an opaque barrier via a resonant quasibound state (QBS)
[3,11–14]. The QBS’s well can be conveniently modeled by
a delta-function potential [15–21]. However, this convenience
comes with a cost—due to the zero dimensions of this po-
tential, a delta-function well can have only one bound state,
and consequently, in an RT system, it can create only one
quasibound state. Therefore, it cannot be used to simulate a
multilevel system. However, there is at least one exception to
this fundamental property. If the delta function oscillates, the
bound state turns into a dynamic quasibound superstate. That
is, instead of a single infinitely narrow energy level (bound
state), the state is split into numerous quasibound substates.
Each one of these substates has a finite spectral width due
to its finite lifetime. All the substates are interconnected,
and since some substates have positive energy, they have a
finite probability to escape from the quasistate. However, if
the well is deep enough then this probability can be arbi-
trarily small. Thus, in practice, the oscillating delta-function
potential (ODFP) can support a superstate, which consists of
multiple interacting states, with an arbitrary long lifetime.
When the ODFP is placed in a barrier, the transmission

through the barrier can be regarded in a way that was missed,
to the best of our knowledge, in previous studies, namely:
resonant tunneling via a quasibound superstate (QBSS).

Tunneling in the presence of oscillations exhibits an
abundance of physical phenomena, which were studied for
numerous purposes: to calculate the tunneling time [22], to
study odorant-receptor interaction in the olfactory system
[23–26], to study activation processes [16,17,27–30], and
even tunneling and RT suppression in nanometric devices
[15,18–21,31–36].

It was found that this relatively simple system reveals a
wealth of physical phenomena much beyond expectations. It
was expected that the oscillations would stimulate tunneling
[16,17,22,27–29] and it would even be anticipated that an
elevator effect would appear [16,17], i.e., that the incoming
particle’s energy can be elevated by the varying potential. Yet,
the system’s behavior exceeded expectations. It was found
to be extremely sensitive to the incoming particle’s energy
and for certain energies, the tunneling current was consid-
erably suppressed [15,18,19,34], while the suppression was
explained as destructive interference between transition paths
[15,18,33,34]. Similarly, certain energies are excluded from
the outgoing particle’s spectrum [15,18,19]. It should be noted
that the spectral width of the excluded energies is exponen-
tially narrow. The similarities between the sensitivity to the
incoming particle’s energy and the outgoing particle’s spectra
suggest that there is an inner structure, which deserves more
research. Moreover, all the energy excitations are coupled, i.e.,
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FIG. 1. The system under study. An energetic particle tunnels
through an opaque barrier with an oscillating well at its center. The
well oscillates with frequency ω. U is the barrier height, �in is
the incoming energy, and U + �B is the central quasibound energy
where �B is defined by the well’s parameters [Eq. (10)]. �out is
the outgoing energies (arrows’ width indicates different transmission
probabilities).

it is impossible to excite one without the other, while different
energies are excluded.

The main object of this paper is to show that all these
complicated behaviors can be attributed to the existence of
a QBSS, and the current via a barrier with an oscillating
well can be described as RT via a QBSS. As the usage of
a quasibound state simplifies and explains the phenomenon
of resonant tunneling, using the existence of a QBSS in a
barrier can considerably simplify the understanding of all
these complicated phenomena.

Therefore, in this paper, we take a different approach from
the ones taken by us or others. First, while destructive interfer-
ence can explain tunneling suppression, it cannot explain the
coupling between the different excitations. Therefore, unlike
other works, which investigated different temporal potential
variations [15–18,37–39], in this research we focus on a har-
monically oscillating potential to create spectrally split states
as Floquet theory teaches [34,40]. Second, we do not follow
the Floquet methodology. Instead of seeking a Floquet state,
we investigate tunneling via the QBSS, which is not periodic
and therefore not a Floquet state. Floquet states are stationary
states of the system. The QBSS, on the other hand, is like a
resonant state, i.e., it is a quasiunstable state, which does not
have a real eigenenergy, and therefore cannot be a Floquet
state. Third, since we aim to show that the QBSS presence is
the cause of these effects, unlike Refs. [19,21,22,41] which
directly solved a scattering problem, we first investigate the
QBSS properties and only then do we incorporate it in an RT
process. The presence of the QBSS as a physical entity was
missed in previous studies.

