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Optimal phase sensitivity of an unbalanced Mach-Zehnder interferometer
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In this paper we address the problem of optimizing an unbalanced Mach-Zehnder interferometer, for a given
pure input state and considering a specific detection scheme. While the optimum transmission coefficient
of the first beam splitter can be uniquely determined via the quantum Fisher information only [Ataman,
Phys. Rev. A 105, 012604 (2022)], the second beam-splitter transmission coefficient is detection-scheme depen-
dent, too. We systematically give analytic solutions for the optimum transmission coefficient of the second beam
splitter for three types of widely used detection schemes. We provide detailed examples including both Gaussian
and non-Gaussian input states, showing when an unbalanced Mach-Zehnder interferometer can outperform its
balanced counterpart in terms of phase sensitivity.
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I. INTRODUCTION

Optical interferometers, alongside with their atomic coun-
terparts, are among the most precise metrological devices
when it comes to detection of small signals. It is no
accident that LIGO [1] and Virgo [2] are laser-based in-
terferometers. Quantum enhanced metrology [3,4] promises
significant precision improvements in different areas of quan-
tum technologies [5], gravitational wave astronomy [6,7],
quantum-enhanced dark matter searches [8], and biologi-
cal samples measurements [9,10]. The engineering of strong
squeezed vacuum states of light is a key technology for the
reduction of quantum noise [11].

By using classical resources one can arrive at the so-called
shot-noise limit �ϕSNL ∼ 1/

√
N̄ , where N̄ denotes the av-

erage number of input photons [12]. Employing quantum
resources, such as squeezed [4,13–15], NOON [16], or other
nonclassical [17,18] states one can approach the ultimate
quantum limit �ϕHL ∼ 1/N̄ also called as the Heisenberg
limit (HL) [19].

In this work we focus on the phase sensitivity of a Mach-
Zehnder interferometer (MZI), however, as it is well known
[14,20], most interferometers can be mapped into a MZI.

Achieving the theoretically best phase sensitivity for an
interferometer is an important goal since one would like to
optimize over all possible estimators and for all possible de-
tection schemes. The answer to this problem is given by the
quantum Fisher information (QFI) [21–24]. The QFI’s (F)
pivotal importance stems from its connection to the quantum
Cramér-Rao bound (QCRB), i.e., �ϕQCRB = 1/

√
F . Thus,

the phase sensitivity of any practical detection scheme is
bound to be �ϕdet � �ϕQCRB.

*stefan.ataman@eli-np.ro

However, it was realized that by employing the above
(single-parameter QFI) definition leads to an overestimation
of the available performance [25]. It was thus realized that
the role of a potentially available (even if not explicitly used)
external phase reference [20,25] should not be neglected.
Proper ways to discard resources that are actually unavail-
able have been put forward [25]. These include input state
phase averaging and the introduction of the two-parameter
QFI [25,26]. However, an external phase reference is often
available, and thus the aforementioned single-parameter QFI
yields an attainable performance [27].

The phase sensitivity of a balanced Mach-Zehnder interfer-
ometer (MZI) depends on a number of parameters, including
the input state [27–32] and the employed detection scheme
[33,34].

Among the proposed input states we mention the large
class of Gaussian states which includes the coherent plus
squeezed vacuum [4,13], squeezed coherent plus squeezed
vacuum [29,35], and squeezed coherent plus squeezed coher-
ent [29,36] input states. When it applies, we also discuss the
important role of the input phase-matching conditions (PMC)
[28,29,37].

When the input state is non-Gaussian, aside from the
well-known NOON [16] states, the coherent plus Fock in-
put [17] has been shown to have a quantum metrological
interest.

When considering an unbalanced MZI [27,38,39], the
transmission coefficients of the two BS also come into play.
As discussed in [40], the first BS can be unequivocally op-
timized via the QFI. Although the balanced (50:50) MZI
scenario yields the optimal two-parameter QFI a large class
of input states, this is no longer true when an external phase
reference is available [27].

Many detection schemes have been reported in the lit-
erature [41–46] including difference-intensity (also called
direct detection) [28,34], single-mode [28,34,41], balanced
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FIG. 1. The interferometric experimental setup considered in this
work. The transmission coefficient (T ) of the first beam splitter
is optimized via the QFI, as discussed in [40]. The transmission
coefficient of the second BS (T ′) is optimized by taking into account
the specific detection scheme employed.

homodyne [41,42], and parity [44,46] detections. In this work,
we consider the first three among them.

In this paper we address the optimization in terms of the
phase sensitivity for an unbalanced MZI. The input state is
assumed to be pure and the optimization is carried out for each
considered detection scheme. As mentioned previously, the
transmission coefficient of the first BS can be unambiguosly
optimized with the help of QFI [40]. We thus thoroughly
address the second beam splitter’s transmission coefficient
and the working point’s optimization for each considered de-
tection scheme. We give analytical solutions for all the optima
involved. We are also able to explain many previously results
reported in the literature.

Examples are given for a number of Gaussian [29,35,41]
and non-Gaussian [17] input states, outlining situations when
an unbalanced MZI can outperform its balanced counterpart
in terms of phase sensitivity.

This paper is structured as follows. In Sec. II we describe
our interferometric setup, make some notation conventions,
introduce the quantum Fisher information, and provide the
quantum Cramér-Rao bound. In Sec. III we characterize in
detail the three considered detection schemes. In Sec. IV we
describe the general phase sensitivity optimization procedure
in the sense of minimizing the phase uncertainty �ϕ. We
thoroughly discuss via examples our results in Sec. V. Finally,
conclusions are drawn in Sec. VI.

II. INTERFEROMETRIC SETUP

We consider the Mach-Zehnder interferometric setup de-
picted in Fig. 1. The input state is assumed pure and the
interferometer is characterized by the two beam splitters hav-
ing transmission coefficients T (for BS1), respectively, T ′ (for
BS2). We consider the most general scenario encompassing
two internal phase shifts ϕ1 (ϕ2) in the upper (lower) arm of
the interferometer.

Energy conservation for a symmetrical (i.e., thin-film)
beam splitter imposes the usual constraints |T |2 + |R|2 = 1
and T ∗R + T R∗ = 0 [47]. Here R denotes the reflection coef-

ficient of the first beam splitter (BS1). Throughout this work
we will use the parametrization{

T = cos ϑ
2 ,

R = i sin ϑ
2

(1)

and similarly for BS2, {
T ′ = cos ϑ ′

2 ,

R′ = i sin ϑ ′
2 ,

(2)

where R′ denotes the reflection coefficient of the second
beam splitter and {ϑ, ϑ ′} ∈ [0, π ]. We introduce the input
Schwinger pseudo-angular-momentum operators [48,49]

Ĵx = â†
0â1 + â0â†

1

2
, (3)

Ĵy = â†
0â1 − â0â†

1

2i
, (4)

and

Ĵz = â†
0â0 − â†

1â1

2
, (5)

where âl (â†
l ) denote the usual annihilation (creation) opera-

tors for the input modes l = 0, 1 [47]. We also introduce the
input total photon-number operator

N̂ = n̂0 + n̂1, (6)

where n̂l = â†
l âl denotes the usual number operator for a

mode l .

A. First BS optimization via QFI

We encounter two main scenarios in this optimization and
we briefly outline them below. In the case when no external
phase reference in available, the only relevant phase informa-
tion is

ϕ = ϕ2 − ϕ1, (7)

and one needs to use the so-called two-parameter QFI in order
to discharge resources that are unavailable. We thus introduce
the two-parameter quantum Fisher information [25,27,29,40]
(see details in Appendix A)

F (2p) = Fdd − F2
sd

Fss
, (8)

and this QFI implies the QCRB,

�ϕ
(2p)
QCRB = 1√

F (2p)
. (9)

This limit will be relevant especially for the difference-
intensity (direct) detection scheme described in Sec. III A and
for the single-mode-intensity detection scheme described in
Sec. III B.

The optimum transmission coefficient T (2p)
opt of the first

beam splitter that maximizes the two-parameter QFI (8) is
found in [40], Sec. V A. In all performance plots from Sec. V
involving a detection scheme having no access to an external
reference, we will assume for the first BS the transmission co-
efficient T (2p)

opt , thus in all future calculations we will consider

ϑ = 2 arccos T (2p)
opt .
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If an external phase reference is available and assuming the
internal phase-shift convention [40],

{
ϕ1 = 0,

ϕ2 = ϕ,
(10)

the (asymmetric) single-parameter QFI [25,27,40]

F (i) = 4�2n̂3 (11)

must be employed (see also Appendix A). The single-
parameter QFI F (i) implies the QCRB

�ϕ
(i)
QCRB = 1√

F (i)
. (12)

The optimum transmission coefficient T (i)
opt of the first beam

splitter that maximizes the asymmetric single-parameter QFI
(11) is given in [40], Sec. V B. All performance plots from
Sec. V involving a balanced homodyne detection (BHD)
scheme will use the convention from Eq. (10) and also assume
that BS1 is characterized by T (i)

opt , thus, in all calculations we

will use ϑ = 2 arccos T (i)
opt .

We mention that a subcase to the scenario with an external
phase reference is possible, namely, by replacing Eq. (10) with
the convention {

ϕ1 = − ϕ

2 ,

ϕ2 = ϕ

2 .
(13)

As discussed in the literature [25,27,40], this ±ϕ/2 scenario
is described by the QFI F (ii) = �2(n̂2 − n̂3) [25] that can also
be expressed in respect with the two-parameter Fisher matrix
elements as F (ii) = Fdd [40]. This QFI implies the QCRB
�ϕ

(ii)
QCRB = 1/

√
F (ii). Since this ±ϕ/2 convention presents

little interest for an unbalanced MZI scenario, we will not
consider it in this work.

B. Field operator transformations for an unbalanced MZI

We have the input-output field operator transformations

{
â4 = A40â0 + A41â1,

â5 = A50â0 + A51â1,
(14)

where the A coefficients are given by (see, e.g., [50,51])

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A40 = T T ′e−iϕ1 + RR′e−iϕ2 ,

A41 = T R′e−iϕ2 + RT ′e−iϕ1 ,

A50 = T R′e−iϕ1 + RT ′e−iϕ2 ,

A51 = T T ′e−iϕ2 + RR′e−iϕ1 .

