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In solid quantum systems, strong phonon-phonon repulsive or attractive interactions are difficult to achieve.
The highly adjustable phonon-phonon interactions created by silicon-vacancy (SiV) centers in a one-dimensional
chiral phononic waveguide are investigated in this paper. Under specific situations, phonon-phonon attractive or
repulsive interactions between the chiral transport phonons are created when they are scattered by two-level
or three-level structural SiV centers. Furthermore, by modulating the laser Rabi frequencies and detunings,
the resultant attractive or repulsive interactions between phonons can be adjusted over a large frequency range.
Single-phonon creation and phonon manipulation in solid acoustic quantum information processing could benefit
from the tunable phonon-phonon interactions.
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I. INTRODUCTION

Solid-state quantum systems, such as superconducting cir-
cuits [1–3], mechanical oscillators [4–8], magnons [9–14],
and diamond color centers [5,15–21], have attracted exten-
sive attention in quantum science and technology. Different
solid-state quantum systems have been exploited to constitute
quantum hybrid systems [22–24] to perform various quan-
tum information processing operations for the complementary
advantages. For example, spin squeezing states have been
generated using diamond nitrogen-vacancy centers coupled
with clamped mechanical resonators [25] and silicon-vacancy
(SiV) centers coupled with acoustic waveguides [26]. Topo-
logical phases are simulated using the SiV-center-waveguide
system [27,28]. The magnon-photon-phonon entanglement
[29] and squeezed states of magnons and phonons [30]
have also been explored in cavity magnomechanical systems.
Phonons play a crucial role in interfacing the various physical
solid systems in these quantum information processing tech-
niques.

In solid quantum systems, phonons can couple with
magnons via the magnetostrictive interactions [29] and in-
teract with SiV centers through strain coupling [31,32], and
also couple with superconducting qubits through mechan-
ical as well as electromagnetic processes [33]. Thus the
phonons are useful to integrate diverse solid quantum sys-
tems in quantum information processing. Recently, much
attention has been paid to the manipulations of phonons,
such as phonon blockade [34–39] and phonon nonrecip-
rocal transport [40–48]. Since phonons are charge neutral
and spinless, strong phonon-phonon interactions at a few-
phonon level are difficult to realize. To accomplish effective
phonon-phonon interactions, strong nonlinearity or nonlin-

*lipengbo@mail.xjtu.edu.cn

ear response by phonon-matter coupling is necessary. For
instance, phonon blockade has been studied using large
quadratic optomechanical coupling [37,49] or strong cou-
pling in spin-mechanical systems [38,50]. In Ref. [51] the
attractive (bunching) phonon-phonon interactions, induced by
strong phonon-spin strain coupling, were examined in one-
dimensional phononic waveguide, whereas the realization of
repulsive (antibunching) interactions requires a significant en-
ergy difference between the incident two phonons and the
interactions cannot be adjustable. These constraints may cause
the linear dispersion approximation to fail and they are not
flexible enough for practical use. Thus, in solid-state acoustic
quantum information processing, how to realize the more
practical strongly repulsive phonon-phonon interactions is of
tremendous importance.

In this work the tunable strongly correlated phonons
induced by SiV centers in one-dimensional (1D) chiral
phononic waveguides are studied. The phonon transport
in 1D chiral phononic waveguides is directional and im-
mune to backscattering [52–54], implying that the induced
phonon-phonon interactions are unaffected by the SiV center
positions. Varied numbers of two-level SiV centers (2LSCs)
create different phonon correlations in the resonance situation,
according to investigations. That is, the two chiral transport
individual phonons become correlated bunching after being
scattered by an odd number of 2LSCs, whereas the output
phonons are uncorrelated after being scattered by an even
number of 2LSCs. Phonon antibunching can be produced
by large phononic dissipations from 2LSCs to nonguided
modes. The phononic dissipations to the external environ-
ment in solid systems, on the other hand, are so modest
that they are frequently ignored. It is further demonstrated
that when 2LSCs are substituted by three-level SiV cen-
ters (3LSCs), phonon antibunching can occur. The scattered
phonons perform stronger antibunching as the number of
3LSCs increases. Both phonon bunching and antibunching are
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created under the control of laser Rabi frequency and detun-
ing, implying that phonon-phonon interactions are adjustable,
i.e., obtaining attractive or repulsive phononic interactions can
be controlled by laser parameters. It also demonstrates that
phonon-phonon interactions can be tuned over a broad range
of phonon frequencies. The energy of the chiral transport
phonons is adjusted to the same value here, making the lin-
ear dispersion assumption more acceptable and experimental
implementations more viable. Tunable strong phonon-phonon
correlations could aid in the generation of single phonons and
expand the scope of phononic manipulation research in solid
quantum science and technology.

II. MODEL

Consider N SiV centers coupled with chiral transport
phonons in a 1D phononic waveguide. The 1D chiral phononic
waveguide can be created from the robust unidirectional trans-
port acoustic edge modes along the edge of a 2D phononic
crystal by breaking the time-reversal symmetry [53,55] or
in topological insulators with certain geometrical approaches
[52,54,56]. In Ref. [53] the 1D chiral acoustic waveguide in
the snowflake optomechanical crystal is utilized to transfer
quantum states between separated SiV centers embedded in
optomechanical cavities along the edge of optomechanical
crystal. Inspired by that work, in Fig. 1(a) we study the
phonon-phonon interactions induced by SiV centers in the op-
tomechanical crystal with topological chiral transport acoustic
edge modes, i.e., the 1D chiral phononic waveguide.