The main claim is, therefore, that as the concept of tun-
neling via a resonant state simplifies the understanding of an
RT process, the concept of tunneling via a QBSS simplifies
considerably the understanding of the tunneling process via
an oscillating potential well.

II. SYSTEM

The quantum system under study is presented in Fig. 1.
The incoming particle hits an opaque barrier whose height
is U and width is 2L. At the center of the barrier, there is

FIG. 2. An oscillating delta-function potential well supports a
QBSS. ω is the oscillations’ frequency and �B is the central quasi-
bound energy [Eq. (10)]. The QBSS’s spectrum consists of multiple
substates energies (11); some (red ones) are more excited than others
(gray ones).

an oscillating well, which is modeled by an oscillating delta
function. This system can be formulated using the following
Schrödinger equation:

i
∂ψ

∂t
= − ∂2

∂x2
ψ + V (x)ψ + (α + β cos ωt )δ(x)ψ, (1)

where the units were taken for convenience that the Planck
constant is h̄ = 1 and the particle’s mass is m = 1/2, and

V (x) =
{

U
0

|x| < L
else

. (2)

As was explained in the Introduction, we will first study
the superstate that the oscillating well supports.

III. DYNAMIC QUASIBOUND SUPERSTATE

To investigate the superstate, we can omit the barrier, and
study the eigenstates of the oscillating delta-function well (see
Fig. 2). Therefore, the system can be formulated by a similar
Schrödinger equation, but without the barrier [V (x) = 0], i.e.,

i
∂ψ

∂t
= − ∂2

∂x2
ψ + (α + β cos ωt )δ(x)ψ. (3)

Note that the well imposes that α < 0.
Since the potential is periodic, according to the Floquet

theory [34], the states of the systems are periodic as well,
and therefore can be written as a superposition of discrete
energies’ states. However, the quasibound-state solution of
Eq. (3) 	B(x, t ) is not a Floquet state. It is not a stationary-
periodic state, but a dissipative one. When a particle is initially
bounded to this potential it will eventually dissipate to the con-
tinuum by absorbing phonons’ energy quanta. Only when the
oscillations’ frequency is considerably lower than the well’s
depth can this dissipation be neglected and 	B(x, t ) can be
written as a superposition of discrete energies as well, i.e.,

	B(x, t ) = N
∞∑

n=−∞
tn exp (ikn|x| − i�nt ), (4)

where �n ≡ � + nω, kn ≡ √
�n = √

� + nω, and N is the
normalization constant.
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On the other hand, in the adiabatic regime, the particle’s
eigenstate must follow the potential’s temporal changes, i.e.,

	B(x, t )

N
∼= exp

[
− (α + β cos ωt )|x|

2
+ i

(
α2

4
+ β2

8

)
t

+ i
αβ

2ω
sin ωt + i

β2

16ω
sin 2ωt

]
, (5)

wherein this case the normalization constant satisfies N =√
(α + β cos ωt )/2. We will see below that since the prob-

ability to escape from the well is exponentially small, this
adiabatic solution can be applied in a wide range of frequen-

cies, provided the well is deep enough and the oscillations’
amplitude is low enough. Therefore, for any frequency, one
can find suitable well’s parameters (α and β in this example)
that allow using this approximation. Therefore, Eq.(5) can be
used as a good approximation for the exact solution. To find
the numerical solution, Eq. (4) should be substituted in (3) to
receive the following difference equation for the coefficients
tn:

(α − 2ikn)tn + β

2
(tn+1 + tn−1) ∼= 0. (6)

Such a solution exists provided the following determinant
vanishes:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
. . .

. . . α − 2ik−2 β/2
β/2 α − 2ik−1 β/2

β/2 α − 2ik0 β/2
β/2 α − 2ik1 β/2

β/2 α − 2ik2
. . .

. . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∼= 0. (7)

Since the QBSS is not a Floquet state, there is no energy
that solves Eq. (7) exactly but only approximately, i.e., for any
finite matrix the states’ energies are the minima of (7) (instead
of its zeros).

Clearly, if �B solves (7) then so does �B,n = �B + nω

because Eq. (6) does not depend separately on � and nω but
only on their combined term � + nω. Therefore, we conclude
that the QBSS has to consist of an infinite number of modes.
Equation (7) can be rewritten to the second order of β as

1 −
(

β2

4

) ∞∑
m=−∞

1

(α − 2ikm)(α − 2ikm+1)
∼= 0. (8)

Or, equivalently, for every m,

1

(α − 2ikm)(α − 2ikm+1)
+ 1

(α − 2ikm−1)(α − 2ikm)
∼= 4

β2
.

(9)
The solution of Eq. (9), again up to the second order in β,

is

�B
∼= −1

4

(
α2 + β2

2

)
, (10)

and therefore, the generic solutions of (7) are

�B,n
∼= �B + nω (11)

for any integer n.
Correspondingly, the eigenvectors of Eq. (6) stand for the

coefficients of the eigenstates of the QBSS. It should be noted
that (10) is consistent with the time-independent part of the
frequency of the adiabatic approximation of the QBSS (5). In
the approximation where the oscillations’ amplitude is weak
in comparison to the well’s depth, i.e., β2 � α2 then (5) can

be rewritten approximately,

	B(x, t ) ∼= exp (−i�Bt )

×
∞∑

n=−∞

√
κn exp (−κn|x| + inωt )(−1)nJn

(
αβ

2ω

)
,

(12)

where κn ≡ √−�B + nω and Jn(x) are Bessel functions of the
first kind [42]. Equation (12) can be rewritten for simplicity in
a more compact form as

	B(x, t ) ∼= 2 exp (−i�Bt )

×
∞∑

n=−∞
κ3/2

n G�B,n (x) exp (inωt )(−1)nJn

(
αβ

2ω

)
,

(13)

where

G�B,n (x) = exp
(−√−�B,n|x|

)
2
√−�B,n

(14)

is the Green function of the stationary Schrödinger equation
[Eq. (3)],

− ∂2

∂x2
G�B,n (x) − �B,nG�B,n (x) = δ(x), (15)

which means that the QBSS consists of infinite substates, each
of which has a probability

pn ∼ |Jn(αβ/2ω)|2 (16)

and the coefficients tn should satisfy

tn ∼= Jn(αβ/2ω). (17)

In Fig. 3 we compare these coefficients to the exact solu-
tion.
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FIG. 3. Comparison between the slowly varying approximation
Eq. (16) (dashed curved) to the exact solution (solid curve) of (6) for
the parameters α/

√
U = −1.6, β/

√
U = 0.01, and ω/U = 1.14 ×

10−3.

In the deep-well regime (i.e., adiabatic regime) many
phonons have to be absorbed by the particle to be excited out
of the well [n ∼ (α2/4 + β2/8)/ω � 1], and since for large
n, |Jn(z)|2 ∼ 1

2πn ( ez
2n )2n, then the probability of escaping the

well is exponentially small:

pescape ∼ 2ω

πα2

(
eβ

|α|
)(α2/2ω)

, (18)

where e is Euler’s number. Equation (18) is consistent with
the premise that the adiabatic regime is valid provided the
oscillations are weak in comparison to the well’s depth. When
this condition holds (i.e., ω � α2), the probability to escape
from the oscillating well is negligible, and the adiabatic ap-
proximation (5) is valid. Equivalently, the spectral width of the
substates is on the order of Pescapeα

2. When the spectral dis-
tance between the subenergies is much larger than their width,
i.e., Pescapeα

2 � ω, the periodic adiabatic approximation is
well defined, which, according to (18) holds when ω � α2.