(15)

Employing the conventions (1) and (2) and assuming
a single internal phase shift (10), Eq. (15) can be

rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A40 = cos ϑ

2 cos ϑ ′
2 − sin ϑ

2 sin ϑ ′
2 e−iϕ,

A41 = i
(
cos ϑ

2 sin ϑ ′
2 e−iϕ + sin ϑ

2 cos ϑ ′
2

)
,

A50 = i
(
cos ϑ

2 sin ϑ ′
2 + sin ϑ

2 cos ϑ ′
2 e−iϕ

)
,

A51 = cos ϑ
2 cos ϑ ′

2 e−iϕ − sin ϑ
2 sin ϑ ′

2 .

(16)

For future convenience, we introduce the following K coeffi-
cients: ⎧⎪⎨⎪⎩

Kx = sin ϑ ′sin ϕ,

Ky = −(sin ϑ cos ϑ ′ + cos ϑ sin ϑ ′cos ϕ),

Kz = cos ϑ cos ϑ ′ − sin ϑ sin ϑ ′cos ϕ

(17)

and the above terms obey the constraint

K2
x + K2

y + K2
z = 1. (18)

Also, by direct calculation we get the following results con-
necting the K and A coefficients:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|A40|2 = |A51|2 = 1
2 (1 + Kz ),

|A50|2 = |A41|2 = 1
2 (1 − Kz ),

Re{A40A∗
41} = −Re{A50A∗

51} = Kx
2 ,

Im{A40A∗
41} = −Im{A50A∗

51} = Ky

2 ,

(19)

where Re (Im) denotes the real (imaginary) part.

III. DETECTION SCHEMES

For a general detection scheme employing an observable
Ô(ϕ), the phase sensitivity can be defined via the error propa-
gation formula [20,47]

�ϕ =
√

�2Ô(ϕ)∣∣∣ ∂〈Ô(ϕ)〉
∂ϕ

∣∣∣ , (20)

where the variance of the operator Ô(ϕ) is defined by

�2Ô = 〈Ô(ϕ)2〉 − 〈Ô(ϕ)〉2
. (21)

For clarity, from this point on, we will not write explicitly the
operator’s ϕ dependence, i.e., we will write Ô instead of Ô(ϕ).

In the following, we will determine the phase sensitiv-
ity corresponding to each of the three considered detection
schemes.

A. Difference-intensity detection scheme

In the difference-intensity detection scheme, we employ as
observable the difference between the output photocurrents
N̂d = n̂4 − n̂5 (see Fig. 2). Expressing N̂d in respect with the
input field operators yields

N̂d = 2KxĴx + 2KyĴy + 2KzĴz (22)

and we have

∂ 〈N̂d〉
∂ϕ

= 2(〈Ĵx〉 cos ϕ + (cos ϑ 〈Ĵy〉

+ sin ϑ 〈Ĵz〉) sin ϕ) sin ϑ ′. (23)
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FIG. 2. The three detection schemes considered in this work. For
the difference-intensity (direct) detection scheme (see Sec. III A) we
have the output operator N̂d = n̂4 − n̂5. For the single-mode-intensity
detection scheme we use n̂4 as output operator (see Sec. III B),
while for the BHD scheme (see Sec. III C) we employ X̂L given in
Eq. (32).

After some calculations (see Appendix B), the variance of the
operator N̂d is found to be

�2N̂d = 4K2
x �2Ĵx + 4K2

y �2Ĵy + 4K2
z �2Ĵz

+ 8KxKzĈov(Ĵx, Ĵz ) + 8KxKyĈov(Ĵx, Ĵy)

+ 8KyKzĈov(Ĵy, Ĵz ), (24)

where the symmetrized covariance of two noncommuting op-
erators Â and B̂ is defined by

Ĉov(Â, B̂) = 〈ÂB̂〉 + 〈B̂Â〉
2

− 〈Â〉 〈B̂〉 . (25)

From definition (21) and using the previous results, the phase
sensitivity for a difference-intensity detection scheme is

�ϕdf = 1

2| sin ϑ ′|

×
√

�2N̂d

| 〈Ĵx〉 cos ϕ + (cos ϑ 〈Ĵy〉 + sin ϑ〈Ĵz〉) sin ϕ| .

(26)

B. Single-mode-intensity detection scheme

In this scenario we consider a single photocurrent at the
output port 4, the observable conveying information is thus
n̂4 (see Fig. 2). Expressing it in respect with the input field

operator yields

n̂4 = 1
2 N̂ + KxĴx + KyĴy + KzĴz (27)

and thus
∂ 〈n̂4〉
∂ϕ

= (〈Ĵx〉 cos ϕ + cos ϑ sin ϕ 〈Ĵy〉

+ sin ϑ sin ϕ〈Ĵz〉) sin ϑ ′. (28)

The variance is found to be (see details in Appendix C)

�2n̂4 = 1
4�2N̂ + K2

x �2Ĵx + K2
y �2Ĵy + K2

z �2Ĵz

+ 2KxKyĈov(Ĵx, Ĵy) + 2KxKzĈov(Ĵx, Ĵz )

+ 2KyKzĈov(Ĵy, Ĵz ) + KxCov(Ĵx, N̂ )

+ KyCov(Ĵy, N̂ ) + KzCov(Ĵz, N̂ ), (29)

where the covariance of two operators Â and B̂ is defined as
usual by

Cov(Â, B̂) = 〈ÂB̂〉 − 〈Â〉 〈B̂〉 . (30)

The phase sensitivity (20) for this scenario is

�ϕsg = 1

| sin ϑ ′|

√
�2n̂4

| 〈Ĵx〉 cos ϕ+(cos ϑ 〈Ĵy〉 + sin ϑ〈Ĵz〉) sin ϕ| .

(31)

C. Balanced homodyne detection scheme

If we assume a BHD scheme at the output port 4 (see
Fig. 2), the operator modeling this detection scheme is

X̂φL = e−iφL â4 + eiφL â†
4

2
. (32)

We find the variance of the above operator,

�2X̂φL = 1
4 + 1

2 [Cov(â†
4, â4) + Re{e−i2φL �2â4}], (33)

where by the covariance term above we obviously mean

Cov(â†
4, â4) = 〈n̂4〉 − | 〈â4〉 |2. (34)

In the single internal phase-shift scenario (10), by using the
field operator transformations (14) and (16) we find

∂
〈
X̂φL

〉
∂ϕ

=
(

sin
ϑ

2
Re{ie−i(φL+ϕ) 〈â0〉}

+ cos
ϑ

2
Re{e−i(φL+ϕ) 〈â1〉}

)
sin

ϑ ′

2
. (35)

The phase sensitivity in this case is found to be

�ϕhom = 1

sin ϑ ′
2

√
�2X̂φL∣∣sin ϑ

2 Re{e−i(φL+ϕ)i 〈â0〉}+ cos ϑ
2 Re{e−i(φL+ϕ) 〈â1〉}

∣∣ , (36)

where �2X̂φL is given in Eq. (33). More details are found in Appendix D.

IV. PHASE-SENSITIVITY OPTIMIZATION

Since our MZI is unbalanced, we find that our phase sen-
sitivity, as expected, depends on the statistics of the input

state but also on the transmission coefficients of both BS,
plus the two internal phase shifts ϕ1 and ϕ2. As mentioned
previously, we assume the first beam splitter (parametrized by
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FIG. 3. Example plot of the phase sensitivity �ϕdf for a
difference-intensity detection scheme given in Eq. (26) versus the
total internal phase shift (ϕ) and the BS2 transmission coefficient
(T ′2). A coherent plus squeezed vacuum input state (39) is employed
and BS1 is optimized via QFI yielding T = 1/

√
2. The optimum

in terms of phase sensitivity is found by imposing the working
point(s) ϕopt = π

2 + kπ (k ∈ Z) and BS2 balanced. Parameters used:
|α| = 102, r = 1.2, and input PMC 2θα − θ = 0.

ϑ) to be already optimized via the QFI [40]. This guarantees
that up to the phase shifts (see Fig. 1) the interferometer is
optimized, no matter what beam splitter or detection scheme
are employed next. Our phase sensitivity is thus a function
of three variables, �ϕ(ϑ ′, ϕ1, ϕ2). For a detection scheme
not having access to an external phase reference, the phase
sensitivity simplifies to �ϕ(ϑ ′, ϕ), where ϕ = ϕ2 − ϕ1. We
wish to optimize this phase sensitivity and this is obviously
an extremization problem applied to a two-variable function
[52]. We thus impose the constraints{

∂ϑ ′�ϕ(ϑ ′, ϕ) = ∂�ϕ(ϑ ′,ϕ)
∂ϑ ′ = 0,

∂ϕ�ϕ(ϑ ′, ϕ) = ∂�ϕ(ϑ ′,ϕ)
∂ϕ

= 0,
(37)

yielding a number of solutions (ϑ ′
opt, ϕopt). However, in the

general case, the resulting pairs (ϑ ′
opt, ϕopt) are not necessarily

extrema points. One must thus also compute the second-order
derivatives ∂ϑ ′ϑ ′�ϕ, ∂ϕϕ�ϕ, and ∂ϑ ′ϕ�ϕ and impose the con-
straints ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ϑ ′ϑ ′�ϕ(ϑ ′
opt, ϕopt )∂ϕϕ�ϕ(ϑ ′

opt, ϕopt )

−(∂ϑ ′ϕ�ϕ(ϑ ′
opt, ϕopt ))2 > 0,

∂ϑ ′ϑ ′�ϕ(ϑ ′
opt, ϕopt ) > 0,

∂ϕϕ�ϕ(ϑ ′
opt, ϕopt ) > 0,

(38)

in order to find the pair(s) (ϑ ′
opt, ϕopt ) actually yielding a

minimum of the function �ϕ.
Nonetheless, the phase sensitivity �ϕ(ϑ ′, ϕ) has usually a

well-defined minimum1 and the optimal solutions are unam-
biguous. An example is given in Fig. 3, where we plot the

1Of course, degenerate cases (i.e., when Topt = 0/1 and/or T ′
opt =

0/1) may appear as result of this optimization. They may also appear
while finding the optimum transmission coefficient of BS1 derived

10.8

2
1.5

10-2

10-1

0.60.5 0.40.20 0

1

FIG. 4. Example plot of the phase sensitivity �ϕsg given in
Eq. (31) for a single-mode-intensity detection scheme versus the
total internal phase shift (ϕ) and the BS2 transmission coefficient
(T ′2). A coherent plus squeezed vacuum input state given in Eq. (39)
is assumed and BS1 is optimized via the QFI yielding T = 1/

√
2.