SiV centers are diamond defect centers with two carbon
atoms replaced by one silicon atom. SiV centers possess
narrow inhomogeneous broadening, strong zero-phonon line
emission, and high strain susceptibility [57–63], which allows
them to act as suitable qubits in solid quantum systems. Due
to the spin-orbit coupling, the ground state (GS) and excited
state (ES) in a SiV center would be divided into two ground
sublevels and two excited sublevels, respectively. In one SiV
center, there are four optical transition channels between the
excited and ground sublevels, denoted by the letters A, B,
C, and D in Fig. 1(b). The transition between the ground
sublevels in SiV centers can be induced by strain coupling
with phonons in solid acoustic systems. In this work we treat
the SiV center as a three-level system with two GS sublevels
|g〉 and | f 〉 and one ES sublevel |e〉. Chiral transport phonons
drive |g〉 ↔ | f 〉, while an external laser couples |e〉 ↔ | f 〉
with Rabi frequency � and energy ω0. The Hamiltonian of
the interacting system is

Ĥ =
∑

k

ωkb̂†
kb̂k +

N∑
j

(
�σ̂

j
e f e−iω0t + gk

∑
k

σ̂
j
f gb̂k + H.c.

)

+
N∑
j

[(
ω f − iγ1

2

)
σ̂

j
f f +

(
ωe − iγ2

2

)
σ̂ j

ee

]
, (1)

where the linear dispersion is assumed as ωk = vgk and vg is
the velocity of chiral transport phonons. In addition, b̂† (b̂)
is the creation (annihilation) operator of phonons, ω f (ωe) is
the energy of | f 〉 (|e〉), and σ̂

j
μν denotes the transition operator

|μ〉〈ν| of the jth SiV center. We set h̄ = 1 and the direction of

FIG. 1. (a) Topological chiral transport edge modes along the
edges of 2D optomechanical crystals with snowflake shapes form
a 1D chiral acoustic waveguide. SiV centers are implanted in the
optomechanical cavities along the waveguide. (b) Due to spin-orbit
coupling, the ground state (GS) and excited state (ES) in a SiV center
would split into two sublevels, respectively. A, B, C, and D denote
four optical transition channels. A three-level system is composed
of two GS sublevels and one ES sublevel, denoted by |g〉, | f 〉, and
|e〉. The chiral transport phonons couple to the transition |g〉 ↔ | f 〉
with strength g and detuning �. The Rabi frequency of the optical
transition | f 〉 ↔ |e〉 is � and δ is the phonon-optical detuning.

transmitting phonons is from left to right. Here gk is the cou-
pling strength between different phonon modes and ground
sublevels of a SiV center, assuming gk ≡ g hereafter (Markov
approximation) [64]. Further, γ1 is the acoustic dissipation
from | f 〉 to nonguided modes, while γ2 is the electromagnetic
dissipation from |e〉 to the external environment. As will be
mentioned below, the acoustic dissipation from | f 〉 into the
waveguide (guided modes) is 	, which also characterizes the
coupling strength of phonon-phonon interactions.

Adopting Fourier transforms [64–70], the Hamiltonian of
the interacting system can be rewritten in real space as

Ĥ = −i
∫

dx b̂†(x)∂xb̂(x) +
N∑
j

(
�σ̂

j
e f + H.c.

)

+
N∑
j

[(
ω f − iγ1

2

)
σ̂

j
f f +

(
ωe − ω0 − iγ2

2

)
σ̂ j

ee

]

+
N∑
j

(∫
dx V δ(x − r j )σ̂

j
f gb̂(x) + H.c.

)
, (2)
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where V = √
2πg and the velocity of chiral transport phonons

is set to vg = 1. The acoustic spontaneous radiation from a
SiV center into the guided mode can be given as 	 = 2V 2.
For the transport phonons with identical energy ω, the single-
phonon detuning is � = ω f − ω, while the phonon-optical
detuning is δ = ωe − (ω0 + ω), which is marked in Fig. 1(b).
For weak coherent chiral transport phonons along the waveg-
uide, we mainly focus on the correlations of two phonons
mediated by the embedded SiV centers. The chiral transport
of two phonons scattered by N embedded SiV centers in the
waveguide can be viewed as a cascaded quantum system [71],
i.e., the phonons passing through the jth SiV center can be
thought of as the input state for the ( j + 1)th SiV center. Thus,
the two-phonon correlated state would be solved after passing
through the N SiV centers with this recurrent single-emitter
scattering process.

III. STRONGLY CORRELATED TWO PHONONS INDUCED
BY 2LSCS

In this section we focus on the chiral transport phonon cor-
relations induced by 2LSCs. The Hamiltonian for the single
2LSC system reads

Ĥ2 = −i
∫

dx b̂†(x)∂xb̂(x) +
(
ω f − iγ1

2

)
σ̂ f f

+
(∫

dx V δ(x)σ̂ f gb̂(x) + H.c.