It should be noted that the transmission amplitudes |tn|2 are
larger at the spectrum’s edges (see Fig. 3) since these energies
correspond to the well’s maximum and minimum position, in
which the well lingers the most.

IV. ELEVATED QUASIBOUND SUPERSTATE

Next, we add a barrier (2) and return to Eq.(1). It is there-
fore taken that the oscillating well is located at the center of
a stationary barrier. Now the system still supports a QBSS. In
this case, the bounded particle has another way of escaping
from the well—it can tunnel out of it. When the barrier is very
opaque, i.e., it is very wide or very high, the tunneling proba-
bility is negligible in comparison to the excitation probability,
and therefore, there is no substantial difference in the spectral
width of the substates, in which case the transmission through
the barrier should reveal an exponentially large finesse:

f inesse ∼ πα2

2

(
α

eβ

)(α2/2ω)

. (19)

However, as the barrier becomes more transparent the tun-
neling probability

ptunnel ∼ U exp
(−2

√
U − α2/4L

)
(20)

becomes the main contributor to levels’ spectral width, in
which case the finesse decreases substantially,

finesse ∼ ω

U
exp

(
2
√

U − α2/4L
)
. (21)

Now Eq. (4) should be modified accordingly to

	QB(x, t ) =
∞∑

n=−∞
tnϕ

+
n (|x|) exp (−i�nt ), (22)

where ϕ±
n are the homogeneous solutions (when the well is

absent) of the Schrödinger equation,

− ∂2

∂x2
ϕ±

n + [V − �n]ϕ±
n = 0, (23)

which represent propagating waves through the barrier from
left (right) to right (left), respectively. Therefore,

ϕ+
n → τ�n exp [iknx − i�nt] (for x → ∞), (24)

ϕ−
n → τ�n exp [−iknx − i�nt] (for x → −∞), (25)

and |τ�|2 is the probability to penetrate the barrier with energy
�. Substituting (22) in (1), Eq. (6) can be replaced with

0 = (α − χn)sn + β

2
(sn+1 + sn−1), (26)

where sn ≡ tn(ϕ+
n /ϕ+

0 ) and χn ≡ ϕ+
n

ϕ+
n

− ϕ−
n

ϕ−
n

= 1
gn(0) , where

gn(0) = − coth[ρnL+i arctan(kn/ρn )]
2ρn

is the Green function at x = 0

[15,19], and ρn = √
U − �n.

The ratio ϕ+
n /ϕ+

0 can be written explicitly:

ϕ+
n (0)

ϕ+
0 (0)

= 1 + rn

1 + r0
= 1 + exp [−2ρnL + 2iatan(kn/ρn)]

1 + exp [−2ρ0L + 2iatan(k0/ρ0)]
.

(27)
In the case of an opaque barrier, the QBSS can now be

approximated by

	B(x, t ) ∼= 2 exp [−i(U + �B)t]

×
∞∑

n=−∞
�

3/4
B,nGU+�B+nω exp (inωt )(−1)nJn

(
αβ

2ω

)
,

(28)

because, when the barrier is very opaque, the QBSS keeps
its form for a very long period, albeit it may be consider-
ably shorter than in the case where the barrier was missing
and most of the substates had negative energies. Now, these
resonances energies, which correspond to the quasisubstates’
energies are approximately

�R ∼ U + �B + nω ∼= U − 1

4

(
α2 + β2

2

)
+ nω. (29)
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FIG. 4. Current through the barrier as a function of the incom-
ing particle’s energy. The numerical parameters are β/

√
U = 0.1,

α/
√

U = −2.63, ω/U = 0.01, L
√

U = 3, and U = 3.

