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Generative-adversarial-network–based ghost recognition
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Target recognition technique plays an important role in many fields. The conventional methods perform
recognition from images of scenes. However, noise or insufficient obtainable information would cause difficulty
in image reconstruction, highly impeding the recognition. Ghost imaging (GI) can accomplish a recognition far
below Nyquist limit under which a feasible image would not be reconstructed. However, recent GI recognition
methods worked with targets of only 32 × 32 in resolution, and recognition for high-resolution targets with an
extremely low sampling rate is still challenging. We here propose a target recognition method combining GI and
generative adversarial network (GAN), which implements a recognition for a target of a 1024 × 1024 resolution
at a sampling rate of 0.07%. GI samples spatial frequencies by illuminating a target with a set of random speckle
patterns. The detected bucket signals (the intensities of the echo light from the target) are input into the GAN.
The generator of the GAN is exploited to redraw the input bucket signals (detected in the high-resolution setup)
to a low-dimension data (as if detected in a low-resolution setup). The discriminator can quickly classify the
dimension-reduced data at a very low sampling rate. The method not only brings a way to high-resolution
target recognition before image reconstruction, but also proposes an application of GI to circumvent its major
challenge: a slow imaging speed due to the requirement of a large number of illumination patterns.
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I. INTRODUCTION

Ghost imaging (GI) exploits the second-order correlation
to reconstruct images, which is quite different than the tradi-
tional imaging methods [1–9]. GI utilizes a series of random
speckle patterns to illuminate a target, and uses a bucket
detector without spatially resolving the ability to collect echo
intensity from the target. The correlation between the bucket
signals and the illumination patterns recovers the image of
the target. Due to its lensless imaging capability, turbulence-
free imaging, and high detection sensitivity, GI has received
lots of attention in recent years [10–18]. However, the poor
trade-off between the image quality and imaging speed limits
its application. There has been a large body of literature on
how to solve this problem, or look for a compromise such as
suitable application scenarios. Target recognition technique is
an important approach in many fields [19–37]. Conventional
recognition techniques retrieve the information from the im-
age of a target, which means that the quality of the image
decides the recognition accuracy. In some scenarios where
the detection of signal-to-noise-ratios are very low or there
exist strong turbulence or scattering, image reconstruction
would suffer from low imaging quality, slow imaging speed
or even failure of acquiring a feasible and faithful result. It
consequently causes a slow recognition process or unreliable
outcomes. Recently, Li et al. implemented object recognition
with GI and a convolutional neural network [38]. Hadamard
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matrices were used as illumination patterns. Under a 32 × 32
resolution, the recognition worked well at a 9.77% sampling
rate but was limited at 0.98%. He et al. performed handwritten
digit recognition with GI and a deep neural network [39],
where discrete cosine transform bases were used for illumi-
nation patterns. The method worked for targets at a 28 × 28
resolution under a sampling rate of 12.76%. These works
demonstrated that GI can realize target recognition at a low
sampling rate where images may not be reconstructed with
a feasible quality. However, the low resolutions limit their
application. High resolution at low sampling rate, for example
1024 × 1024, may be a challenge to the above methods. For
instance, the resolution of Hadamard-based patterns is limited
to 128 × 128 [40,41].

We here propose a recognition method based on GI and
a generative adversarial network (GAN) [42]. This method
implements a recognition for a target of a 1024 × 1024 reso-
lution at a sampling rate of 0.07%. Under such a low sampling
rate, GI fails to recover a feasible image. To perform de-
tections at the high-resolution (the number of speckle cells
on the object plane is also 1024 × 1024), we employed ran-
dom speckle patterns. The bucket signals were input into
a conditional generative adversarial network (CGAN) [43]
for recognition. Although GAN is usually used for creating
photos (to mix the spurious with the genuine) rather than
recognition, we here exploit the generator in the GAN to
convert the bucket signals to another data as if the “redrawn”
data were obtained from a GI system at a resolution of 28 × 28
(both the target and detecting patterns are of 28 × 28). To
fulfill the goal, we trained the discriminator of the CGAN with
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FIG. 1. Schematic diagram of the proposed method.