)
. (3)

Accordingly, the eigenstate of Ĥ2 has the form

|φ〉 =
( ∫

dx1dx2
1√
2
ϕ(x1, x2)b̂†(x1)b̂†(x2)

+
∫

dx f (x)b̂†(x)σ̂ f g

)
|0, g〉, (4)

where E is the eigenenergy, ϕ(x1, x2) is the two-phonon wave
function, and f (x) is the wave function of one phonon with
the SiV center excited. Here the position of the SiV center is
set to r1 = 0. Substituting |φ〉 into the eigenequation Ĥ2|φ〉 =
E |φ〉, one has

(−i∂x1 − i∂x2 − E )ϕ(x1, x2)

+ V√
2

[δ(x1) f (x2) + δ(x2) f (x1)] = 0,

(
−i∂x + ω f − iγ1

2
− E

)
f (x)

+ V√
2

[ϕ(0, x) + ϕ(x, 0)] = 0, (5)

where ϕ(0, x) = ϕ(x, 0) = 1/2[ϕ(0−, x) + ϕ(x, 0+)]. From
Eq. (5), boundary relations for x1 < x2 (boson symmetry)
satisfy

i[ϕ(x1, 0−) − ϕ(x1, 0+)] + V f (x1)√
2

= 0,

i[ϕ(0−, x2) − ϕ(0+, x2)] + V f (x2)√
2

= 0. (6)

Here f (0+) = f (0−). From Eq. (5) one has ϕ(x1, x2) =
eiErc G(r) when x1, x2 �= 0, where rc = (x1 + x2)/2 and r =
x1 − x2. Since eiErc is just a phase in ϕ(x1, x2), the detailed
distribution of the two phonons in the waveguide is mainly re-
flected by G(r). Here E = 2ω is the two-phonon total energy.
According to the different space distributions of phonons,
G(r) can be represented as [71]

G(r) =
⎧⎨
⎩

Gin(r), x1 < x2 < 0
G0(r), x1 < 0 < x2

Gout(r), 0 < x1 < x2,

(7)

where Gin(r) denotes the input two-phonon amplitude before
interacting with the SiV center, G0(r) represents the amplitude
of one phonon that passes through the SiV center but not the
other, and Gout(r) describes the amplitude of the output two
phonons after crossing the emitter. Based on Eqs. (5)–(7),
for a given input two-phonon wave function, the output two-
phonon wave function after passing through the SiV center
can be solved. As for N embedded SiV centers, the input
phonon wave function for the ( j + 1)th SiV center is just the
outgoing two-phonon wave function through the jth SiV cen-
ter. Thus, the output two-phonon wave function after crossing
N SiV centers could be solved by this recursion relation. The
second correlation function g2(r) can be obtained based on the
output phonon wave function to describe the phonon-phonon
interactions, and the detailed solution will be shown in the
next section.

In Fig. 2(a) the second-order correlation functions of the
two chiral transport phonons are plotted after being scat-
tered by 5, 10, and 15 SiV centers. The dissipation rate γ1

is set to zero and the single-phonon detuning is � = 0.3	.
The equal-time second-order correlation function g2(0) > 1
means that the two-phonon bunching state is induced follow-
ing the scattering of chiral transport phonons by the implanted
SiV centers. In Fig. 2(b), g2(0) versus single-phonon de-
tuning is plotted for N = 5, 10, 15, which is larger than
unity except for � = 0 and N = 10. When � = 0, different
phonon correlated features arise in the cases of N = 5, 15
and N = 10, i.e., the former numbers of SiV centers would
induce an obvious two-phonon bunching state, while the latter
would be incapable of inducing efficient phonon-phonon in-
teractions.

To show the correlated two-phonon features more clearly,
Fig. 3 depicts the graph of g2(0) as a function of various N
and �. As can be seen, having an odd or even numbers of SiV
centers produces interesting values of g2(0) when � � 0. For
the resonant case, the odd number N is associated with two-
phonon bunching states [g2(0) > 1] and the even number N
corresponds to invalid two-phonon interactions [g2(0) = 1],
which is an expansion of what we discussed in Fig. 2(b).
When N decreases, this effect broadens in the near-resonance
range (� ≈ 0). As for N and � in other ranges, g2(0) > 1
persist.

The scattering matrix (S matrix), which stores the scat-
tering features and transforms incoming phonon states into
output phonon states (|out〉 = Ŝ|in〉) [67], provides insight
into the physical process behind two-phonon interactions.
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FIG. 2. (a) Plots of the two-phonon second-correlation function
g2(r) after crossing various numbers of 2LSCs N = 5, 10, 15. The
single-phonon detuning is set to � = 0.3	. (b) Equal-time second-
correlation function g2(0) versus various � are shown, where also
N = 5, 10, 15. Here 	 is the phonon dissipation from a SiV center
into the waveguide. Phonon dissipation to nonguided modes is set to
γ1 = 0.

The S matrix about incident phonons interacting with a 2LSC
has two sorts of two-phonon eigenstates. One is a two-phonon
bound state |E〉B, whereas the other is a delocalized state
|E〉D. The eigenstates fulfill Ŝ|E〉D,B = λD,B|E〉D,B, with
eigenvalues λD,B. After crossing N 2LSCs, decomposing

FIG. 3. Plot of g2(0) versus the single-phonon detuning � and
the numbers of SiV centers N .

the incident state into S-matrix eigenstates produces the
output two-phonon state |out〉 = [

∫
dν λD(ν)N |E〉D〈E | +

λN
B |E〉B〈E |]|in〉 [72], where ν is the frequency difference

between the two phonons, λD = λd (� + ν)λd (� − ν),
λd (� ± ν) = [−(� ± ν) − i	/2]/[−(� ± ν) + i	/2], and
λB = (−2� − 2i	)/(−2� + 2i	). For different N , the
distinct proportions of the two eigenstates (λN

D,B) will result
in different correlations. In Fig. 4 the output two-phonon
state |ϕout| (blue dashed line and shaded area) is decomposed
into two types of eigenstates for N = 5 [Fig. 4(a)], N = 10
[Fig. 4(b)], and N = 15 [Fig. 4(c)]. It demonstrates that
when r = 0, the output two-phonon state has the maximum
absolute value and is mostly determined by the bound
eigenstate (red dotted line). The delocalized state (green
solid line) contributes little to |ϕout|. The shape of |ϕout(r)| is
similar to the second-order correlation function in Fig. 2(a)
and it can also yield g2(r) after being normalized.