The optimum in terms of phase sensitivity is found for the working
point(s) ϕopt ≈ π ± 0.124π and for BS2 balanced. Parameters used:
|α| = 102, r = 1.2, and 2θα − θ = 0.

phase sensitivity for a coherent plus squeezed vacuum input
given in Eq. (39) and a difference-intensity detection scheme
(see Sec. III A). Being in a scenario without an external phase
reference, optimizing the two-parameter QFI points towards a
balanced BS1, i.e., Topt = 1/

√
2 (or, equivalently ϑopt = π/2)

[40]. As detailed in Appendix E 1, for the input state (39)
the best performance in phase sensitivity is found when em-
ploying a balanced MZI (T ′

opt = 1/
√

2) and a working point
ϕopt = π/2 + kπ with k ∈ Z (see Fig. 3).

For the difference-intensity detection scenario numerous
input states will point towards the same optimal settings,
among them the squeezed coherent plus squeezed vacuum
(43), the coherent plus Fock (51), and for most input phase
matching conditions, the squeezed coherent plus squeezed
coherent input (see Appendixes E 1 and E 2 for a broader
discussion).

Another example is given in Fig. 4, where we plot the phase
sensitivity for a MZI fed by the same input state, however,
using a single-mode-intensity detection scheme. Optimizing
BS1 via the QFI points towards a balanced solution, i.e.,
Topt = 1/

√
2 [40]. Similar to the difference-intensity detection

scheme, the optimum transmission coefficient of the second
beam splitter (see details in Appendix F 1) is found in the
balanced case. However, the optimum working point is not
found at a multiple of π/2, as it was previously the case.
Indeed, the working point ϕopt for a single-mode-intensity
detection is found by solving a 4th degree equation, namely,
Eq. (H3). However, for many input states, a simple analytical
solution is possible, as detailed in Appendix F 2. For the input

from the QFI, as discussed in [40]. Quite often, such poor results are
the consequence of bad input parameter or PMC choices.
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FIG. 5. Example plot of the phase sensitivity �ϕhom given in
Eq. (36) for a BHD scheme versus the total internal phase shift ϕ and
the BS2 transmission coefficient T ′2. We consider the coherent plus
squeezed vacuum input state given in Eq. (39) and BS1 is optimized
via QFI yielding T ≈ √

0.55. The optimum phase sensitivity is found
for the working point(s) ϕopt = π + 2kπ (k ∈ Z) and for the BS2

transmission coefficient T ′
opt ≈ √

0.45. Parameters used: |α| = 102,
r = 1.2, and 2θα − θ = 0.

state considered here and by employing Eq. (F8) we find the
working points ϕopt ≈ 0.87π and ϕopt ≈ 1.12π (see Fig. 4).

Having access to an external phase reference and assuming
a single internal phase shift (10) not only changes the best
achievable performance to �ϕ

(i)
QCRB given in Eq. (12), but

usually also favors unbalanced scenarios [27,40]. When it
comes to optimizing the phase sensitivity of a MZI using a
BHD scheme (see Sec. III C), we have to optimize a func-
tion depending on the local oscillator phase (φL) too, i.e.,
�ϕhom(ϑ ′, ϕ, φL ). However, quite often the local oscillator
phase is obvious (for example, in phase with the input coher-
ent source, by setting φL = θα). We thus assume φL already
at its optimum value and proceed as before to minimize the
function �ϕhom(ϑ ′, ϕ).

In Fig. 5 we give an example of phase sensitivity when an
external phase reference is available. We consider the same
input state given in Eq. (39) and a BHD scheme. From the
single-parameter QFI we can deduce the optimal transmis-
sion coefficient of the first BS, namely, T ≈ √

0.55 [40]. By
optimizing the second beam splitter we find, as expected, an
unbalanced beam splitter featuring T ′

opt ≈ √
0.45 for BS2. De-

tails on this type of optimization are found in Appendix G 1.
As for the working point for a MZI employing a BHD

scheme and a single internal phase shift, quite often (see
details in Appendix G 2) the working point is found to be
ϕopt = π + 2kπ (k ∈ Z).

V. OPTIMIZED PHASE-SENSITIVITY PERFORMANCE
WITH SOME INPUT STATES

In this section, we assess the performance of the three
considered detection schemes for a number of relevant input
states.

We start our discussion with Gaussian states. The ones
already considered in the literature are discussed briefly while

the more complicated case of the squeezed coherent plus
squeezed coherent input state is detailed at length. We then
go on to discuss an interesting non-Gaussian input, namely,
the coherent plus Fock state.

A. Coherent plus squeezed vacuum input

One of the most widely used states both in theoretical and
experimental quantum-enhanced metrology is the coherent
plus squeezed vacuum input [4,13,20,28,53]

|ψin〉 = |α1ξ0〉, (39)

where the coherent (or Glauber) state in port 1 is obtained by
applying the displacement or Glauber operator [47,54]

D̂1(α) = eαâ†
1−α∗â1 , (40)

i.e., |α1〉 = D̂1(α) |01〉 with α = |α|eiθα . The squeezed vac-
uum in port 0, i.e., |ξ0〉 = Ŝ0(ξ )|00〉, is obtained by applying
the squeezing operator [47,55]

Ŝ0(ξ ) = e
1
2 [ξ∗â2

0−ξ (â†
0 )2], (41)

where ξ = reiθ . Usually r ∈ R+ is called the squeezing factor
and θ denotes the phase of the squeezed state.

The optimum performance of this input state is obtained by
imposing the input PMC [28,29,41]

2θα − θ = 0. (42)

When no external phase reference is available, the relevant
QFI is the two-parameter one and it reaches its maximum
when BS1 is balanced (i.e., Topt = 1/

√
2) yielding F (2p)

max =
|α|2 + sinh2 r [13,20,28]. As discussed in previous works
[28,29,41], the two considered detection schemes falling into
this scenario (Secs. III A and III B) are slightly suboptimal
in respect with the QCRB from Eq. (9) and their optimum
performance is found for a balanced MZI [27] (see also Figs. 3
and 4).

When an external phase reference is available, the relevant
QFI is the single-parameter one, F (i), and its maximum value
can be computed in closed form [see Eq. (F4) in [27]]. This
maximum is usually found for BS1 unbalanced [27,40]. The
phase-sensitivity optimization often also results in an unbal-
anced BS2, as depicted in Fig. 5.

It has been previously shown that, by employing a BHD
scheme (see Sec. III C) and an unbalanced MZI, one is able to
approach the F (i)-induced QCRB, i.e., �ϕ

(i)
QCRB (see Figs. 11

and 12 from [27]).
Thus, only the availability of an external phase reference

justifies the use of an unbalanced MZI in the case of the input
state (39).

B. Squeezed coherent plus squeezed vacuum input

Consider now the squeezed coherent plus squeezed vac-
uum input state [27,35,56]

|ψin〉 = |(αζ )1ξ0〉 = D̂1(α)Ŝ1(ζ )Ŝ0(ξ )|0〉 (43)
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FIG. 6. Phase sensitivity for a squeezed coherent plus squeezed
vacuum input state in the balanced and unbalanced scenarios with a
BHD scheme. An unbalanced MZI is able to slightly outperform its
balanced counterpart. Parameters used: |α| = 50, r = 1.2, and z =
0.6. The PMC employed is the optimum one given in Eq. (44).

and the squeezer in input port 1 is characterized by ζ = zeiφ .
All QFIs are maximized if we impose the input PMC [27]{

2θα − θ = 0,

2θα − φ = ±π.
(44)

When no external phase reference is available, the optimum
two-parameter QFI is found in the balanced case [27] yielding
F (2p)

max = |α|2 + sinh2(r + z) [29]. For single- and difference-
intensity detection schemes the optimum phase sensitivity is
indeed found for a balanced MZI [27].

Similar to the discussion from Sec. V A, the availability of
an external phase reference suggests a single-parameter QFI,
F (i), that is maximized in a nonbalanced scenario [27,40].

In Fig. 6, we plot the phase sensitivity for the input state
(43) with a BHD scheme. After optimizing the nonbalanced
case we get Topt ≈ √

0.71 ≈ 0.84 and T ′
opt ≈ √

0.28 ≈ 0.53.
As seen from Fig. 6, the unbalanced scenario slightly outper-
forms the balanced one and we gain approximatively 4% at
the peak phase sensitivity.

We conclude that for the input state (43), similar to the
coherent plus squeezed vacuum input, only the availability
of an external phase reference justifies the phase-sensitivity
optimization via an unbalanced MZI.

C. Squeezed coherent plus squeezed coherent input

We consider now the squeezed coherent plus squeezed
coherent input state [29,36,40]

|ψin〉 = |(αζ )1(βξ )0〉, (45)

where for port 0 we have |(βξ )0〉 = D̂0(β )Ŝ0(ξ )|0〉 and β =
|β|eiθβ . Optimum performance of this input state in terms of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 7. The two-parameter QFI (F (2p)) versus the transmission
coefficient of the first beam splitter (T 2). We consider the input
state given in Eq. (45) and compare the three input PMCs in the
low coherent regime. Parameters used: |α| = 2.2, |β| = 1.4, r = 1.2,
z = 0.6. Stars mark the maximum of each QFI curve.