the data from the GI detection at 28 × 28. Because CGAN
inherently has the classification ability, the CGAN becomes a
suitable tool that works with GI for recognition. Handwritten
targets recognition for numbers and letters are demonstrated
at a 0.07% sampling rate for targets of 1024 × 1024. Further
validation experiments that target recognition under different
orientations and translational position are demonstrated. Fi-
nally, a physical experiment at distance of 20 meters is carried
out on different targets. The resolution of the experimental GI
system is 700 × 700 in a number of the speckle cells on the
detection plane. Under a 0.02% sampling rate, the targets were
well recognized as well. The rest of this paper is organized
as follows. Section II presents a comprehensive introduction
to generative-adversarial-networks-based ghost recognition.
In Sec. III, the proposed method is demonstrated by exten-
sive simulations and experiments. The paper is concluded in
Sec. IV.

II. GAN-BASED GHOST RECOGNITION

A. Related method

GI illuminates an object with light whose intensity
fluctuates temporally and spatially, which can be called time-
varying speckle patterns. Using a bucket detector, one can
measure the total light intensity reflected from the object,
which represents how the object responses to a illumination
pattern. After testing an object with thousands of different
light patterns, GI recover the image by calculating the second-
order correlation between the patterns and the corresponding
bucket detectors, formulated as

g(2) = 〈Ibucket · I (x, y)〉
〈Ibucket〉〈I (x, y)〉 , (1)

where g(2) denotes the second-order correlation function, 〈·〉
is the ensemble average, Ibucket is the bucket signal and I (x, y)
is the reference signal. Note that, either the traditional GI or
computational ghost imaging (CGI) [10] requires that the illu-
mination patterns on the object must be known. The difference
is CGI uses preset patterns avoiding using an imager (such

as CCD) to real-time observing the time-varying speckle pat-
terns. The reconstruction based on the formula above needs to
illuminate a large number of speckles to obtain an ideal result.

Recently, artificial intelligence methods have been increas-
ingly introduced into GI. GAN, which has attracted much
attention in the field of deep learning in recent years, is also
considered to develop the application scenarios of GI. The
basic idea of GAN can be expressed as: The generator network
G generates the forged image according to the input, and the
discriminator network D judges whether the image is true or
false. When discriminator D cannot judge whether the image
is a real image or generated by generator G, the model training
is completed. The objective function of GAN can be expressed
as

min
G

max
D

V (D, G) = Ex∼Pdata (x)[log10 D(x)]

+ Ez∼Pz (x)[log10(1 − D(G(z)))], (2)

FIG. 2. Network architecture of the proposed method.
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FIG. 3. Handwritten targets in our experiment.

where x represents the real image, and z represents the input of
the generator G. V denotes the objective function, E denotes
the expectation, Pdata denotes the distribution of the training
samples, and Pz denotes the distribution of the generator in-
puts. The right side of the above formula is divided into two
terms. The first term indicates the probability of discriminator
D judging the real image as true, the closer to 1, the better.
In the second term, G(z) represents the image generated by
generator G, the task of generator G is to make the image
generated close to the real image, the better the performance
of G is, the greater the D(G(z)). The second term represents
the probability of discriminator D judging whether the im-
age generated by generator G is a real image, the better the
performance of D, the smaller the D(G(z)), and there is a
process of game competition. Although GAN is effective, it
is too free to control the output of the generator. To solve this
problem, Montreal proposes generative adversarial networks
with constraints, named CGAN. In CGAN, conditional vari-
able is added to generator and discriminator to guide the data
generation process. In this paper, CGAN is employed to match
bucket signal sequence and target category.

B. Principle

Combining CGI and CGAN, we propose an improved
target recognition technique based on bucket signal arrays.
Figure 1 shows the architecture of the proposed method.