When � = 0, one has λD ≡ 1 and λB ≡ −1. In this sit-
uation, for even numbers N , the N th powers of the two
eigenvalues are both 1, and the output two-phonon state is
identical to the incident two-phonon state, indicating that the
two-phonon interaction is invalid. In contrast, for odd num-
bers N , the N th power of the delocalized eigenvalue is 1 while
the N th power of the bound eigenvalue is −1. For the nontriv-
ial contribution from the bound eigenstate, the two-phonon
interaction becomes valid. When � = 0, g2(0) ≡ 1 for even
numbers N and equals a constant value (greater than 1) for
odd numbers N , as shown in Figs. 2(b) and 3. The absolute
values of the eigenvalues are no longer exactly unity when
� �= 0. However, for small |�|, |λD| ≈ 1 and |λB| ≈ −1 are
still available. When N is small, the results mentioned above
are roughly correct. The absolute values of the N th power
of eigenvalues diverge significantly from unity for higher N ,
rendering the conclusions stated above incorrect.

The correlated two-phonon bunching states were inves-
tigated in the preceding discussion, while the nonclassical
quantum antibunching states were not induced. In Fig. 5 we
introduce the dissipation rate γ1 to investigate the effect of γ1

on g2(0), where the number of 2LSCs is N = 3, 4, 5. Detun-
ing is set to zero. The result shows that as γ1 increases in a
limited range, g2(0) decreases from a value greater than unity
to a value less than unity. When the expanding γ1 reaches a
critical point, g2(0) begins to rise and approach unity. That
is, the phonon dissipation can induce antibunching states. On
the other hand, dissipation to nonguided modes would reduce
system coherence. As a result of this competition aspect, there
is a critical point at which the scattered phonons best fulfill
their antibunching capabilities. In contrast to electromagnetic
radiation, the phonon dissipation to nonguided modes in solid
systems is so small that it is usually ignored. In practice,
phonon antibunching states can be difficult to create with
substantial dissipation. In the following section we look at the
issue of inducing phonon antibunching states.

IV. STRONGLY TUNABLE TWO-PHONON
CORRELATIONS INDUCED BY 3LSCS

The chiral transport phonons scattered by 3LSCs are the
topic of this section, where a laser is applied to couple
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FIG. 4. Absolute value of the output two-phonon wave function |ϕout(r)| (blue dashed line and shaded area) after being scattered by (a) 5,
(b) 10, and (c) 15 2LSCs. Here |ϕout(r)| is decomposed into two types of scattering eigenstates. One is a bound state (red dotted line), while
the other is a delocalized state (green solid line). The parameters are the same as those in Fig. 2(a).

|e〉 ↔ | f 〉 in SiV centers. The Hamiltonian for a single 3LSC
coupling with phonons is expressed as

Ĥ3 = −i
∫

dx b̂†(x)∂xb̂(x) + (�σ̂e f + H.c.)

+
(∫

dx V δ(x)σ̂ f gb̂(x) + H.c.

)

+ ω f σ̂ f f +
(

ωe − ω0 − iγ2

2

)
σ̂ee. (8)

Here the phononic dissipation rate is set as γ1 = 0. Similarly
to Eq. (4), the eigenstate of Hamiltonian Ĥ3 has the form

|ψ〉 =
∫

dx1dx2
1√
2
ϕ(x1, x2)b̂†(x1)b̂†(x2)|0, g〉

+
∫

dx b̂†(x)[ f (x)σ̂ f g|0, g〉 + e(x)σ̂e f |0, f 〉], (9)

where ϕ(x1, x2) is the two-phonon wave function. In addition,
f (x) is the wave function of one phonon with the other phonon
absorbed by level | f 〉, while e(x) is the wave function of one
phonon with the other phonon absorbed by |e〉. Substituting
|ψ〉 into the stationary Schrödinger equation Ĥ3|ψ〉 = E |ψ〉,
one has( − i∂x1 − i∂x2 − E

)
ϕ(x1, x2)

+ V√
2

[δ(x1) f (x2) + δ(x2) f (x1)] = 0,

FIG. 5. Plot of g2(0) as a function of dissipation γ1 for N =
3, 4, 5, with � = 0.

(−i∂x + ω f − E ) f (x) + V√
2

[ϕ(0, x)

+ ϕ(x, 0)] + �e(x) = 0,(
− i∂x + ωe − ω0 − iγ2

2
− E

)
e(x) + � f (x) = 0, (10)

where it is set to ϕ(x, 0) = ϕ(0, x) = 1/2[ϕ(0−, x) +
ϕ(x, 0+)] and x1 < x2. From Eq. (10), the boundary condi-
tions for the two-phonon and single-phonon wave functions
are

i[ϕ(x1, 0−) − ϕ(x1, 0+)] + V f (x1)√
2

= 0,

i[ϕ(0−, x2) − ϕ(0+, x2)] + V f (x2)√
2

= 0,

f (0−) = f (0+), e(0−) = e(0+). (11)