V. RESONANT TUNNELING VIA THE QBSS

Next, we address the RT scenario, i.e., the case where an
incident particle hits the barrier with a given energy �. The
wave function then can be written as

ψ (x, t )

=

⎧⎪⎪⎨
⎪⎪⎩

ϕ+
0 exp (−i�0t ) +

∞∑
n=−∞

rnϕ
−
n exp (−i�nt ) x < 0

∞∑
n=−∞

tnϕ+
n exp (−i�nt ) x > 0

,

(30)

wherein this case the difference equation reads

−χnδ(n) = (α − χn)sn + β

2
(sn+1 + sn−1) (31)

and the current through the barrier is

j =
∞∑

n=−∞
|tn|2|τn|2kn. (32)

The current as a function of the incoming particle’s energy
is plotted in Figs. 4 and 5. The resonances are clearly seen.
Moreover, the wider the barrier, the narrower the spectral
peaks.

Clearly, the spectra are not symmetric because particles
with higher energy can tunnel more easily through the barrier.
When the coefficients themselves are presented as a function
of the incoming energy, the symmetry reappears. Not only
do we see the symmetry between high and low energy (in
comparison to the resonance energy �R) but there is a clear
symmetry between �in and �out. This picture is consistent
with the excitation of the QBSS. All the substates are inter-
connected, and therefore they cannot be excited separately.
Therefore, the probability that an incoming plane wave with
energy �in, i.e., the state |�in〉, will excite the QBSS |	QB〉 is

pex ∼ |〈�in | 	QB〉|2. (33)

FIG. 5. Same system as Fig. 4, but with a wider barrier
(L

√
U = 4).

And, the probability of the QBSS tunneling out of the
barrier with energy �out to the free state |�out〉 is

ptun ∼ |〈	QB | �out〉|2. (34)

Therefore, the probability of an incoming particle with
energy �in tunneling out with energy �out is

p�in,�out ∼ |〈�in | 	QB〉|2|〈	QB | �out〉|2. (35)

In the case of a deep well, this expression can be approxi-
mated by

p�in,�out ∼
∣∣∣∣Jn

(
αβ

2ω

)
Jm

(
αβ

2ω

)∣∣∣∣
2

, (36)

where n = (�in − �R)/ω and m = (�out − �R)/ω.
Equation (36) is consistent with Fig. 6.
One of the clear conclusions from (36) is that the excited

substates are

−αβ

2ω
< m <

αβ

2ω
,

FIG. 6. Transmission coefficients |tn|2 as a function of the in-
coming and outgoing energies. The darker the color, the higher the
probability value. The dashed line represents the resonance energy
value �R. The parameters are as in Fig. 5.

032201-5



GILAD ZANGWILL AND ER’EL GRANOT PHYSICAL REVIEW A 106, 032201 (2022)

which means that the QBSS consists of approximately αβ/ω

substates. Therefore, since the spectral distance between sub-
states is ω, then the spectrum of the QBSS is �� ∼ αβ, which
is consistent with the “particle” picture, in which the particle’s
energy varies with the bound energy of the varying well, i.e.,
the change is difference between the maximum −(α−β )2/4
and minimum −(α + β )2/4 values of the quasibound state.
As was explained above, at these maximum and minimum en-
ergies of the spectrum the well lingers the most and therefore
the transmission energies are higher.

VI. SUPPRESSED STATES

The probability to excite the QBSS pex can be used to
calculate the energies in which activation is suppressed. Ac-
cording to (36) the energies for which the Bessel function
vanishes are the ones that suppress tunneling. In the regime
of low oscillations frequencies, the Bessel function can be ap-
proximated by Jn(z) ∼ √

2/πz cos(z−nπ/2−π/4) [42], and
therefore the suppression occurs for

�in = �∗
m for m = 0,±1,±2, . . . , (37)

when

�∗
m

∼= U −
(

α2

4
+ β2

8

)
±

[ |α|β
π

− 2ω

(
m + 3

4

)]
. (38)

These suppression energies are consistent with
Refs. [15,18], where a generic expression was derived
for suppressing energies, namely

∫ t1

0
{E − [U − �B(t ′)]}dt ′ = (

m − 1
4

)
π, (39)

wherein this case �B(t ) ≡ (α + β cos ωt )2/4, and since E ∼=
�R then t1 ∼= π/2ω. It should be stressed that in Refs. [15,18]
the QBSS was not even discussed. Equation (38) is an ex-
cellent approximation at the vicinity of the center of the
spectrum, but for energies far from the center of the spectrum,
this approximation is no more valid and at the edges of the
spectrum we suggest a different approximation: Since the
quasibound energy �B(t ) oscillates, it has a minimum and
maximum energy (both lower than the barrier height). By ap-
proximating these minimum (maximum) curves to a parabola,
we find the energies at which activation is suppressed:

�±
m = U − 1

4
(β ∓ α)2 ± (

β2 − αβ
)1/3

[
3ω

4

(
m + 3

4

)
π

]2/3

.