Different speckle patterns are utilized to illuminate tar-
get at different positions in the scene, respectively, and the
echo signal is continuously received by a bucket detector.
After multiple samplings, a bucket signal sequence is formed.
For the generator, the bucket signal sequence is regarded
as one sample. For the discriminator, the bucket signal se-
quences of various targets at different positions are regarded
as real samples. Obviously, different bucket signal sequences

represent different labels. Therefore, the target in testing will
be recognized quickly if the speckle sequence in the training
stage is still utilized to illuminate the target. The objective
function of this work consists of two parts: log likelihood
of the real bucket signal sequence samples Ls and log like-
lihood of real bucket signal sequence class is labeled Lc. The
goal of discriminator is to find a suitable value to maximize
Ls + Lc, and the goal of generator is to find a suitable value to
maximize Ls − Lc. When the discriminator cannot distinguish
whether the input data is real or not, the network reaches
equilibrium, and the probability distribution of output is 0.5.
By introducing the bucket signal sequence class label as a
condition variable, the uncontrollable shortcoming of the tra-
ditional GAN training process is improved. Finally, the label
control generator of the bucket signal sequence can generate
the corresponding category of bucket signal sequence data.
Simultaneously, the discriminator also learns the data feature
distribution of real samples in the process of confrontation to
judge whether the input is real or generated.

C. Network architecture

In this paper, the construction of CGAN is based on mul-
tilayer perceptron (MLP), which is a deep artificial neural
network. A MLP neural network generally contains multiple
perceptrons, including an input layer to receive input data and
an output layer to classify or predict input data. There are
usually many hidden layers between the input layer and the
output layer. The calculation process of MLP is completed
in the hidden layer. The schematic diagram of the network
architecture of the proposed method is shown in Fig. 2.

In this work, the generator network includes six layers
(one input layer, one flatten layer, three fully connected lay-
ers, and one output layer), which is used to generate images
of the same type as the target. According to the number
of bucket signals, the input is tiled into 784 nodes in the
flattened layer. The number of nodes in a fully connected
layer third to fifth is 256, 512, and 1024, respectively. The
output layer reconstructs the output of the previous layer to
generate an image, which is the same as the input. Similarly,
the discriminator is also based on MLP, and the network
includes six layers (one input layer, one flattened layer, three
fully connected layers, and one output layer), which used to

TABLE I. Recognition results for letter targets.

Samples 5000 10000 20000 60000

Epoch 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000

Target_A 90% 100% 100% 100% 100% 100% 100% 100% 100% 70% 90% 100% 100% 100% 80% 100%
Target_B 80% 100% 100% 100% 100% 100% 100% 100% 80% 100% 100% 100% 90% 100% 100% 100%
Target_C 100% 100% 100% 80% 70% 90% 100% 100% 100% 90% 90% 100% 80% 100% 100% 100%
Target_D 100% 100% 90% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100% 100% 90% 100%
Target_E 100% 100% 100% 100% 90% 100% 100% 90% 100% 90% 100% 100% 100% 100% 80% 100%
Target_F 100% 100% 100% 80% 100% 100% 100% 100% 80% 100% 100% 100% 90% 100% 100% 100%
Target_G 100% 100% 90% 100% 100% 100% 100% 100% 80% 100% 90% 100% 100% 90% 100% 100%
Target_H 100% 90% 100% 100% 100% 100% 100% 100% 80% 90% 100% 100% 70% 100% 100% 100%
Target_I 100% 80% 100% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100% 100% 100% 100%
Target_J 90% 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 80% 100% 100%
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TABLE II. Recognition results for number targets.