Similar to the discussion in the preceding section, the two-
phonon wave function can be described by ϕ(x1, x2) =
eiErc G(r) (r < 0); the form of G(r) is shown in Eq. (7). Sub-
stituting ψ (x1, x2) into Eqs. (10) and (11), the relations among
Gin(r), G0(r), and Gout(r) are given by
[
∂2

r + (β − 	)∂r + α + ξ
]
Gin(r) = (

∂2
r + β∂r + α

)
G0(r),[

∂2
r − (β − 	)∂r + α + ξ

]
G0(r) = (

∂2
r − β∂r + α

)
Gout (r),

(12)

where the parameters

α = �2 +
(

iδ + γ2

2

)(
i� + 	

2

)
,

β = i(� + δ) + 	 + γ2

2
,

ξ = −i	
(
δ − i

γ2

2

)
. (13)

The boundary conditions for G(r) at r = 0 are

2G0(0) − Gin(0) = Gout(0),

∂rGin(r)|r=0 + 	[G0(0) − Gin(0)] = ∂rGout(r)|r=0. (14)

Equations (12) and (14) are sufficient to solve the chiral trans-
port phonons scattered by a single SiV center. The output
phonon states after the jth emitter are viewed as the input
states for the ( j + 1)th emitter, and the transport phonons
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FIG. 6. (a) Second-order correlation function g2(r). Three cases
of N = 3, 6, 12 are shown. (b) Plot of g2(0) versus various δ for
different N . The parameters are � = 0.5	 and � = −δ = 0.25	.

scattered by numerous SiV centers may be simply calculated.
The positions of the SiV centers are labeled by r j , with j =
1, 2, . . . , N . In this case, the phonon state amplitude G(r) can
be written as

G(r) = Gi, j (r), ri < x1 < ri+1, r j < x2 < r j+1, (15)

where subscripts i and j denote that one phonon has passed
through i emitters and the other through j emitters. We set i �
j due to r = x1 − x2 < 0, and r0 = −∞ and rN+1 = +∞. It
is assumed that the output amplitude of two phonons crossing
j emitters is [71]

Gj, j (r) = Tj +
j−1∑
n=0

(Aj,neλ1r + Bj,neλ2r )
rn

n!
, (16)

where Tj , A(B) j,n, and λ1(2) are constants to be determined.
For two incoming phonons, we define G0,0(r) = T0, with T0 a
normalization constant. The details on how to obtain the final
output after crossing N SiV centers are included in the Ap-
pendix. The resulting two-phonon correlation function can be
characterized using the wave function obtained after crossing
N SiV centers as

g2(r) = |GN,N (r)|2
|TN |2 ; (17)

here it is set to T0 = 1.
The second-order correlation function g2(r) of the chiral

transport phonons scattered by 3, 6, and 12 3LSCs is plot-
ted in Fig. 6(a). Electromagnetic dissipation γ2 is ignored in
this case and the parameters are set at � = 0.5	 and � =
−δ = 0.25	. It is shown that as N increases, g2(0) decreases

from greater than unity to less than unity. That is, either
two-phonon bunching states or antibunching states could be
induced and greater N corresponds to stronger antibunch-
ing states. In contrast to the preceding section’s results, the
phononic antibunching states are successfully produced here
without the necessity for significant phononic dissipations.
When phonon-optical detuning changes, g2(0) < 1 persists
throughout a wide range of δ, as illustrated in Fig. 6(b).
When δ = 0, various amounts of N provide the same result
of g2(0) = 1, implying that effective phonon-phonon inter-
actions do not arise once the chiral transport phonons are
scattered by SiV centers.

To investigate phonon-phonon correlations on a large-N
and -δ scale, Fig. 7(a) shows g2(0) versus various N and δ. For
δ �= 0, a larger N corresponds to a smaller value of g2(0). The
phononic antibunching states [g2(0) < 1] appear in a broader
range of δ as N increases, which is an expansion of the results
in Fig. 6. In Figs. 7(c), 7(e), and 7(f), g2(0) is shown as a
function of � and δ for N = 10, 15, and 20, respectively. For
various � and δ, phonon-phonon attractive or repulsive in-
teractions are induced. Repulsive phonon-phonon interactions
exist throughout a wider spectral range for greater N . This
indicates that phonon-phonon interactions are tunable over a
wide range of phonon frequencies. When δ = 0, g2(0) ≡ 1
for various N and �, which is marked by the red arrows in
Figs. 7(b) and 7(d). The contour of g2(0) = 1 is included in
the figures.

Physical explanations of induced phonon bunching and
antibunching states can be derived from the S matrix’s com-
posite eigenstates, as discussed in the preceding section.
There are three sorts of two-phonon scattering eigenstates
for input phonons interacting with a 3LSC [71]. In contrast
to the delocalized eigenstate |E〉D and the bound eigenstate
|E〉B, the third eigenstate, called the scattering-resonance
state (SRS) |E〉S , comprises both delocalized and bound
parts. The S matrix for phonons traversing N 3LSCs is Ŝ =∫

dν[λD(ν)N |E〉D〈E | + λS (ν)N |E〉S〈E |] + λN
B |E〉B〈E |, where

λD,B,S are the eigenvalues. The complex eigenvalues can be
expressed as λ ∝ eiφ . In Fig. 8 the three types of eigenstates
are decomposed from the output two-phonon state |ϕout| for
N = 3 [Fig. 8(a)], N = 6 [Fig. 8(b)], and N = 12 [Fig. 8(c)].
In contrast to the 2LSCs situation, when r = 0, the output
two-phonon state is mostly impacted by the SRS (black dash-
dotted line). With rising N , the eigenstates with continuous
ν begin to dephase and the output state shifts from bunch-
ing to antibunching. The shape of |ϕout(r)| is similar to the
second-order correlation function in Fig. 6(a) and it can also
produce g2(r) when normalization is taken into account. The
phenomenon g2(0) ≡ 1 when δ = 0 arises due to the electro-
magnetically induced transparency (EIT) [73], which destroys
the nonlinearities of the 3LSCs and is incapable of inducing
efficient phonon-phonon interactions.