QFI imposes one of the three input phase-matching condi-
tions, namely [29,40],

(PMC1)

⎧⎪⎨⎪⎩
2θα − θ = 0,

φ − θ = ±π,

θα − θβ = 0,

(46)

(PMC2)

⎧⎪⎨⎪⎩
2θα − θ = 0,

φ − θ = 0,

θα − θβ = 0,

(47)

or

(PMC3)

⎧⎪⎨⎪⎩
2θα − θ = 0,

φ − θ = ±π,

θα − θβ = π
2 .

(48)

We start our discussion in the low coherent intensity
regime, i.e., when

{|α|2, |β|2} ≈ {sinh2 r, sinh2 z}. (49)

For the difference-intensity detection scheme, the relevant
QFI is F (2p). In Fig. 7 we plot the aforementioned QFI for
the three considered PMCs versus the transmission coefficient
of the first beam splitter. The optimum performance is thus
expected by employing a balanced MZI and (PMC1). The
second best performance is expected if we employ (PMC2)
still in the balanced case, while the worst performance is
predicted for (PMC3) and a heavily unbalanced MZI (T (2p)

opt ≈√
0.04 = 0.2).
In Fig. 8, we plot the actual performance in terms of phase

sensitivity for a difference-intensity detection scheme in the
low-intensity coherent regime. Although the best performance
(based on the QFI-induced QCRB) is expected for (PMC1),
this is not what actually happens. The input (PMC3) is found
to yield the best performance (solid thin green curve) and the
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FIG. 8. Difference-intensity detection phase sensitivity in the
low coherent intensity regime for a squeezed coherent plus squeezed
coherent input state (45). Parameters used: |α| = 2.2, |β| = 1.4,
r = 1.2, and z = 0.6.

optimum transmission coefficient for BS2 is found to be T ′
opt ≈√

0.498 = 0.706. The actual performance of a balanced MZI
with either (PMC1) or (PMC2) is found to be inferior to the
unbalanced MZI scenario.

While the low-intensity regime is interesting for a num-
ber of applications involving usually delicate or light-affected
samples (live biological cells, retina samples, etc.), the high-
intensity regime

{|α|2, |β|2} 
 {sinh2 r, sinh2 z} (50)

is also interesting especially for high-precision measurements.
In all our calculations, aside from the constraint (50) we will
also impose the second coherent source to be weak in respect
with the first one (i.e., |α|2 
 |β|2 
 {sinh2 r, sinh2 z}). This
constraint is set to be more realistic since experiments usually
have one high-power laser. While the low-intensity regime
favors the difference-intensity detection scheme, in the high-
intensity coherent regime, the single-mode intensity and BHD
schemes are experimentally preferred [29,41].

In Fig. 9 we plot both the single- and two-parameter QFI
versus the transmission coefficient of the first beam split-
ter for the three input PMCs in the high-intensity coherent
regime [40]. For the single-mode-intensity detection the rel-
evant QFI is still the two-parameter one, F (2p). It becomes
obvious from Fig. 9 that the optimum F (2p)

max is roughly identi-
cal for all three input PMCs. [One finds F (2p)

max = 11.024 × 106

for (PMC1), F (2p)
max = 11.031 × 106 for (PMC2), while for

(PMC3) we have F (2p)
max = 10.987 × 106.) However, while for

(PMC1) and (PMC2) the optimum is found in the balanced
case, for (PMC3) it is found in an unbalanced scenario with
Topt = √

0.45.
In Fig. 10 we depict the performance of a single-mode-

intensity detection scheme for a squeezed coherent plus
squeezed coherent input state for all three PMCs. While all
PMCs yield slightly suboptimal and quite equivalent perfor-
mance, (PMC3) seems to perform worst.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

FIG. 9. The single- and two-parameter QFI versus the transmis-
sion coefficient of the first beam splitter for the three input PMCs
in the high-intensity coherent regime. A squeezed coherent plus
squeezed coherent input state (45) is considered. Parameters used:
|α| = 103, |β| = 50, r = 1.2, z = 0.6. Stars mark the maximum of
each QFI curve.

However, this slight disadvantage can be compensated by
the advantage gained in the extinction rate 〈n̂4(ϕ)〉 /N̄ at the
optimum working point, i.e., 〈n̂4(ϕopt)〉 /N̄ . Indeed, especially
in the high-intensity regime, it is desirable to have the output
port nearly “dark.” In Fig. 11 we plot the extinction rates
for all three PMCs as well as the extinction rates at their re-
spective optimum working points. We conclude that although

0 0.5 1 1.5 2

10-3

FIG. 10. Phase sensitivity for the squeezed coherent plus
squeezed coherent input in the high coherent regime using a single-
mode-intensity detection. All three input PMCs yield suboptimal
performance, with (PMC2) yielding the best result (�ϕopt

sg = 3.084 ×
10−4 at ϕopt = 0.99π ) while (PMC3) the worst (�ϕopt

sg = 3.241 ×
10−4 at ϕopt = 0.97π ). Inset: zoom around ϕ = π , where all three
phase sensitivities peak. Parameters used: |α| = 103, |β| = 50, r =
1.2, z = 0.6.
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FIG. 11. Extinction rates 〈n̂4(ϕ)〉 /N̄ for the squeezed coherent
plus squeezed coherent input in the high coherent regime using
a single-mode-intensity detection. For (PMC3) and an unbalanced
MZI we find 〈n̂4(ϕopt

sg )〉 /N̄ = 2.1128 × 10−3; for a balanced MZI and
(PMC1) we find 〈n̂4(ϕopt

sg )〉 /N̄ = 4.257 × 10−3, while for (PMC2)
we have 〈n̂4(ϕopt

sg )〉 /N̄ = 8.876 × 10−3.

(PMC3) and an unbalanced MZI did not yield the best phase
sensitivity (as depicted in Fig. 10), it outperformed the other
input PMCs using a balanced MZI in terms of extinction rate
at the optimum working point.

We set our attention now to the case when the detection
scheme has access to an external phase reference. As men-
tioned previously, the relevant QFI in this scenario is the
single-parameter one, F (i) [25,27].

From the QFI prediction (see Fig. 9), the best performance
for the input state (45) is expected if we employ (PMC3) and
an unbalanced MZI with BS1 featuring Topt = √

0.67. The
next best performance is expected for (PMC1) in which case
Topt = √

0.7. We set to verify these predictions in Fig. 12. In-
deed, employing (PMC3) and an unbalanced MZI (the optimal
BS2 transmission coefficient is found to be T ′

opt = √
0.278) we

get the optimum phase sensitivity �ϕhom (thick solid green
curve) reaching its optimal value �ϕ

opt
hom = 2.437 × 10−4 at

the working point ϕopt = π . Imposing a balanced MZI for the
same input PMC (thin dotted red curve) degrades the optimum
phase sensitivity and the best value at the working point is
found to be �ϕ

opt
hom = 2.515 × 10−4.

As predicted by the QFI plot (see Fig. 9), the next best
performance is potentially given by the input state (45) and
(PMC1). Indeed, one finds �ϕhom (thin solid light blue curve)
reaching the optimum phase sensitivity �ϕ

opt
hom = 2.517 ×

10−4 at the optimum working point ϕopt = π . Imposing a
balanced MZI for the same input PMC (thin dashed black
curve) degrades the optimum phase sensitivity to �ϕ

opt
hom =

2.64 × 10−4.
We also depicted in Fig. 12 all corresponding QCRBs, in

order to assess the suboptimality of each considered scenario.
From the inset one can see that all scenarios are nearly opti-
mal, the thickness of the lines not allowing the visibility of the
minute suboptimality of each scheme. For example, the best
performance, as stated previously, belongs to a nonbalanced

0 0.5 1 1.5 2

10-3

FIG. 12. Phase sensitivity for the squeezed coherent plus
squeezed coherent input in the high coherent regime. Unbalancing
the MZI brings an advantage in terms of best phase sensitivity both
in the case of (PMC3) (thick solid green curve versus thin dotted
red curve) as well as (PMC1) (thin solid light blue curve versus thin
dashed black curve). Parameters used: |α| = 103, |β| = 50, r = 1.2,
and z = 0.6. Inset: zoom around the ϕ = π working point.

MZI with (PMC3) and we found �ϕ
opt
hom = 2.437 32 × 10−4.

The corresponding QCRB is �ϕ
(i)
QCRB = 2.437 29 × 10−4.

In Ref. [36] it was claimed that for a squeezed coherent
plus squeezed coherent input state “unbalanced devices may
be also considered, which however lead to inferior perfor-
mances.” As discussed in this section, at least for some input
parameters, this claim cannot be sustained.

We conclude that when it comes the squeezed coherent
plus squeezed coherent input state given by Eq. (45), it is
more difficult to point out when an unbalanced MZI is able
to outperform its balanced counterpart. Indeed, while in the
previous sections (Secs. V A and V B) the availability of an
external phase reference justified unbalancing the MZI, for the
input state (45) even not having access to an external phase
reference might justify this choice.

D. Coherent plus Fock input

As a last example we consider the coherent plus Fock input
state [17,44]

|ψin〉 = |α1n0〉, (51)

where n̂0 |n0〉 = n |n0〉.
If no external phase reference is available, the optimum

in terms of phase sensitivity is found in the balanced case
[40]. The optimization of the second BS yields a similar
result. However, if an external phase reference is available,
from the single-parameter QFI (12) we obtain the optimum
transmission coefficient for BS1, namely [40],

T (i)
opt =

√
1

2
+ |α|2

2n(1 + 2|α|2)
. (52)
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FIG. 13. Phase sensitivity for a coherent plus Fock input state.
The unbalanced cases outperform the balanced ones (labeled “bal” in
the legend) for both n = 1 and 3. Parameter used: |α| = 103. For the
unbalanced scenarios, the first BS is optimized following Eq. (52),
while the second one is optimized via Eq. (G6).

The optimum working point is found, as expected from
Eq. (H6), among multiples of π , irrespective on the values
of n and α (assuming α �= 0).

In Fig. 13 we plot the phase sensitivity for a coherent plus
Fock input and a BHD scheme, both in the balanced and
unbalanced scenarios. In order to be realistic, we employ the
high coherent regime |α|2 
 n.