Samples 5000 10000 20000 60000

Epoch 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000

Target_0 90% 100% 100% 100% 60% 100% 100% 100% 100% 70% 100% 100% 100% 100% 100% 100%
Target_1 100% 70% 100% 100% 100% 80% 100% 100% 100% 100% 70% 100% 90% 100% 100% 90%
Target_2 90% 100% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100% 70% 100% 100% 100%
Target_3 100% 80% 100% 100% 100% 100% 80% 100% 100% 100% 100% 100% 100% 90% 100% 100%
Target_4 100% 100% 100% 100% 100% 100% 90% 90% 100% 80% 100% 100% 60% 100% 80% 100%
Target_5 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Target_6 100% 90% 100% 100% 100% 100% 100% 100% 100% 70% 100% 100% 100% 100% 100% 100%
Target_7 90% 100% 80% 90% 90% 100% 100% 100% 90% 80% 100% 100% 100% 70% 80% 100%
Target_8 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Target_9 90% 100% 100% 100% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100% 90% 100%

identify the category of the input image. The third to fifth
layer is a fully connected layer, and the number of nodes is
512. The sixth layer uses a sigmoid function to normalize the
output of the previous layer. The output of the sixth layer
consists of two parts, the authenticity of the training sample
and the category of the target. The cross entropy between
the output of the training samples and the label is taken as
the training loss function. The output of the training sam-
ples is compared with the label, and the optimizer Adam is
used to control the change of the learning rate. Finally, the
operation to reduce the loss is defined for the confrontation
training.

The steps can be summarized as:
(1) Prepare training and testing sets. According to CGI

mechanism, using a set of random speckle sequence to illumi-
nate potential targets, and the bucket signal sequence collected
as a training set.

(2) Build network. Based on tensorflow-gpu 1.13 (keras
version 2.1.5), three models are built: generator model, dis-
criminator model, and confrontation training model.

(3) Train network. In the loop, the images in the training set
and their corresponding categories are input, and the generator
and discriminator model are trained simultaneously.

(4) Test network. The same speckle sequence in training is
used to illuminate, and the bucket signal sequence is sent to
the network to recognize the target.

III. EXPERIMENTAL RESULTS

A. Training settings

This work originated from a realistic scenario: recognition
for license plates or certain types of objects in the viewfinder.
It requires detection under a certain high resolution and a fast
recognition speed. Since the license numbers and letters are of
a fixed shape, we did not intend to have the method recognize
different fonts. Instead, we are concerned about if the recog-
nition is insensitive to the position of a detected text. Under
the architecture of CGI, the training data comes from bucket
signal sequence after multiple samplings of target based on a
set of fixed random speckle sequence. In this work, the size
of speckle and target is both 1024*1024. 784 echoes are used
to construct a bucket signal sequence, and the sampling rate
is 0.07%. Note that, with such a low sampling rate, GI failed
to recover a feasible image. The output size of the generator
and the input size of the discriminator is 28*28. The targets
in our experiment are handwritten letters and numbers. Letter
targets include 10 categories of “A,B,C,D,E,F,G,H,I,J”, and
number targets include 10 categories of “0,1,2,3,4,5,6,7,8,9”.
We trained four networks using 5000, 10 000, 20 000, and 60
000 samples, and each category of target contains 500, 1000,
2000, and 6000 in four networks, respectively. Meanwhile,
500, 1000, 2000, and 5000 epochs are performed in each
network. Each object in our training set contains different

TABLE III. Testing results on letter and number targets with same speckles sequence.

Samples 5000 10000 Samples 5000 10000

Epoch 2000 5000 2000 5000 Epoch 2000 5000 2000 5000

Target_A 100% 100% 100% 100% Target_0 90% 90% 100% 100%
Target_B 100% 100% 80% 100% Target_1 100% 50% 100% 100%
Target_C 80% 100% 60% 100% Target_2 100% 100% 100% 100%
Target_D 100% 90% 100% 100% Target_3 100% 100% 100% 100%
Target_E 90% 100% 100% 90% Target_4 100% 100% 100% 100%
Target_F 100% 80% 100% 100% Target_5 70% 100% 100% 100%
Target_G 60% 100% 100% 100% Target_6 100% 100% 70% 100%
Target_H 100% 100% 100% 100% Target_7 100% 60% 100% 90%
Target_I 100% 100% 100% 100% Target_8 100% 100% 100% 100%
Target_J 100% 80% 100% 100% Target_9 100% 100% 100% 100%
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TABLE IV. Testing results on noise effects.