For N = 15, the influence of laser parameters � and δ on
g2(0) is investigated in Figs. 9(a), 9(c), and 9(d) for � equal
to 0, 0.2	, and 0.4	, respectively. When δ = 0, g2(0) ≡ 1 for
various laser Rabi frequencies, as seen by the red arrow in
Fig. 9(b). When � = 0, g2(0) in Fig. 9(a) performs symmet-
ric properties about δ = 0. In this situation, optical driving
around the transition |e〉 ↔ | f 〉 is symmetric for ±δ and the
induced two-phonon interactions are identical for ±δ. When
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FIG. 7. (a) Plot of g2(0) as a function with N and δ. Also plotted is g2(0) versus � and δ for (c) N = 10, (e) N = 15, and (f) N = 20.
(b) and (d) show the X − Z view of (a) and (c), respectively. The red arrows denote g2(0) ≡ 1 when δ = 0. The parameters are the same as in
Fig. 6.

� �= 0 and rises, the optical driving around the transition
|e〉 ↔ | f 〉 for ±δ becomes increasingly asymmetrical. The
induced two-phonon interactions will then be asymmetrical
for ±δ. As � rises, g2(0) tends to increase and transforms
from less than 1 to greater than 1. The explanation for this
phenomenon is that a larger � could result in a wider EIT
window, which tends to diminish the nonlinearities of 3LSCs.
For different laser parameters, we have g2(0) > 1 or g2(0) <

1 in the figure. This indicates that the laser Rabi frequency
and detuning can control the phonon-phonon interactions of
bunching or antibunching.

In the above discussion, the electromagnetic dissipation γ2

from the excited level in 3LSCs is ignored. Figure 10 shows
the effect of γ2 on phonon-phonon interactions for different
numbers of 3LSCs. When γ2 is small, g2(0) < 1 is unaffected;
larger N corresponds to lower g2(0). As γ2 increases, so does

g2(0), eventually becoming larger than unity for N = 9, 12.
Larger N , on the other hand, correlates to greater phonon
bunching states. More SiV centers would accrue higher elec-
tromagnetic dissipations, reducing system nonlinearities. As a
result, the effects of N and γ2 on inducing phonon antibunch-
ing states are competitive.

Comparing with the results of the phonon correla-
tions created by 2LSCs in the preceding section, we
show that the phonon antibunching can be achieved in
3LSCs without requiring substantial phononic dissipation.
It is possible to accomplish either phonon antibunching
or phonon bunching by manipulating external laser set-
tings, i.e., the phonon-phonon interactions are tunable. Thus,
3LSCs are more effective in inducing repulsive phonon-
phonon interactions, particularly adjustable phonon-phonon
interactions.

FIG. 8. Plot of |ϕout(r)| (blue dashed line and shaded area) after being scattered by (a) 3, (b) 6, and (c) 12 3LSCs. Here |ϕout(r)| is
decomposed into three types of scattering eigenstates: a bound state (red dotted line), a delocalized state (green solid line), and a scattering-
resonance state (black dash-dotted line). The parameters are the same as in Fig. 6.
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FIG. 9. Plot of g2(0) as a function of the laser parameters � and
δ, with � set to (a) 0, (c) 0.2	, and (d) 0.4	. (b) shows the X − Z
view of (a). Red arrow denotes g2(0) ≡ 1 when δ = 0. Here N is set
to 15.

V. EXPERIMENTAL FEASIBILITY

The experimental feasibility of the correlated phonons
created by SiV centers in a 1D chiral acoustic waveguide
is discussed in this section. The 1D chiral acoustic waveg-
uide is inspired by Ref. [53], where the edge modes along
the topological optomechanical crystal are used to trans-
fer the quantum state between separated SiV centers. With
phonon hopping rate K = 2π × 200 MHz, photon hopping
rate J/K = 200, and optomechanical coupling strength G =
2K , the chiral transport phonon velocity is vg ≈ 1.4(aK ),
where a is the distance between the neighboring optomechan-
ical cavities. A 1D chiral acoustic waveguide is produced
along the edge of topological nanoelectromechanical lattice
[54], optomechanical nanobeam lattice [44], and phononic
metamaterials [56], according to several experiments. With
the advancement of nanomechanical manufacturing technol-
ogy, the 1D chiral acoustic waveguide coupling with SiV
centers has a bright future. The probabilistic creation of one
or two phonons using optomechanical interaction and a blue-

FIG. 10. Plot of g2(0) versus electromagnetic dissipation rate γ2

for different N . The parameters are � = 0.6	 and � = −δ = 0.3	.

detuned pulse has been reported [74,75]. A single-photon
detector can be used to detect phonons, with mechanical ex-
citations translated to an optical field through a red-detuned
read pulse. Furthermore, similar to photonic systems [71,72],
the few phonons can be created by mild mechanical actuation,
with higher-order (greater than two) excitation terms being
ignored. An optomechanical transducer might be used for
optical excitation and phonon detection in optomechanical
systems [76].

