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Tunable �-type system made of a superconducting qubit pair
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Two transversely coupled and resonant qubits form symmetric and antisymmetric states as their eigenstates.
In this paper, we show that parametric modulation of an individual qubit enables direct Rabi swapping between
the two states. Its application to set up a �-type system with a pair of strongly coupled superconducting
transmon qubits is discussed. The excited state is made of the symmetric state, and the metastable state is the
antisymmetric state. The coherence of the metastable state is only limited by the pure dephasing mechanism.
Based on this scheme, �-type electromagnetically induced transparency, Autler-Townes splitting, and stimulated
Raman adiabatic passage are numerically demonstrated. We highlight the large frequency tunability in such
superconducting �-type systems.
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I. INTRODUCTION

Quantum information processing and quantum optics with
superconducting circuits have been experimentally realized in
the past two decades [1–6]. The semi-one-dimensional archi-
tecture of circuit quantum electrodynamics (QED) systems
features large spatial mode matching among various types of
artificial atoms and their detectors [5]. The tradeoff is that the
eigenmodes of each quantum element have limited degrees of
freedom, which thus restricts the diversity of selection rules.
The lack of metastable states in these artificial atoms restricts
the implementation of atomic and molecular optics in circuit
QED systems. For instance, the category of �-type artificial
atoms has been rather unexplored. In most of the reported
approaches, Purcell-protected qubits [7–11], additional coher-
ent drive [9,11], and indirect Raman transition [8,12,13] are
utilized. To set up a rather simple �-type artificial atom with
an inherent metastable state, especially with decent frequency
tunability, is still of great interest in superconducting quantum
circuits.

An alternative strategy is to consider two coupled qubits,
which provides an additional degree of freedom to the system,
thereby modifying the parity characteristics of the eigen-
modes. Symmetric and antisymmetric states of two coupled
qubits are well known in literature [14,15]. Moreover, there
are theoretical and experimental studies on coupled trans-
mon qubits [16–22]. The spontaneous decay of the symmetric
(antisymmetric) state is inherently enhanced (suppressed),
featuring its short (long) lifetime. Furthermore, the symmet-
ric (antisymmetric) state is easy (difficult) to manipulate and
measure. Nevertheless, the transition moment between these
two extreme states is absent. It is known that two nonidentical
Cooper-pair boxes form a system with nearly symmetric and
antisymmetric states with weakly allowed transition between
them [23]. Introducing a mechanism that bridges symmet-
ric and antisymmetric states could allow one to construct a
promising �-type system.

*yfuchen@ncu.edu.tw

On the other hand, fast in situ level tunability of super-
conducting qubits brings various conveniences to circuit QED
systems. For example, manipulation of qubit-qubit interac-
tion through parametric modulation has been demonstrated
[24–27]. Here we introduce a simple parametric protocol
to induce transition between symmetric and antisymmetric
states in coupled identical qubits. It provides a tunable �-type
scheme made of a resonant transmon qubit pair.

This paper is organized as follows. In Sec. II, we introduce
the protocol and the configuration of a general two-qubit
system that constructs an effective �-type system. The results
discussed in Sec II are verified numerically by considering
a pair of capacitively coupled transmon qubits in Sec III.
Section IV demonstrates its continuous-wave applications on
�-type electromagnetically induced transparency (EIT) and
Autler-Townes splitting (ATS). Section V demonstrates its
pulsed control application on �-type stimulated Raman adi-
abatic passage (STIRAP). Section VI discusses the features
and potential applications of this �-type system. Compared
to other �-type systems, its large frequency tunability is also
highlighted. Section VII summarizes our paper.