(40)
Equation (40) is consistent with Refs. [15,18,19] and

shows excellent agreement with the numerical results.
In Fig. 7, the logarithm of the current [ln(J )] as a function

of the incoming energy �in and as a function of the vibra-
tions’ amplitude β, is presented (exact numerical solution).
The larger the amplitude β, the wider the spectrum. Black
spots represent high current while white spots represent low
current. In the right figure [Fig. 7(b)], the analytical solutions
are presented above the numerical solution: the red dashed
curves represent Eq. (40) (for) m = 0 and m = 1 and the
dotted red curves represent the solutions of Eq. (38) (for)
m = 2 and m = 3. There is an excellent agreement between

(a) (b)

FIG. 7. Outgoing current as a function of the incoming energy
�in/�r and as a function of the vibrations’ amplitude β, where �r =
U − α2/4. The darker the color, the higher the current. (a) stands for
the numerical solution. (b) The approximate analytical solutions are
presented above the numerical solution. The dashed curves represent
Eq. (40) for m = 0 and m = 1 and the dotted curves represent the
solutions of Eq. (38) for m = 2 and m = 3. The parameters are
U = 1, L

√
U = 6, α/

√
U = −1.6, and ω/U = 0.002.

the approximated analytical results and the exact numerical
results.

In Fig. 8 we present the same parameters as in Fig. 7 but
for a larger range of amplitudes and a narrower spectrum
range. One of the purposes of this graph is to show the square
dependency of the resonance energy �R on the vibrations’
amplitude β.

In a stationary scenario where the coefficient of the
delta-function potential is time independent (i.e., β = 0), the
quasibound energy is simply �r = U − α2/4, and there is
only one specific quasibound state, but when the potential

FIG. 8. Outgoing current as a function of the incoming energy
�in and the vibrations’ amplitude β. The darker the color, the higher
the current. Equation (29) is presented by blue dashed curves and
Eq. (38) is presented by red curves. The parameters are the same as
in Fig. 7.
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FIG. 9. Frequency-controlled transistor schematic. A conducting
layer (the well in our model) is sandwiched between two insulators
(barriers). The conductor can be a semiconductor or a metal layer
and the insulators can be oxide or semiconductor layers. An external
gate controls the well’s oscillations. The whole device can be a few
nanometers wide.

oscillates with amplitude β and frequency ω, the resonance
energy is shifted proportionally to β2, and the single qua-
sibound state splits into interconnected substates which the
superstate consists of. Equation (29) is an approximate for-
mula that describes the shift in energy and the splitting into a
superstate. Equation (29) is presented in Fig. 8 by blue dashed
curves. Since we exhibit only a narrow spectral width around
the center of the spectrum, Eq. (38) gives excellent results for
any amplitude β. The suppressed energies [Eq. (38)] are pre-
sented in red curves. There is an excellent agreement between
the exact numerical results and the approximated analytical
results.

VII. DISCUSSION AND APPLICATIONS

It has been shown above that when the well oscillates a
QBSS is generated, and the transmission via a barrier with
the oscillating well can be interpreted as RT via a QBSS. By
using this analogy a better intuition can be developed, which
simplifies the understanding of these complicated processes.
Moreover, the intuition which is developed by the QBSS can
be used to develop dynamic quantum and optical devices. In
what follows we use the QBSS properties in a quantum device,
in an optical device, and even in a quantum-biological system.