Ion implantation technologies can be used to create the im-
planted SiV centers [77–79]. Because phonon transmission is
directional and multiple round-trip scattering between various
centers is nonexistent, precise placements of SiV centers are
not required in the work [71,72]. For the spin-phonon inter-
action constant g = 0.2 K [32], the phononic decay from SiV
centers into guided modes is 	 = a|V |2/vg ≈ 2π × 36 MHz,
which characterizes the phonon-phonon interaction strength
[64]. At mK temperatures, the dephasing rate of SiV centers is
about γs ≈ 2π × 102 Hz. The lifetime-limited linewidth of the
excited state is roughly γ2 ≈ 2π × 39.8 MHz at temperatures
about 5 K [57,61], which is comparable to 	. This seems
disadvantageous for the discussion in this paper. Recently,
much attention has been given to increasing the coherence
time of ground levels in SiV centers, whose lifetime has been
extended from approximately 100 ns to approximately 10 ms
at a lower temperature of about 100 mK [63]. It has also been
reported that the lifetime of the excited state is also related
to the temperature [61,80]. Thus, increasing the excited-state
lifetime may require further studies at low temperatures. In
addition, increasing the strength of spin-phonon interactions
is also a beneficial way to produce repulsive phonon-phonon
interactions.

In practice, the waveguide’s phonon modes would invari-
ably be influenced by the external environment, resulting in an
acoustic dissipation. The phononic Hamiltonian is modified
to represent this noise as Ĥp = ∑

k[ωk − i(n̄ + 1)γk/2]b̂†
kb̂k ,

where γk = ωk/Q is the acoustic dissipation rate, Q is the
acoustic waveguide quality factor, and n̄ is the average number
of thermal phonons. The number of the thermal phonon is
n̄ = 1/(eh̄ω/kBT − 1) ≈ 0.047 for the resonance scenario and
temperature T ≈ 100 mK, where kB is the Boltzmann con-
stant. When the stationary Schrödinger equation is solved
with the modified Hamiltonian, the two-phonon wave function
will have an exponential term e−Eχrc , where χ = (n̄ + 1)/2Q
and rc is the center-of-mass coordinate. The amplitude of the
two-phonon wave function will reduce to its 1/e after the
phonons propagate around 33 μm when the acoustic quality
factor is Q ∼ 107. For Q ∼ 108, the propagation distance of
phonons can reach roughly 333 μm before the amplitude de-
creases to its 1/e. The time spent on the efficient transport
distance rc/vg is significantly less than the phonon lifetime
Q/ω in the waveguide. Thus, for the higher acoustic quality
factor, the phonons are able to travel further without causing
considerable waveguide loss.

VI. SUMMARY

Strong tunable phonon-phonon interactions created by
SiV centers were investigated in the 1D chiral phonon
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waveguide. In the resonant scenario, odd numbers of 2LSCs
induce phonon bunching correlations while even numbers
have no effect on the transport phonons. When nonguided
phonon dissipation from 2LSCs is considered, even num-
bers of 2LSCs start to induce phonon-phonon interactions.
The phonon antibunching correlations are created under
conditions of large phonon dissipation. However, phonon
dissipation to the nonguided modes is so small that it is
usually ignored. To achieve the phonon antibunching in a
more feasible way, we introduced the 3LSCs to induce the
phonon correlations. Results show that more SiV centers can
induce stronger phonon antibunching states. Furthermore, the
produced phonon-phonon interactions are controllable over a
large phonon frequency range by manipulating the external
laser Rabi frequency and detuning.

The scattering eigenstates of the spin-phonon interactions
help explain the difference in induced phonon-phonon cor-
relations between 2LSCs and 3LSCs systems [71,81]. Apart
from delocalized and bound two-phonon states, the 3LSC
system introduces a scattering-resonance state that plays an
important role in the phonon characteristic scattering fea-
tures. The strong tunable phonon-phonon interactions may
contribute to the advancements of solid acoustic quantum
information processing, such as the creation of single phonons
and self-organization acoustic phenomena at the quantum
level [81].
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APPENDIX: SECOND-ORDER CORRELATION FUNCTION
FOR PHONONS SCATTERED BY MULTIPLE SiV CENTERS

In the main text, it was shown that the output phonon
state after being scattered by one SiV center can be solved
from Eqs. (12) and (14). This Appendix contains the com-
plete solution procedure for obtaining the output phonon wave
functions after scattering by N SiV centers, as well as the
corresponding second-order correlation functions. Note that
the solution for output phonon states scattered by 2LSCs is
a simplified version of the process for 3LSCs, which will be
discussed later.

Following Ref. [71], the two-phonon wave function Gj, j (r)
scattered by 3LSCs obeys the recursion relation

· · · → Gj, j (r) → Gj, j+1(r) → Gj+1, j+1(r) → · · · . (A1)

It allows one to determine the output phonon state after
traversing N 3LSCs. The expression of Gj, j (r) is shown in
Eq. (16), where λ1 and λ2 are the solutions of the function
λ2 − βλ + α = 0. With Eqs. (A1) and (12) one has

[
∂2

r + (β − 	)∂r + α + ξ
]
Gj, j (r) = (

∂2
r + β∂r + α

)
Gj, j+1(r), (A2)

[
∂2

r − (β − 	)∂r + α + ξ
]
Gj, j+1(r) = (

∂2
r − β∂r + α

)
Gj+1, j+1(r), (A3)

where β, α, and ξ are the parameters given in Eq. (13). Substituting Eq. (16) into Eq. (A2), the function regarding Gj, j+1(r) is

(
∂2

r + β∂r + α
)
Gj, j+1 = (α + ξ )Tj +

j−1∑
n=0

(n1Aj,neλ1r + n2Bj,neλ2r )
rn

n!
+

j−1∑
n=1

(n3Aj,neλ1r + n4Bj,neλ2r )
rn−1

(n − 1)!