Environmental System

6 dB 0 dB −6 dB 8 dB −5 dB −10 dB

Target_A 100% 90% 80% 100% 90% 80%
Target_B 90% 80% 70% 90% 80% 70%
Target_C 100% 100% 100% 100% 100% 100%
Target_D 100% 100% 90% 100% 100% 90%
Target_E 80% 80% 70% 100% 90% 80%
Target_F 90% 80% 70% 100% 100% 80%
Target_G 90% 90% 80% 100% 100% 90%
Target_H 100% 80% 80% 100% 100% 90%
Target_I 100% 100% 100% 100% 100% 100%
Target_J 100% 90% 90% 90% 80% 70%

positions, through training to simulate the different positions
of objects in the scene in practical application. For example, in
the case of 5000 samples for letter targets recognition in this
work, we make each object in 100 different positions for train-
ing, and each position contains five samples. In other cases,
we expand the number of samples at each position. In testing,
we place objects in other positions in the scene. The GPU used
for training in this work was a NVIDIA GeForce GT 710.
The shortest training cost (5000 samples and 500 epochs) was
1.56 min and the longest training cost (60000 samples and
5000 epochs) was 14.9 min. Figure 3 shows the handwritten
targets for testing in our experiment.

B. Results on letters and numbers targets

Firstly, we test the proposed method on the letter hand-
writing targets set. Ten categories of objects, respectively,
represent the bucket signal sequence formed by 10 letter tar-
gets after 784 times of illumination. Then, we randomly select
10 samples from the testing set (containing 100 samples that
positions not in the training set). It took 3.5 s to identify 10 tar-
gets, with an average of 0.35 s for one target. The recognition
results are shown in Table I.

Table I shows that with the increase of the number of
samples, the recognition accuracy eventually reaches an ideal
level. Similarly with letter targets, we test the proposed
method on four networks with different sizes and epochs, and
Table II shows the results.

C. Same random speckles sequence

In the experiments above, two different speckle sequences
are used for training and testing on letter and number targets.
In this section, we try to train letters and numbers targets
with one set of random speckle sequence, and so do the
test. Similarly, the size of speckle is 1024*1024, and these
784 random speckles are different and spatially independent.
Then, the bucket signal sequence formed by 784 illuminations
is taken as one sample. We use 5000 and 10 000 samples to
train two networks, each with 2000 and 5000 epochs, respec-
tively. Table III lists the testing results, it can be seen that the
proposed method achieves promising performance.

FIG. 4. Different orientations of “A”.

D. Results on noise effects

Furthermore, we demonstrate noise effects (including en-
vironmental noise and system noise) on the proposed method.
The targets are handwritten letters “A,B,C,D,E,F,G,H,I,J”.
The training set contains 60 000 samples and the epoch is
5000. We add different levels of noises to the illumination
path as the environmental noise. In addition, we add different
levels of noises to the bucket signals sequence as the system
noise. We demonstrate the proposed method in these two noise
effects. Demonstration results are shown in Table IV.

It can be seen that the recognition rate decreases in the
presence of environmental noise and system noise, except for
simple and intuitive objects such as “C” and “I”.

E. Results on different orientations

In real scene, the orientation of objects are often changing.
Target needs to be successfully recognized in different orien-
tations. Therefore, we try this task with the proposed method.
Figure 4 shows the different orientations of letter target “A”.

We test the recognition performance of 10 different orien-
tations, including 0◦, 30◦, −30◦, 50◦, −50◦, 60◦, −60◦, 90◦,
−90◦, 180◦. Table V shows the results of different orientations
of letter target A; it can be seen that the recognition rate of
the proposed method is considerable regardless of the target
orientation.