For |α| = 103 and n = 1 we have from Eq. (52) Topt ≈√
0.75 = 0.866. Optimizing the second beam splitter via

Eq. (G6) yields a transmission coefficient T ′
opt ≈ √

0.107 =
0.328. As expected, the unbalanced MZI scenario (solid blue
curve in Fig. 13, lowest among the wavy lines) outperforms
in terms of phase sensitivity the balanced one (thick dashed
light green curve). Both scenarios, though, are suboptimal in
respect with the QCRBs (thick dashed dark blue and, respec-
tively, thick solid dark green horizontal lines).

Keeping the coherent amplitude fixed but increasing the
photon number for the Fock state to n = 3 results in a less
important advantage for the unbalanced (dotted pink-red line)
versus the balanced MZI (thin black line) in terms of phase-
sensitivity performance. This result is not surprising since
T (i)

opt from Eq. (52) implies that BS1 becomes balanced as n
grows indefinitely. While the unbalanced scenario for n = 3
(we find Topt ≈ √

0.577 ≈ 0.76 and T ′
opt ≈ √

0.3 ≈ 0.55) still
outperforms the balanced one, the suboptimality of both sce-
narios increases in respect with the case n = 1. This becomes
obvious when comparing the performances for n = 3 with
the two corresponding QCRBs (thick solid violet and, respec-
tively, dashed-dotted gray lines). We discuss more about this
suboptimality in Sec. V E.

We conclude that for the coherent plus Fock input state
(51), only the availability of an external phase reference can
justify unbalancing the MZI.

0 0.5 1 1.5 2 2.5 3
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FIG. 14. Phase-sensitivity comparison between coherent plus
squeezed vacuum (39) and coherent plus Fock (51) input states for
an unbalanced MZI and a BHD scheme. While the phase sensitivity
for coherent plus squeezed vacuum input is almost optimal, for a co-
herent plus Fock input state it remains largely suboptimal. Parameter
used: |α| = 103. For the coherent plus Fock input we used n = 1
while for the coherent plus squeezed vacuum input we imposed
r = 0.882 so that n ≈ sinh2 r.

E. Performance comparison for two input states: Coherent plus
squeezed vacuum versus coherent plus Fock

In [27] it was shown that a unbalanced MZI can outperform
a balanced one in terms of phase sensitivity if a coherent
plus squeezed vacuum is applied at its input. In Fig. 13 we
showed that an unbalanced MZI can show an advantage in
terms of phase sensitivity over a balanced one in terms of
phase sensitivity for a coherent plus Fock input state.

In [40], the two input states, i.e., Eqs. (39) and (51), were
compared in terms of single- and two-parameter QFI (see
Fig. 12 from the aforementioned reference). It was found
that their performance has a similar scaling in respect with
the input resources, with a slight advantage for the coherent
plus squeezed vacuum input state. From the QFI performance
only, one cannot decide which of the states (39) and (51)
shows a practical advantage. We will assess this question in
the following.

For both difference-intensity and single-mode detection
schemes we found that the coherent plus Fock input state
yielded largely suboptimal results, while the coherent plus
squeezed vacuum, as already reported in the literature, yielded
nearly optimal results [20,27,29,41].

In Fig. 14 we plot the two aforementioned states for un-
balanced MZIs and a BHD scheme. For each input state, the
MZI is optimized following the already described procedure.
We keep the same parameters employed in [40]. It ought to be
mentioned that Fig. 14 depicts the most favorable scenario for
the coherent plus Fock input, namely, for n = 1. For n = 3,
this input state becomes largely suboptimal (as depicted in
Fig. 14), while the coherent plus squeezed vacuum remains al-
most optimal, even for increasing squeezeing factors (see,e.g.,
Fig. 12 from [27]).

023716-10



OPTIMAL PHASE SENSITIVITY OF AN UNBALANCED … PHYSICAL REVIEW A 106, 023716 (2022)

We conclude that while in terms of the QFI-induced QCRB
the two states (39) and (51) show a roughly similar perfor-
mance, in terms of realistic phase sensitivity the coherent plus
squeezed vacuum outperforms the coherent plus Fock input
for all three detection schemes considered in this work. This
explains why practical implementations usually prefer the co-
herent plus squeezed vacuum state [6,7] when implementing
sub-shot-noise interferometry.

However, we would like to point out that Fock state inter-
ferometry has been shown to perform well with parity [44,46]
or double-parity [45] detection. While for very low input
average photon numbers this detection technique is feasible,
for high-intensity input light, it becomes problematic.

VI. CONCLUSIONS

In this paper we addressed the problem of phase-sensitivity
optimization for an unbalanced Mach-Zehnder interferometer
with three different detection schemes.

We optimized the first beam splitter guided by the quantum
Fisher information. We discussed both the single- and two-
parameter QFI cases, thus being able to take into account the
availability (or not) of an external phase reference. The opti-
mum transmission coefficient of the second beam splitter was
obtained as a result of a two-variable function optimization

problem, where the optimal working point of the interferome-
ter had to be taken into account, too.

For detection schemes not having access to an exter-
nal phase reference (single- or difference-mode detection
schemes in our case) we found that the optimal phase sensi-
tivity is almost always obtained by employing balanced BS2.
The optimum working point, though, was found to be detector
dependent.

When it comes to a detection scheme having access to
an external phase reference, the balanced MZI scenario is
rather the exception, not the rule. Unbalancing the MZI almost
always showed an advantage in terms of phase sensitivity.

Examples of nonbalanced MZI optimizations were given
for both Gaussian and non-Gaussian input states with a more
in-depth discussion of the squeezed coherent plus squeezed
coherent input state.
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APPENDIX A: SINGLE- AND TWO-PARAMETER QFI

When estimating a (single-) parameter problem, the optimal solution is found by employing the quantum version of the Fisher
information, i.e., the quantum Fisher information (QFI) [21–23,57]. For a thorough discussion of this topic, see [12].

When dealing with a multiparameter estimation problem the single QFI approach has to be extended to a matrix form [25–27].
We thus replace the QFI by a 2 × 2 matrix:

F =
[Fss Fsd

Fds Fdd

]
(A1)

having the following Fisher matrix elements [25,26]:

Fi j = 4 Re{〈∂iψ |∂ jψ〉 − 〈∂iψ |ψ〉〈ψ |∂ jψ〉} (A2)

with i, j ∈ {s, d} and we performed the variable changes ϕs = ϕ1 + ϕ2 and ϕd = ϕ1 − ϕ2. The quantum Cramér-Rao bound
inequality implies [26,58][

(�ϕs)2 Cov(ϕs, ϕd )

Cov(ϕs, ϕd ) (�ϕd )2

]
= � � F−1 = 1

FssFdd − FsdFds

[ Fdd −Fsd

−Fds Fss

]
. (A3)

Generally, this matrix inequality, i.e., � � F−1, cannot be saturated for all components [12]. However, we are solely interested
in the difference-difference phase estimator �ϕd , thus, the only inequality we are interested to saturate is

(�ϕd )2 � (F−1)dd = Fss

FssFdd − F2
sd

(A4)

and in order to simplify the writing we were led to introduce the definition from Eq. (8). We also used in the last equation the
obvious fact that Fds = Fsd . The single-parameter QFI, F (i), can be computed from the Fisher matrix coefficients [27,40]

F (i) = Fss + Fdd − 2Fsd . (A5)
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APPENDIX B: DIFFERENCE-MODE-INTENSITY DETECTION CALCULATIONS

From the field operator transformations (14) we have

N̂d = Kz(n̂0 − n̂1) + Kx(â0â†
1 + â†

0â1) + iKy(â0â†
1 − â†

0â1) (B1)

and employing the Schwinger pseudo-angular-momentum operators we get the result from Eq. (22). Averaging the square of the
operator N̂d takes us to〈

N̂2
d

〉 = 4K2
x

〈
Ĵ2

x

〉 + 4K2
y

〈
Ĵ2

y

〉 + 4K2
z

〈
Ĵ2

z

〉 + 4KxKy(〈ĴxĴy〉 + 〈ĴyĴx〉) + 4KxKz(〈Ĵx Ĵz〉 + 〈ĴzĴx〉) + 4KyKz(〈ĴyĴz〉 + 〈ĴzĴy〉). (B2)

Using the above result as well as Eq. (22) takes us to the variance given in Eq. (24).

APPENDIX C: SINGLE-MODE-INTENSITY DETECTION CALCULATIONS

From Eq. (14) we find the output number operator

n̂4 = |A40|2n̂0 + |A41|2n̂1 + A∗
40A41â†

0â1 + A40A∗
41â0â†

1 (C1)

and using relations (19) we end up with the result from Eq. (27). The average of the number operator n̂4 is thus

〈n̂4〉 = 1 + Kz

2
〈n̂0〉 + 1 − Kz

2
〈n̂1〉 + KxRe{〈â0â†

1〉} − KyIm{〈â0â†
1〉} (C2)

and by employing Eqs. (3)–(6) we end up with

〈n̂4〉 = 1
2 〈N̂〉 + Kx 〈Ĵx〉 + Ky 〈Ĵy〉 + Kz〈Ĵz〉. (C3)

Its derivative in respect with ϕ is easily obtained and given in Eq. (28). In order to find �2n̂4, we first square the operator (27)
and using the fact that [Jk, N] = 0 for k = {x, y, z} we find

n̂2
4 = 1

4 N̂2 + K2
x Ĵ2

x + K2
y Ĵ2

y + K2
z Ĵ2

z + KxĴxN̂ + KyĴyN̂ + KzĴzN̂ + KxKy(ĴxĴy + ĴyĴx ) + KxKz(ĴxĴz + ĴzĴx ) + KyKz(ĴyĴz + ĴzĴy).

(C4)

Using the above result and squaring the average 〈n̂4〉 from Eq. (C3) takes us to the variance given in Eq. (29).