II. PARAMETRIC DRIVE INDUCED MODE TRANSFER

Consider a pair of coupled qubits Qa and Qb [see Fig. 1(a)].
The Jaynes-Cummings Hamiltonian in the bare-qubit basis is
written as

H0 = ωa|eg〉〈eg| + ωb|ge〉〈ge| + J[|eg〉〈ge| + |ge〉〈eg|], (1)

where |eg〉 indicates that Qa is in the excited state and Qb is
in the ground state. The excited state resembles dipole oscilla-
tion, which can be driven by an external electric field. ωi is the
transition frequency of Qi. In the platform of superconducting
qubits, the transverse interqubit coupling J can be realized
either by direct capacitive coupling or by an additional waveg-
uide structure [4,5]. A realistic example will be discussed in
detail in Sec. III. In the resonant case ωa = ωb = ω0, the three
lowest eigenstates and eigenenergies of the combined system
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FIG. 1. Level diagram of the tunable �-type system. (a) Rep-
resentation of the control protocol in the basis of two resonant
qubits Qa and Qb. The transition frequency ωa is modulated sinu-
soidally (red wavy, see main text), while ωb stays static. J represents
the interqubit coupling. (b) Level diagram described in the system
eigenstates, with corresponding transition driven by the parametric
modulation in (a) (red circular). It is also referred to as the coupling
beam in Sec. IV or the Stokes tone in Sec. V. The blue arrow from
|G〉 to |B〉 indicates the dipole-allowed transition, named as the probe
beam in Sec. IV or the pump tone in Sec. V.

are [refer to Fig. 1(b)]

|G〉 = |gg〉, ωG = 0, (2.1)

|D〉 = 1√
2

[|eg〉 − |ge〉], ωD = ω0 − J, (2.2)

|B〉 = 1√
2

[|eg〉 + |ge〉], ωB = ω0 + J. (2.3)

Consider that the spatial separation between the two qubits
is much smaller than the transition wavelength λ = 2πc/ω0,
where c is the speed of light. The two qubits see the oscillation
of the electric field in phase. The antisymmetric state |D〉
resembles the out-of-phase dipole oscillation. It has zero total
dipole moment and thus it is inherently protected from the
external field and the vacuum fluctuation. Therefore, for the
state |D〉 the spontaneous decay rate �1

D = 0. It is also referred
to as the dark state. On the other hand, the symmetric state |B〉
features the in-phase dipole oscillation. Thus |B〉 has an en-
hanced interaction with the external field, with the total dipole
moment twice that of the single qubit [20,21]. Consequently,
the spontaneous decay rate is enhanced fourfold, �1

B = 4�1,
where �1 is spontaneous decay rate of the single qubit. The
|B〉 state is also referred to as the bright state [17–22].

The decoherence rates of the state |D〉 and |B〉 are

γDD = 1
2

(
�φ

a + �
φ

b

)
, (3.1)

γBB = 1
2

(
�φ

a + �
φ

b

) + 1
2 (4�1). (3.2)

Here �
φ
i is the pure dephasing rate of Qi. Shining an electro-

magnetic wave is unable to induce transition between state |D〉
and |B〉 due to their parity characteristics (Fig. 6). However, it
is reported that proper level modulation from Stark shift can
induce coherent transfer between |D〉 and |B〉 [28]. Here we
take advantage of the in situ tunability of level spacing of a
superconducting qubit. The transition frequency of Qa is sinu-
soidally modulated by its local flux line, denoted as ωa(t ) =
ω0 + 2	
(t ) = ω0 + 2	0


(t ) sin (ω
t ). Here the factor 2 is
introduced only for convenience. Meanwhile, ωb = ω0 stays
fixed [see Fig. 1(a)]. The Hamiltonian under parametric mod-
ulation reads

Hm = [ω0 + 2	
(t )]|eg〉〈eg| + ω0|ge〉〈ge|
+ [J|eg〉〈ge| + H.c.]. (4)

Rewriting Hm in the basis of {|G〉, |D〉, |B〉}, one gets

Hm = [ωD + 	
(t )]|D〉〈D| + [ωB + 	
(t )]|B〉〈B|
+ [	
(t )|B〉〈D| + H.c.]. (5)

Equation (5) shows that the energies of the interested levels
|D〉 and |B〉 vary in time in general. Nevertheless, for fast mod-
ulation ω
 � 	0


, motional averaging takes place [29–33],
and one can ignore 	
(t ) in the diagonal terms of Eq. (5).
That is, the |D〉 and |B〉 levels act as if they stay at the centered
frequencies:

H̃m = ωD|D〉〈D| + ωB|B〉〈B| + [	
(t )|B〉〈D| + H.c.]. (6)

From the above discussion one easily sees that the para-
metric drive 2	
(t ) = 2	0


(t ) sin (ω
t ) is able to induce a
coherent transition between state |D〉 and |B〉 as ω
 ≈ ωB −
ωD = 2J . When the effective Rabi frequency 	0


(t ) � ω
,
the rotating wave approximation (RWA) is satisfied. There-
fore, ω
 ≈ 2J � 	0


 is the working regime of the scheme
presented in this paper. The strong interqubit coupling is
essential to achieve motional averaging and to avoid the break-
down of RWA.