TABLE V. Testing results on different orientations of target A.

Samples 10000 20000

Epoch 2000 5000 2000 5000

Orientation_0 100% 90% 100% 100%
Orientation_30 100% 100% 100% 100%
Orientation_−30 100% 100% 80% 100%
Orientation_50 100% 100% 100% 100%
Orientation_−50 100% 100% 100% 100%
Orientation_60 100% 100% 100% 100%
Orientation_−60 100% 100% 100% 100%
Orientation_90 100% 100% 100% 100%
Orientation_−90 100% 100% 100% 90%
Orientation_180 100% 100% 80% 100%
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FIG. 5. Physical experiment. (a) Experimental light path. (b) Tar-
get LSNZ.

F. Physical experiment

Finally, we demonstrated a physical experiment at a dis-
tance of 20 meters. Figure 5 shows the physical experimental
light path. The physical experiment is based on the CGI ar-
chitecture, and the targets are reflective letters LSNZ. Each
letter is of ∼7 × 7 cm, which is placed 20 meters away from
the CGI system. A laser beam with the wavelength of 532 nm
is modulated by a rotation ground glass and then illuminated
onto the target. The laser beam is 1 mm in diameter when it hit
on the rotating ground glass. We utilize field programmable
gate array (FPGA) to control the rotation position of ground
glass to obtain a specific speckle sequence. The scattered light
is then collimated by a telescope system, which is equiva-
lent to a lens with a focus length of 200 mm, forming an
approximately parallel beam of 10 cm wide. The average
size of speckle grains on the object plane is approximately
532 nm*200 mm/1 mm = 0.1 mm, so the resolution of a so-
generated speckle pattern is (7 cm/0.01 cm)*(7 cm/0.01 cm)
= 700 × 700. The four targets are illuminated independently,
and the echo signals are also recorded independently. The
echo signal is recorded by a lensless CCD for the light in-
tensity collection.

In training, the bucket signal sequence contains 100 echoes
for each target (the sampling rate is 0.02%). The training set
contains 24 000 samples (each target contains 6000 samples),
and we trained 1000, 6000, and 8000 epochs, whose training
times were 3.08, 17.75, and 23.55 min, respectively. In testing,
the speckle sequence in training step is employed to illuminate
targets. The bucket signal sequences are input to the trained
CGAN for recognition at the same time. The recognition
results are shown in the Table VI.

Table VI shows that the proposed method can also rec-
ognize different targets in the physical experiment, and the
recognition rate becomes better with the increase of epoch. It

TABLE VI. Physical experimental results.

Epoch

Target 1000 6000 8000

Target_L 60% 70% 100%
Target_S 90% 100% 100%
Target_N 50% 80% 100%
Target_Z 90% 100% 100%

took 0.12 s to identify four targets, with an average of 0.03 s
for one target.

IV. CONCLUSIONS

In this paper, we proposed a target recognition method
combining GI and GAN, which implements a recognition for
a target of a 1024 × 1024 resolution at a sampling rate of
0.07%. Under the framework of GI, we utilize a set of random
speckle sequence to illuminate targets, and the bucket detector
is employed to received echo signals continuously. Then, the
bucket signals are formed and considered as a sample of
CGAN. The generator of the CGAN is exploited to redraw
the input bucket signals (detected in the high-resolution setup)
to a low-dimension data (as if detected in a low-resolution
setup). After training, the discriminator can quickly classify
the dimension-reduced data at a very low sampling rate. Ex-
tensive experiments show that the proposed method achieves
promising performance at very low sampling rate on different
data sets. Finally, a physical experiment at a distance of 20 m
is carried out to demonstrate the proposed method on different
targets. The method not only brings a way to high-resolution
target recognition before image reconstruction, but also pro-
poses an application of GI to circumvent its major challenge:
a slow imaging speed due to the requirement of a large number
of illumination patterns.
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