APPENDIX D: BALANCED HOMODYNE DETECTION

In order to obtain �2X̂L, we need to calculate the last two terms from Eq. (33). Using the results from Eq. (19), we get

Cov(â†
4, â4) = 1

2 (1 + Kz )Cov(â†
0, â0) + 1

2 (1 − Kz )Cov(â†
1, â1) + KxRe{Cov(â0, â†

1)} − KyIm{Cov(â0, â†
1)}. (D1)

The last term from the variance (33) is given by

�2â4 = A2
40�

2â0 + A2
41�

2â1 + 2A40A41Cov(â0, â1). (D2)

Please note that the coefficients of the above term are dependent on the phase of local oscillator φL.

APPENDIX E: PHASE-SENSITIVITY OPTIMIZATION FOR A DIFFERENCE-INTENSITY DETECTION SCHEME

The difference-intensity detection scheme is described in Sec. III A and the corresponding phase sensitivity �ϕdf is given by
Eq. (26). In the following we apply the principles discussed in Sec. IV in order to obtain both T ′

opt (or, equivalently, ϑ ′
opt) and

ϕopt.

1. Optimum transmission coefficient for the second BS

From Eq. (37) we get the first constraint

tan ϑ ′
opt = �2Ĵy sin2 ϑ + �2Ĵz cos2 ϑ − sin 2ϑ Ĉov(Ĵy, Ĵz )[ (�2 Ĵz−�2 Ĵy ) sin 2ϑ

2 + Ĉov(Ĵy, Ĵz ) cos 2ϑ
]
cos ϕopt + [Ĉov(Ĵx, Ĵy ) sin ϑ − Ĉov(Ĵx, Ĵz ) cos ϑ]sin ϕopt

, (E1)

where, as discussed in Appendix E 2, ϕopt is found in a similar extremization process. Usually, though, simplifications can be
found by simple arguments leading to a straightforward solution.

Indeed, very often, the working point for a MZI coupled with a difference-intensity detection scheme is given by Eq. (H5),
we thus have from Eq. (E1) the simpler formula

ϑ ′
opt = arctan

(
�2Ĵy sin2 ϑ + �2Ĵz cos2 ϑ − sin 2ϑ Ĉov(Ĵy, Ĵz )

Ĉov(Ĵx, Ĵy ) sin ϑ − Ĉov(Ĵx, Ĵz ) cos ϑ

)
. (E2)
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TABLE I. The covariances and symmetrized covariances for a number of input states.

Input Single Double Coherent plus Squeezed coherent Coherent
state coherent coherent squeezed vacuum plus squeezed vacuum plus Fock
|ψin〉 |α100〉 |α1β0〉 |α1ξ0〉 |(αζ )1ξ0〉 |α1n0〉

Ĉov(Ĵx, Ĵy ) 0 0 − sinh 2r|α|2 sin(2θα−θ )
4 − sinh 2r|α|2 sin(2θα−θ )

4 − sinh 2rsinh 2z sin(θ−φ)
8 0

Ĉov(Ĵx, Ĵz ) 0 0 0 0 0
Ĉov(Ĵy, Ĵz ) 0 0 0 0 0
Cov(Ĵx, N̂ ) 0 |αβ| cos(θα − θβ ) 0 0 0
Cov(Ĵy, N̂ ) 0 |αβ| sin(θα − θβ ) 0 0 0
Cov(Ĵz, N̂ ) − 1

2 |α|2 1
2 (|β|2 − |α|2) sinh2 2r

2 − |α|2 sinh2 2r−sinh2 2z
2 − |α|2(cosh 2z − sinh 2z cos(2θα − φ)) − 1

2 |α|2

Moreover, for many interesting input states we have Ĉov(Ĵy, Ĵz ) = 0 = Ĉov(Ĵx, Ĵz ) (see Table I). Even if it were not the case, the
optimization of the first BS via the two-parameter QFI usually results in ϑ = π/2 [40]. Thus, Eq. (E2) reduces to

ϑ ′
opt = arctan

(
�2Ĵy

Ĉov(Ĵx, Ĵy)

)
. (E3)

Now from Table I it is clear that Ĉov(Ĵx, Ĵy ) �= 0 for a number of input states. However, one must not forget that when looking
for the best performance, the optimum input PMC must also be employed. So actually for a coherent plus squeezed vacuum
input (39), since sin(2θα − θ ) = 0 due to the PMC (42), we also get Ĉov(Ĵx, Ĵy ) = 0. Similarly, for the squeezed coherent plus
squeezed vacuum input state (43) we find

Ĉov(Ĵx, Ĵy) = − 1
4 sinh 2r|α|2 sin(2θα − θ ) − 1

8 sinh 2r sinh 2z sin (θ − φ), (E4)

and imposing the PMC (44) sets the above symmetrized covariance to zero. For the squeezed coherent plus squeezed coherent
input state (45) the same conclusions apply for all discussed input PMCs. Applying these arguments to Eq. (E3) leads to the
result

ϑ ′
opt = π

2
. (E5)

Even if we assume that ϕopt �= π/2 (but still assuming the first BS balanced [40]), from Eq. (E1) we have

tan ϑ ′
opt = �2Ĵy

−Ĉov(Ĵy, Ĵz )cos ϕopt + Ĉov(Ĵx, Ĵy )sin ϕopt
(E6)

and since Ĉov(Ĵy, Ĵz ) = 0 for most of the interesting input states (see Table I), we conclude that the optimum for a difference-
intensity detection scheme is usually reached if the second beam splitter is balanced (i.e., T ′

opt = 1/
√

2).

2. Optimum working point

The phase sensitivity for a difference-intensity detection scheme, i.e., Eq. (26), can be rewritten in the form given by Eq. (H1),
where the coefficients are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Adf = sin2 ϑ ′�2Ĵx + sin2 ϑ cos2 ϑ ′�2Ĵy + cos2 ϑ cos2 ϑ ′�2Ĵz − sin 2ϑ cos2 ϑ ′Ĉov(Ĵy, Ĵz ),

Bdf = −sin2 ϑ ′�2Ĵx + cos2 ϑ sin2 ϑ ′�2Ĵy + sin2 ϑ sin2 ϑ ′�2Ĵz + sin 2ϑ sin2 ϑ ′Ĉov(Ĵy, Ĵz ),

Cdf = −[cos ϑ Ĉov(Ĵx, Ĵy) + sin ϑ Ĉov(Ĵx, Ĵz )]sin2 ϑ ′,

Ddf = [
sin 2ϑ

2 �2Ĵy − sin 2ϑ
2 �2Ĵz − cos 2ϑ Ĉov(Ĵy, Ĵz )

]
sin 2ϑ ′,

Edf = [− sin ϑ Ĉov(Ĵx, Ĵy) + cos ϑ Ĉov(Ĵx, Ĵz )]sin 2ϑ ′,
Fdf = 〈Ĵx〉 sin ϑ ′,
Gdf = (cos ϑ 〈Ĵy〉 + sin ϑ 〈Ĵz〉)sin ϑ ′.

(E7)

If we take no simplifying assumptions, by imposing ∂�ϕdf /∂ϕ = 0, as discussed in Appendix H, we are led to a 4th degree
equation that can be solved either analytically or numerically. Even if we assume the unbalanced case ({ϑ, ϑ ′} �= π/2) one of
the simple scenarios from Appendix H might show up, allowing for a simple solution for ϕopt.

However, as mentioned previously [40], the maximization of the two-parameter QFI usually results in a balanced BS1 (i.e.,
ϑ = π/2). In Appendix E 1 we argued that often BS2 ends up being balanced, too, when optimizing the phase sensitivity. Thus,
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the coefficients from Eq. (E7) simplify to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Adf = �2Ĵx.

Bdf = −�2Ĵx + �2Ĵz,

Cdf = −Ĉov(Ĵx, Ĵz ),

Ddf = 0,

Edf = 0,

Fdf = 〈Ĵx〉 ,

Gdf = 〈Ĵz〉 .

(E8)

For most interesting input states Ĉov(Ĵx, Ĵz ) = 0 (see Table I), thus Cdf = 0. If 〈Ĵx〉 �= 0 then the optimum working point is given
by (H7) and for the current discussion (i.e., both BS balanced) we have

ϕopt = arctan

( 〈Ĵz〉 �2Ĵz

〈Ĵx〉 �2Ĵx

)
+ kπ, (E9)

with k ∈ Z. Input states obeying 〈Ĵx〉 = 0 are frequently used (equivalent to at least one of 〈â0〉 or 〈â1〉 be null), thus, Fdf = 0.
We conclude that the optimum working point is given by Eq. (H5), i.e.,

ϕopt = π

2
+ kπ, (E10)

with k ∈ Z.

APPENDIX F: PHASE-SENSITIVITY OPTIMIZATION FOR A SINGLE-MODE-INTENSITY DETECTION SCHEME

The single-mode-intensity detection scheme is described in Sec. III B. In the following we apply the extremization process
described in Sec. IV in order to point out how to compute both T ′

opt and ϕopt.

1. Optimum transmission coefficient for the second BS

In the general case, when optimizing ϑ ′ for a nonbalanced MZI with a single-mode-intensity detection scheme we are led to
a 4th degree equation

(S2 − S0)t4 + (S1 − S3)t3 − 4S2t2 + (S1 + S3)t + S0 + S2 = 0, (F1)

where we denoted ϑ ′ = 2 arctan t . The coefficients are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
S0 = 1

4�2N̂ + �2Ĵz cos2 ϑ + �2Ĵy sin2 ϑ − Ĉov(Ĵy, Ĵz ) sin 2ϑ,

S1 = [(�2Ĵy − �2Ĵz ) sin 2ϑ − 2Ĉov(Ĵy, Ĵz ) cos 2ϑ]cos ϕ + 2[Ĉov(Ĵx, Ĵz ) cos ϑ − Ĉov(Ĵx, Ĵy ) sin ϑ]sin ϕ,

S2 = Cov(Ĵz, N̂ ) cos ϑ − Cov(Ĵy, N̂ ) sin ϑ,

S3 = Cov(Ĵx, N̂ )sin ϕ − [Cov(Ĵz, N̂ ) sin ϑ − Cov(Ĵy, N̂ ) cos ϑ]cos ϕ

(F2)

and at the end of the calculation ϕ should be replaced with the value of the working point ϕopt, found in Appendix F 2. Since
for most input states of interest some of the variances and covariances are null (see Table I), the simpler scenarios described in
Appendix H are possible.