In Eqs. (4)–(6), we consider the resonant condition, ωa =
ωb = ω0. The parametric drive still works when the two qubits
have unequal transition moment from their ground states to
excited states. In such a case, the transition moment between
the symmetric and antisymmetric states can be nonzero. How-
ever, the antisymmetric state is no longer ideally dark, nor
is the symmetric state [23]. Slight detuning between ωa and
ωb has similar effect on the eigenstates, while the effective
Rabi frequency 	0


(t ) is slightly modified. See Appendix A
for a related discussion. A coupled identical pair forms the
exact bright state |B〉 and dark state |D〉. With the introduced
parametric drive, direct Rabi swapping between the two ex-
treme states becomes possible, without smearing their critical
properties.

A mechanical analogy for the phenomenon discussed
above is a pair of coupled identical oscillators with the vac-
uum mode |G〉, the out-of-phase oscillation |D〉, and the
in-phase oscillation |B〉. By a sinusoidal modulation of one
of the spring constants, the system picks up a relative phase
between the two oscillators, resulting in the coherent mode
transfer between the out-of-phase and the in-phase oscillation.
The energy is injected or extracted by the external modula-
tion agency. It is reported that a similar principle is used to
manipulate phonon modes in far-detuned coupled mechanical
oscillators [34].

III. EFFECTIVE �-TYPE SYSTEM MADE
OF A TRANSMON PAIR

The degenerate tunable coupling qubit (TCQ) architecture
[20–22], i.e., two identical split junction transmon qubits with
capacitive coupling, provides a good platform for our pro-
posed �-type system. The schematic is shown in Fig. 2(a).
The Hamiltonian of a TCQ in terms of the net Cooper pair
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FIG. 2. Tunable �-type system constructed with two transmon
qubits. (a) Two capacitively coupled and resonant split-junction
transmon qubits, with time-dependent flux 
a(t ) threading the loop
of Qa. Level spacing of the on-resonance system is set by the static
fluxes 
̄a = 
b = 
̄ threading the two qubits. The parametric drive
	
(t ) is through the local flux line nearby Qa. The electromagnetic
excitation 	p is through the waveguide that is capacitively coupled
to Qa and Qb. (b) Frequency tunability of the system. The transition
frequency of the bright state ωB (thick solid), the dark state ωD

(dotted), and the bare qubit frequency ω0 (dashed green) as a function
of dc flux bias 
̄.

number states {|ni〉} on qubit i ∈ {a, b} reads

HTCQ =
∑
i=a,b

∑
ni

4ECi (ni − ngi )
2|ni〉〈ni| −

∑
i=a,b

∑
ni

1

2
EJi

× [|ni + 1〉〈ni| + |ni − 1〉〈ni|]
+

∑
i, j=a,b

i 	= j

∑
ni,n j

4EI nin j |ni〉〈n j |, (7)

where ngi is the gate charge applied on Qi. ECi and
EJi denote the charging energy and Josephson energy of
Qi. ECa = ECb = EC is assumed. The interqubit coupling
J = 2EI [EJa/ECa ]1/4[EJb/ECb]

1/4 [20,21], where EI denotes
the interaction energy of the capacitively coupled two-
qubit system. The TCQ is biased in degeneracy, i.e., the
Josephson energy ĒJa (
a) = EJb (
b). We numerically solve
the eigenstates of the TCQ in the charge basis {na, nb}
from Eq. (7) (Appendix B). The characteristics of its
lowest three eigenstates {|G〉, |D〉, |B〉} resemble that of
Eq. (2). As the parametric modulation is introduced, EJa (t ) =
Emax

Ja
cos [π
a(t )/
0]

√
1 + d2 tan2 [π
a(t )/
0] varies in

time, where 
0 = h/2e is the magnetic flux quantum and
d denotes the superconducting quantum interference device
(SQUID) asymmetry [3,35]. Note that the selective mod-
ulation of EJi (
i ) is through the much stronger mutual
inductance between the flux line and its nearest SQUID loop
of Qi, compared to that of the other qubit. This does not
conflict with the idea of the small atom (molecule) assump-
tion, which relies on small spatial separation between the
antenna electrodes, compared to the wavelength of the field
λ in the case of transmon qubits. Refer to Appendix C for the
discussion on the effect of finite flux crosstalk.