+
j−1∑
n=2

(Aj,neλ1r + Bj,neλ2r )
rn−2

(n − 2)!
, (A4)

where

n1 = (2β − 	)λ1 + ξ, n2 = (2β − 	)λ2 + ξ, n3 = 2λ1 + β − 	, n4 = 2λ2 + β − 	.

According to the form of Gj, j (r) in Eq. (16), the solution to Eq. (A4) is expressed as

Gj, j+1(r) = T j +
j−1∑
n=0

(A j,neλ1r + B j,neλ2r )
rn

n!
. (A5)

After substituting Eq. (A5) into Eq. (A4), one has T j = Tj (α + ξ )/α and

2βλ1A j, j−1 = n1Aj, j−1,

2βλ2B j, j−1 = n2Bj, j−1,

2βλ1A j, j−2 + n5A j, j−1 = n1Aj, j−2 + n3Aj, j−1,

2βλ2B j, j−2 + n6B j, j−1 = n2Bj, j−2 + n4Bj, j−1,

2βλ1A j,n + n5A j,n+1 + A j,n+2 = n1Aj,n + n3Aj,n+1 + Aj,n+2,

2βλ2B j,n + n6B j,n+1 + B j,n+2 = n2Bj,n + n4Bj,n+1 + Bj,n+2, (A6)

where n5 = 2λ1 + β, n6 = 2λ2 + β, and the subscripts of A(B)i, j and A(B)i, j obey i > j � 0.
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Similarly, the function about Gj+1, j+1 can be obtained by substituting Eq. (A5) into Eq. (A3) as

(
∂2

r − β∂r + α
)
Gj+1, j+1 = (α + ξ )T j +

j−1∑
n=0

(m1A j,neλ1r + m2B j,neλ2r )
rn

n!

+
j−1∑
n=1

(m3A j,neλ1r + m4B j,neλ2r )
rn−1

(n − 1)!
+

j−1∑
n=2

(A j,neλ1r + B j,neλ2r )
rn−2

(n − 2)!
, (A7)

where

m1 = ξ + 	λ1, m2 = ξ + 	λ2, m3 = 2λ1 − β + 	, m4 = 2λ2 − β + 	.

According to Eq. (16), Gj+1, j+1 is described by

Gj+1, j+1(r) = Tj+1 +
j∑

n=0

(Aj+1,neλ1r + Bj+1,neλ2r )
rn

n!
.

(A8)

Substituting Eq. (A8) into Eq. (A7), one has Tj+1 = Tj (α +
ξ )2/α2 and

m5Aj+1, j = m1A j, j−1,

m6Bj+1, j = m2B j, j−1,

m5Aj+1, j−1 + Aj+1, j = m1A j, j−2 + m3A j, j−1,

m6Bj+1, j−1 + Bj+1, j = m2B j, j−2 + m4B j, j−1,

m5Aj+1,n + Aj+1,n+1 = m1A j,n−1 + m3A j,n + A j,n+1,

m6Bj+1,n + Bj+1,n+1 = m2B j,n−1 + m4B j,n + B j,n+1, (A9)

where m5 = 2λ1 − β, m6 = 2λ2 − β, and the subscripts of
A(B)i, j and A(B)i, j obey i > j � 0.

To obtain GN,N (r) from the initial phonon amplitude
G0,0(r), the two parameters Aj+1,0 and Bj+1,0 are lacking. So
far, the boundary conditions have not been used, and Aj+1,0

and Bj+1,0 can be derived from Eq. (14), which gives

Aj+1,0 + Bj+1,0

= −Tj
ξ 2

α2
+ 2(A j,0 + B j,0) − Aj,0 − Bj,0,

λ1Aj+1,0 + λ2Bj+1,0

= Tj	
ξ

α
+ 	(A j,0 + B j,0) + (λ1 − 	)Aj,0

+(λ2 − 	)Bj,0 + Aj,1 + Bj,1 − Aj+1,1 − Bj+1,1. (A10)

With the recursion relation in Eqs. (16), (A6), (A9), and (A10)
and the initial input phonon state, the two-phonon output state
amplitude GN,N (r) can be solved successfully. For T0 = 1, one
can acquire TN = (α + ξ )2/α2 and the two-phonon correla-
tion function g2(r) = |GN,N (r)|2/|TN |2.

The above procedure can also be used to calculate the
second-order correlation function for the output phonon state
after it has been scattered by 2LSCs. Because chiral transport
phonons interact with 2LSCs, the laser Rabi frequency and
phonon-optical detuning must be adjusted to zero. The energy
of the excited level should also be set to zero. As a result, the
parameters in Eq. (13) become

α = −iω

(
i� + γ1 + 	

2

)
,

β = i(� − ω) + 	 + γ1

2
,

ξ = i	ω, (A11)

where ω is the phonon frequency and γ1 is the phonon
dissipation from 2LSCs to nonguided modes. The phonon
correlations caused by 2LSCs can be determined from the
aforementioned calculation methods using these modified pa-
rameters.
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