As discussed previously [40], for most input states, the two-parameter QFI is maximized if BS1 is balanced, i.e., ϑ = π/2.
This remark simplifies the S coefficients to⎧⎪⎪⎪⎨⎪⎪⎪⎩

S0 = 1
4�2N̂ + �2Ĵy,

S1 = 2 Ĉov(Ĵy, Ĵz )cos ϕ − 2 Ĉov(Ĵx, Ĵy )sin ϕ,

S2 = −Cov(Ĵy, N̂ ),

S3 = Cov(Ĵx, N̂ )sin ϕ − Cov(Ĵz, N̂ )cos ϕ.

(F3)

Since for many input states Ĉov(Ĵy, Ĵz ) = 0 = Cov(Ĵy, N̂ ) and, moreover, Ĉov(Ĵx, Ĵy ) = 0 if the optimum PMCs are imposed (see
Table I), we also have S1 = S2 = 0. Thus, the initial 4th degree equation (F1) can be rewritten as (S0t2 + S3t − S0)(t2 − 1) = 0,
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implying the solution t = 1, thus,

ϑ ′
opt = π

2
. (F4)

Remarkably, this solution is independent of the value of the total internal phase shift ϕ.

2. Optimum working point

The phase sensitivity for a single-mode-intensity detection scheme, i.e., Eq. (31), can also be put in the format given by
Eq. (H1), and we have the coefficients⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Asg = sin2 ϑ ′�2Ĵx + sin2 ϑ cos2 ϑ ′�2Ĵy + cos2 ϑ cos2 ϑ ′�2Ĵz − sin 2ϑ cos2 ϑ ′Ĉov(Ĵy, Ĵz )

+ 1
4�2N̂ − sin ϑ cos ϑ ′Cov(Ĵy, N̂ ) + cos ϑ cos ϑ ′Cov(Ĵz, N̂ ),

Bsg = −sin2 ϑ ′�2Ĵx + cos2 ϑ sin2 ϑ ′�2Ĵy + sin2 ϑ sin2 ϑ ′�2Ĵz + sin 2ϑ sin2 ϑ ′Ĉov(Ĵy, Ĵz ),

Csg = − cos ϑ sin2 ϑ ′Ĉov(Ĵx, Ĵy) − sin ϑ sin2 ϑ ′Ĉov(Ĵx, Ĵz ),

Dsg = 1
2 sin 2ϑ sin 2ϑ ′�2Ĵy − 1

2 sin 2ϑ sin 2ϑ ′�2Ĵz − cos 2ϑ sin 2ϑ ′Ĉov(Ĵy, Ĵz )

− cos ϑ sin ϑ ′Cov(Ĵy, N̂ ) − sin ϑ sin ϑ ′Cov(Ĵz, N̂ ),

Esg = − sin ϑ sin 2ϑ ′Ĉov(Ĵx, Ĵy ) + cos ϑ sin 2ϑ ′Ĉov(Ĵx, Ĵz ) + sin ϑ ′Cov(Ĵx, N̂ ),

Fsg = 〈Ĵx〉 sin ϑ ′,
Gsg = (cos ϑ 〈Ĵy〉 + sin ϑ 〈Ĵz〉)sin ϑ ′.

(F5)

Following the discussion from Appendix H, the extremization process in the generic case with an unbalanced MZI results in a 4th
degree equation. However, as already discussed, the phase-sensitivity optimization for a single-mode-intensity detection scheme
results in a balanced MZI (BS1 is usually balanced from the maximization of the two-parameter QFI and BS2 is discussed in
Appendix F 1). This implies the much simpler coefficients⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Asg = �2Ĵx + 1
4�2N̂,

Bsg = −�2Ĵx + �2Ĵz,

Csg = −Ĉov(Ĵx, Ĵz ),

Dsg = −Cov(Ĵz, N̂ ),

Esg = Cov(Ĵx, N̂ ),

Fsg = 〈Ĵx〉 ,

Gsg = 〈Ĵz〉 .

(F6)

As discussed before, for almost all considered input states Ĉov(Ĵx, Ĵz ) = 0 = Cov(Ĵx, N̂ ), thus, Csg = Esg = 0. Moreover, if
Fsg = 0, we are able to apply Eq. (H4) and obtain the working point

ϕopt = ±2 arctan 4

√
�2Ĵz + 1

4�2N̂ − Cov(Ĵz, N̂ )

�2Ĵz + 1
4�2N̂ + Cov(Ĵz, N̂ )

+ 2kπ. (F7)

For example, applying the above result to the coherent plus squeezed vacuum input (39) yields [28]

ϕopt = ±2 arctan

√ √
2|α|

sinh 2r
+ 2kπ. (F8)

Applying Eq. (F7) to a squeezed coherent plus squeezed vacuum input (43) yields [29]

ϕopt = ±2 arctan
4

√
sinh2 2z + 2|α|2[cosh 2z − sinh 2z cos(2θα − φ)]

sinh2 2r
. (F9)

APPENDIX G: PHASE-SENSITIVITY OPTIMIZATION FOR A BALANCED HOMODYNE DETECTION SCHEME

The BHD scheme is described in Sec. III C. In the following we apply the extremization process described in Sec. IV in order
to point out how to compute both ϑ ′

opt and ϕopt. The specificity of this state is the existence of the phase of the local oscillator.
As described below, this phase is typically matched with the one of the input laser (G11).
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1. Optimum transmission coefficient for the second BS

Assuming the convention from Eq. (10), the phase sensitivity for a BHD scheme is described in Sec. III A and given by
Eq. (36). Applying the principles from Eq. (37) to this case yields the optimum BS2 transmission coefficient

ϑ ′ = 2 arctan
LBHD

UBHD
, (G1)

where we have the terms

UBHD = − sin ϑ cos ϕ�− − sin ϑ Re{e−i(2φL+ϕ)(�2â0 + �2â1)} + 2 sin ϕ Re{Cov(â0, â†
1)}

− 2 cos ϑ cos ϕ Re{i Cov(â0, â†
1)} + 2 cos ϑ Re{e−i(2φL+ϕ)iCov(â0, â1)} (G2)

and

LBHD = −(1 + �+) − Re{e−i2φL (�2â0 − �2â1)} − cos ϑ�− − cos ϑ Re{e−i2φL (�2â0 + �2â1)}
+ 2 sin ϑ Re{i Cov(â0, â†

1)} − 2 Re{ie−i2φL sin ϑ Cov(â0, â1)}. (G3)

For a more compact writing, we introduce the following notations:

�− = Cov(â†
0, â0) − Cov(â†

1, â1),

�+ = Cov(â†
0, â0) + Cov(â†

1, â1). (G4)

If we assume a nonentangled input state Cov(â0, â1) = 0, we thus get the simpler solution

ϑ ′
opt = 2 arctan

(
1 + �+ + cos ϑ� + Re{e−i2φL [�2â0 − �2â1)]} + cos ϑ Re{e−i2φL [�2â0 + �2â1)]}

sin ϑ (cos ϕ�− + Re{e−i(2φL+ϕ)(�2â0 + �2â1)})

)
. (G5)

However, quite often, the optimum working point for a BHD scheme is given by Eq. (G10). We thus have the simpler solution

ϑ ′
opt = 2 arctan

(
1 + �+ + cos ϑ� + Re{e−i2φL [�2â0 − �2â1)]} + cos ϑ Re{e−i2φL [�2â0 + �2â1)]}

sin ϑ (−�− − Re{e−i2φL (�2â0 + �2â1)})

)
. (G6)

For example, by applying the above equation to the coherent plus squeezed vacuum input state (39), if we set the phase of the
local oscillator to (G11) and impose the optimum PMC (42) we get

T ′(i)
opt = cos

ϑ ′
opt

2
= cos ϑ

2 sin ϑ
2 (1 − e−2r )√

1 − cos2 ϑ
2 (1 − e−4r )

(G7)

and by replacing cos ϑ
2 with T (i)

opt we recover Eq. (81) from [27].

2. Optimum working point

Similar to the previously discussed detection schemes, we can write the phase sensitivity in the form of Eq. (H1), where the
coefficients are given by

Ahom = 1

4
+ 1

4
(Cov(â†

0, â0) + Cov(â†
1, â1)) + cos ϑ cos ϑ ′

4
(Cov(â†

0, â0) − Cov(â†
1, â1))

+ 1

2

(
cos2 ϑ

2
cos2 ϑ ′

2
− sin2 ϑ

2
sin2 ϑ ′

2

)
Re{�2â0} − 1

4
(1 − cos ϑ cos ϑ ′)Re{�2â1}

+ 1

2
sin ϑ cos ϑ ′(Im{Cov(â0, â†

1)} − Im{Cov(â0, â1)}),

Bhom =
(

sin2 ϑ

2
Re{�2â0} − cos2 ϑ

2
Re{�2â1} + sin ϑ Im{Cov(â0, â1)}

)
sin2 ϑ ′

2
,

Chom = 1

2

(
sin2 ϑ

2
Im{�2â0} − cos2 ϑ

2
Im{�2â1} − sin ϑ Re{Cov(â0, â1)}

)
sin2 ϑ ′

2

Dhom = 1

2

{
cos ϑ[Im{Cov(â0, â†

1)} − Im{Cov(â0, â1)}]

− sin ϑ

2
(Cov(â†

0, â0) − Cov(â†
1, â1) + Re{�2â0} + Re{�2â1})

}
sin ϑ ′,
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Ehom = 1

2

(
Re{Cov(â0, â†

1)} − 1

2
sin ϑ (Im{�2â0} + Im{�2â1}) + cos ϑ Re{Cov(â0, â1)}

)
sin ϑ ′,

Fhom =
(

− sin
ϑ

2
Im{〈â0〉} + cos

ϑ

2
Re{〈â1〉}

)
sin

ϑ ′

2
,

Ghom =
(

sin
ϑ

2
Re{〈â0〉} + cos

ϑ

2
Im{〈â1〉}

)
sin

ϑ ′

2
(G8)

and we set φL = 0 for readability. If we assume a nonentangled input state (and restore φL), the coefficients are expressed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ahom = 1
4 + 1