A. High-precision frequency-controlled transistor

As was discussed in the previous sections, the QBSS con-
sists of interconnected multiple quasilevels. This property
can be utilized to design an extremely sensitive transistor.
In such a device the current is controlled by the frequency
of the oscillations. Since frequency can be modified with
great precision (much higher than possible with voltage or
currents), this transistor can exhibit superior performances
over state-of-the-art ones. Furthermore, the depth of the well
(or the particles’ Fermi energy) can be modified to reach the
optimized sensitivity.

It has been suggested before to use oscillating well as a
controller for a frequency-controlled transistor (see Fig. 9);
however, the QBSS analysis gives an added value. It teaches
that it is worthwhile to create a spectral shift between the
well’s depth and the particles’ Fermi energy. In previous
works [15,18–20], the analysis of such a device was focused

 

FIG. 10. Output current as a function of the oscillation frequency
ω for two different inputs. The black curves correspond to the input
energy �in = �R (the central resonance energy) and the red curves
represent the input energy �in = 1.0158 · �R. The solid curves rep-
resent the case L

√
U = 8 and the dotted curves correspond to the

case where the barrier width is L
√

U = 6. The other parameters are
U = 1, α/

√
U = −1.6, and β/

√
U = 0.01.

on the central energy of the QBSS �in = �R. In this case,
the well’s frequency determines whether there will be destruc-
tive or constructive interference. However, the QBSS analysis
reveals an insight that while the spectral width of the qua-
sisubstates varies with the frequency, the central energy does
not. Therefore, if the Fermi energy is higher (lower) than the
central energy, then the system becomes more sensitive to the
frequency because an exponentially small change suppresses
the system’s resonance. This point was missing in previous
works on these systems. In Fig. 10 this fine sensitivity is
illustrated. When the energy of the incoming particle (the
Fermi energy) is equal to the central energy �in = �R, then
the system has a mild dependence on the well’s frequency
and has no dependence on the barrier’s opaqueness. However,
when there is an energy shift between the well’s eigenenergy
and the incoming particle’s energy, the current becomes much
more sensitive to frequency variations, and the sensitivity is
related to the resonances’ spectral width, which depends ex-
ponentially on the barrier’s width. Therefore, this property can
be used to improve the transistor’s sensitivity and precision.

B. QBSS in odor-receptor mechanism

There are several pieces of evidence that indicate that the
biological olfactory system is based on a dynamic RT mech-
anism [23–26]. The biological olfactory system distinguishes
between an enormous number of molecules using a relatively
small number of different receptors (about a few hundred
different receptors in most mammals) [43,44]. A specific
odorant can activate multiple receptors, and a specific recep-
tor can be activated by multiple molecules. Thus, different
molecules trigger a different combination of receptors [44,45].
The mechanism by which a molecule triggers a receptor is
not well understood and is usually described by two major
theories: the docking theory [46,47], and the vibration theory
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FIG. 11. Odor receptor schematic. To activate the receptor, elec-
trons must tunnel across the receptor’s structure (the barriers in our
model). The tunneling current leads to the release of a G protein for
further interactions. Only specific odorants (the well in our model)
with specific vibrational frequencies (ω) will activate any given
receptor.

[23,24]. Reference [23] suggests that the interaction between
odorant and receptor is governed by a quantum tunneling
mechanism (see Fig. 11). According to this model, the recep-
tor functions as a potential barrier with an excess charge on
one side of the barrier. When a molecule vibrates inside the
receptor with an appropriate frequency, the charge can flow
across the barrier while losing energy quanta causing receptor
activation. While this model may be valid, it cannot explain
the receptor’s ability to distinguish between so many odors,
since in this model the receptor’s response is binary (either
activated or not).

The QBSS model may give a better presentation of the
problem because it shows that every combination of a receptor
and a molecule has a distinct QBSS, i.e., different dependence
on the incoming/outgoing particle’s energy. Consequently, the
different receptors can reconstruct the molecule’s fingerprint
by measuring simultaneously different parts of the QBSS
spectrum.

C. Optical analogy

The mathematical analogy between the Schrödinger equa-
tion and the slowly varying Maxwell’s equation can be used
to apply the QBSS analysis to the optical domain. When light
propagates through layers with different refractive indexes
with an incident angle larger than the critical angle, then for
specific cases total internal reflection vanishes and the light is
fully transmitted through the layers as in the quantum resonant
tunneling equivalent [48]. The discussion above suggests that
an equivalent tunneling via a QBSS will appear in an optical
device, where the middle layer’s refractive index oscillates.
Therefore, in analogy to the quantum scenario, the incident
plane-wave electromagnetic field can be written:

E(x, y) = ẑA(x, t ) exp [i(kyy − ωt )], (41)

where the slowly varying amplitude A(x, t ) satisfies the fol-
lowing equation:

− ∂2

∂x2
A + [

k2
y − k2

0n2(x)
]
A = n2

02iω

c2

∂

∂t
A, (42)

where we assumed that the variation in the index of refraction
is negligible in comparison to the ratio between the oscilla-
tions’ frequency ω0 and the optical frequency ω:

n2(x) = n2
0 + �n2w[1 + m cos (ω0t )]δ(x), (43)

where w is the width of the thin middle layer, �n is the change
in its refractive index, and m � 1 is the modulation depth.
Using the parameter τ ≡ c2

n2
02ω

t , Eqs. (42) and (43) can be
rewritten as

− ∂2

∂x2
A + [

k2
y − k2

0n2(x, τ )
]
A = i

∂

∂τ
A (44)

and

k2
0n2(x, τ ) = k2

0n2
0 +

[
α + β cos

(
ω0

2n2
0ω

c2
τ

)]
δ(x), (45)

respectively.
Since in this case α = k2

0�n2w, β = k2
0m�n2w, and the

effective frequency is ω̃ ≡ 2n2
0ω0ω/c2, the transmission of the

nth substate is then

Tn ∼ |Jn(αβ/2ω̃)|2 = ∣∣Jn
[(

k2
0�n2w

)2
c2m/4n2

0ωω0
]∣∣2

. (46)

Since the number of excited submodes is αβ/ω̃ the spectral
widening is then

�ω ∼ (
k0�n2w

)2
ωm/2n2

0. (47)

Consequently,

�ω

ω
∼ m

2

(
k0w

�n2

n0

)2

. (48)

This result is independent of oscillating frequency ω0.
Since in the optical regime ω ∼ 1014Hz, then even though
the right-hand side of Eq. (48) is smaller than 1, the spec-
tral widening, which can be measured easily with optical
spectrometers, can be widened by orders of magnitude, for
example, using a LiNbO3 (LNO), which has an unclamped
Pockels coefficient of r51 = 33 pm/V [49], Then, with a
modulation depth of m = 0.001 one can increase sub-kHz
modulation by six orders of magnitude to a few GHz.

VIII. SUMMARY

In this paper, it has been suggested to borrow the tools
that were originally developed for stationary RT and apply
them to explain the complex behavior of quantum current
which passes via an opaque barrier with an oscillating well.
An oscillating well creates a QBSS with a unique spectrum
corresponding to the oscillation’s parameters. This spectrum
consists of activated substates and suppressed substates. Since
all these quasisubstates are interconnected, they can be re-
garded as a QBSS. Therefore, as the sensitivity of an RT
device can be interpreted in terms of the spectral proximity be-
tween the incoming particle’s energy and the quasibound-state
eigenenergy, the complexity of the system under discussion
can be interpreted in a view of the matching between the
incoming particle’s energy and the QBSS’s spectrum. It is
shown that this view of the system can easily explain most of
the complex behaviors of the system [e.g., selective activation
(suppression)]. Moreover, the QBSS model can be used to
improve the sensitivity of a frequency-controlled transistor,
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which is based on an oscillating RT device. Furthermore, the
QBSS can be used to simplify complex quantum-biological

systems (e.g., olfactory system), and can be implemented in
equivalent optical systems and devices.
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