4 (Cov(â†
0, â0) + Cov(â†

1, â1)) + cos ϑcos ϑ ′
4 (Cov(â†

0, â0) − Cov(â†
1, â1))

+ 1
2

(
cos2 ϑ

2 cos2 ϑ ′
2 − sin2 ϑ

2 sin2 ϑ ′
2

)
Re{e−i2φL �2â0} − 1

2

(
sin2 ϑ

2 cos2 ϑ ′
2 + cos2 ϑ

2 sin2 ϑ ′
2

)
Re{e−i2φL �2â1},

Bhom = (
sin2 ϑ

2 Re{e−i2φL �2â0} − cos2 ϑ
2 Re{e−i2φL �2â1}

)
sin2 ϑ ′

2 ,

Chom = 1
2

(
sin2 ϑ

2 Im{e−2φL �2â0} − cos2 ϑ
2 Im{e−2φL �2â1}

)
sin2 ϑ ′

2 ,

Dhom = − 1
4 (Cov(â†

0, â0) − Cov(â†
1, â1) + Re{e−i2φL �2â0} + Re{e−i2φL �2â1}) sin ϑ sin ϑ ′,

Ehom = − 1
4 (Im{e−i2φL �2â0} + Im{e−i2φL �2â1}) sin ϑ sin ϑ ′,

Fhom = ( − sin ϑ
2 Im{e−φL 〈â0〉} + cos ϑ

2 Re{e−φL 〈â1〉}
)

sin ϑ ′
2 ,

Ghom = (
sin ϑ

2 Re{e−φL 〈â0〉} + cos ϑ
2 Im{e−φL 〈â1〉}

)
sin ϑ ′

2 .

(G9)

In the general case, the optimum working point is found by solving Eq. (H3). However, quite often, when using the optimum
input PMC, it turns out that Chom = Ehom = Ghom = 0 and we can use the result (H6) for the optimum working point. For most
input states, further refinements allow one to show that

ϕopt = π + 2kπ (G10)

with k ∈ Z.
We would like to show how the optimum input PMC is connected to the constraint Chom = Ehom = Ghom = 0. Let us assume

that we have the coherent plus squeezed vacuum input state given in Eq. (43). (The argument is similar for other input states.) It
is well known that for optimal performance one must match the local oscillator’s phase with the input coherent phase, i.e.,

φL = θα. (G11)

Thus, the nonzero term of Ghom (〈â0〉 = 0 for the input state considered) reads as

Im{e−φL 〈â1〉} = |α|Im{e−(φL−θα )} (G12)

and Im{e−φL 〈â1〉} = 0 because of Eq. (G11). When it comes to Chom and Ehom, we seem to have the nonzero terms

Im{e−2φL �2â0} = Im{e−2θα�2â0} = − 1
2 sinh 2r Im{e−(2θα−θ )} (G13)

and

Im{e−2φL �2â1} = Im{e−2θα�2â1} = − 1
2 sinh 2z Im{e−(2θα−φ)}. (G14)

However, by imposing the optimum input PMC (44) guarantees that these terms vanish, too.

APPENDIX H: GENERIC OPTIMUM WORKING POINT CALCULATION

All detection schemes discussed in Sec. III yield the same structure of the phase sensitivity when it comes to the ϕ dependence,
namely,

�ϕ =
√
A + B cos2 ϕ + C sin 2ϕ + D cos ϕ + E sin ϕ

|F cos ϕ + G sin ϕ| , (H1)

where the A . . .G coefficients are specific to each respective detection scheme and are given in Appendixes E 2, F 2, and,
respectively, G 2. In order to find the working point ϕopt for a generic detection scheme, we start from Eq. (H1) and impose
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TABLE II. The covariances and symmetrized covariances for the squeezed coherent plus squeezed coherent input state given in Eq. (45).

Input Eq. (45) Eq. (45) Eq. (45)
state with (PMC1) with (PMC2) with (PMC3)

Ĉov(Ĵx, Ĵy ) 0 0 0
Ĉov(Ĵx, Ĵz ) −|αβ|(sinh 2r+sinh 2z)

4 0 0
Ĉov(Ĵy, Ĵz ) 0 0 |αβ|(sinh rer−sinh zez )

2
Cov(Ĵx, N̂ ) |αβ|(1 − sinh re−r + sinh zez ) |αβ|(1 − sinh re−r − sinh ze−z ) 0
Cov(Ĵy, N̂ ) 0 0 |αβ|(1 + sinh rer + sinh zez )

Cov(Ĵz, N̂ ) sinh2 2r−sinh2 2z
4 + |β|2e−2r−|α|2e2z

2
sinh2 2r−sinh2 2z

4 + |β|2e−2r−|α|2e−2z

2
sinh2 2r−sinh2 2z

4 + |β|2e2r−|α|2e2z

2

∂ϕ�ϕ = 0. For the most general case (assuming that none of the coefficients is zero), we are led to the trigonometric equation

(DF − EG) sin ϕ cos ϕ + (2EF − DG)sin2 ϕ + (EF − 2DG)cos2 ϕ + 2(CF − BG − AG) cos ϕ + 2(AF − CG)sin ϕ = 0.

(H2)

Using the parametrization cos ϕ = 1−t2

1+t2 and sin ϕ = 2t
1+t2 we are led to a 4th degree equation

[EF − 2DG − 2CF + 2(A + B)G]t4 + [4(AF − CG) − 2(DF − EG)]t3 + 6EFt2

+[2(DF − EG) + 4(AF − CG)]t + 2[CF − (A + B)G] + (EF − 2DG) = 0 (H3)

that can be solved either analytically or numerically. The optimum internal phase shift is found among the solutions tsol ∈ R of
Eq. (H3) and then we have ϕopt = 2 arctan tsol.

However, quite often simplifications are found. We discuss below the scenarios that present an interest for the current
analysis.

(i) If C = E = F = 0, then the optimum working point is given by

ϕopt = ±2 arctan 4

√
A + B + D
A + B − D + 2kπ (H4)

with k ∈ Z.
(ii) If C = E = F = 0 and also D = 0, then the optimum is given by

ϕopt = π

2
+ kπ (H5)

with k ∈ Z.
(iii) If C = E = G = 0, then the optimum is found among the solutions

ϕopt = kπ (H6)

with k ∈ Z.
iv) If C = D = E = 0, then the optimum is found among the solutions

ϕopt = arctan

(
(A + B)G

AF

)
+ kπ (H7)

with k ∈ Z.

APPENDIX I: CALCULATION FOR SOME NEEDED VARIANCES AND COVARIANCES

Throughout the main part of this paper we referred to some variances, covariances, and symmetrized covariances for the
various input states considered. They are given in Tables I and II. In the following, we detail some computational details needed
to obtain the aforementioned results.

For the squeezed coherent plus squeezed coherent input state (45), we find the variances of the Schwinger pseudo-angular-
momentum operators

�2Ĵx = 1
4 (|β|2[cosh 2z − sinh 2z cos(2θβ − φ)] + |α|2[cosh 2r − sinh 2r cos(2θα − θ )]

+ 1
2 (cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ) − 1)), (I1)

�2Ĵy = 1
4 (|β|2[cosh 2z + sinh 2z cos(2θβ − φ)] + |α|2[cosh 2r + sinh 2r cos(2θα − θ )]

+ 1
2 (cosh 2r cosh 2z − sinh 2z sinh 2r cos(θ − φ) − 1)), (I2)
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and

�2Ĵz = 1

4

(
sinh2 2r

2
+ |β|2[cosh 2r − sinh 2r cos(2θβ − θ )] − sinh2 2z

2
− |α|2[cosh 2z − sinh 2z cos (2θα − φ)]

)
. (I3)

The symmetrized covariances are found to be

Ĉov(Ĵx, Ĵy ) = −1

8
sinh 2r sinh 2z sin(θ − φ) − 1

4
|α|2sinh 2r sin(2θα − θ ) + 1

4
|β|2sinh 2z sin(2θβ − φ), (I4)

Ĉov(Ĵx, Ĵz ) = 1

2
|αβ|(sinh2 r − sinh2 z) cos(θα − θβ ) − |αβ|

4
[sinh 2r cos(θα + θβ − θ ) − sinh 2z cos(θα + θβ − φ)], (I5)

and

Ĉov(Ĵy, Ĵz ) = 1

2
|αβ|(sinh2 r − sinh2 z) sin(θα − θβ ) − |αβ|

4
[sinh 2r sin(θα + θβ − θ ) + sinh 2z sin(θα + θβ − φ)]. (I6)

The variance of the total input photon number operator is found to be

�2N̂ = sinh2 2r

2
+ sinh2 2z

2
+ |β|2[cosh 2r − sinh 2r cos(2θβ − θ )] + |α|2[cosh 2z − sinh 2z cos (2θα − φ)], (I7)

and finally the covariances of the Ĵ operators with the input photon number operator N̂ are

Cov(Ĵx, N̂ ) = |αβ|(sinh2 r + sinh2 z + 1) cos(θα − θβ ) − |αβ|
2

[sinh 2r cos(θα + θβ − θ ) + sinh 2z cos(θα + θβ − φ)], (I8)

Cov(Ĵy, N̂ ) = |αβ|(sinh2 r + sinh2 z + 1
)

sin(θα − θβ ) − |αβ|
2

[sinh 2r sin(θα + θβ − θ ) − sinh 2z sin(θα + θβ − φ)], (I9)

and

Cov(Ĵz, N̂ ) = 1

2

(
sinh2 2r

2
− sinh2 2z

2
+ |β|2[cosh 2r − sinh 2r cos(2θβ − θ )] − |α|2[cosh 2z − sinh 2z cos (2θα − φ)]

)
.

(I10)
The results for the three considered PMCs, i.e., Eqs. (46)–(48), are detailed in Table II.

By setting β = 0 we obtain all the needed results for the squeezed coherent plus squeezed vacuum input discussed in Sec. V B.
By setting z = 0, too, we get the needed results for the coherent plus squeezed vacuum input discussed in Sec V A.
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