The dynamics of the lowest six eigenstates of the TCQ
Hamiltonian [Eq. (7)] {|G〉, |D〉, |B〉, |D2〉, |E〉, |B2〉} is stud-
ied to examine the transition between |D〉 and |B〉 by a
time-varying flux 
a(t ). The density matrix ρ written in the
basis of these states is evolved via the master equation

ρ̇ =i[ρ, HTCQ] +
∑
k,l

{
�1

jk

2
D[|l〉〈k|]ρ + δkl�

φD[|l〉〈k|]ρ
}
,

(8)

FIG. 3. Numerical demonstration of parametrically induced tran-
sition between |B〉 and |D〉, started with ρ(t = 0) = |B〉〈B|. The
external flux 
a(t ) = 
̄ + δ
 cos (ω
t ) is applied to Qa. (a), (b)

̄ = 0.25
0. δ
 = 10−3
0 corresponds to 	0


/2π = 2.32 MHz.
The parametric driving frequency ω
 is set around ωB − ωD

∼= 2J .
(a) Rabi oscillation chevron. ρDD (colored) is shown as a function of
time, against detuning 

. (b) Density matrix elements ρDD (violet
sinusoidal, starting at 0), ρBB (yellow sinusoidal, starting at 1), and
ρGG (gray, stepwise) are shown as a function of time at 

 = 0.
The decay envelope (dashed) refers to the overall excitation decay
rate �1

B/2 to the ground state. (c) Extracted Rabi frequency 	fit



(hollow symbols) against flux modulation amplitude δ
 at different
flux bias points 
̄ with 

 = 0. They agree well with the evaluation
	0


 = 1
2

∂ωa
∂
̄

δ
 (solid lines). Refer to Appendix E for ρ(t ) under
different J/	0


 ratios. The detailed mapping of 	fit

 and the validity of

applying RWA against 
̄ are given in Appendix F. Calculation results
that include only the lowest three levels of a TCQ are presented in
(b) (black lines) and (c) (solid symbols) as well.

where δkl is the Kronecker delta. |k〉, |l〉 ∈
{|G〉, |D〉, |B〉, |D2〉, |E〉, |B2〉}. Note that, while truncation
of the higher-energy state space is employed, the full Rabi
Hamiltonian is considered in this six-state subspace simula-
tion, i.e., the rotating wave approximation is not applied. The
dissipation term D[O]ρ = 2OρO† − O†Oρ − ρO†O. The
term denotes that the spontaneous decay from |B〉 to |D〉 is
absent due to the selection rule 〈D|(n̂a + n̂b)|B〉 = 0.

For the following discussion, typical transmon parameters
Emax

Ja
/2π = Emax

Jb
/2π = Emax

J /2π = 15 GHz and EC/2π =
400 MHz are used. EI/2π = 180 MHz is assumed and the
corresponding J/2π = 700 MHz. This strong interqubit cou-
pling ensures that 	0


 can achieve 100 MHz [see later discus-
sion and Fig. 3(c)]. Note that, despite strong coupling J being
assumed here, the discussion based on the Jaynes-Cummings
Hamiltonian in Sec. II is still valid. See Appendix D for the
related discussion. The SQUID asymmetry factor d = 0.6 is
assumed. The corresponding eigenfrequencies are ωD/2π =
5.13 GHz and ωB/2π = 6.53 GHz. As shown in Fig. 2, the
frequency of the bright state ωB(
̄) can be varied by nearly
1 GHz by applying static flux biases. Potential applications of
a tunable �-type system thus can be expected. As described
by Eq. (3), the pure dephasing rate of the qubits �

φ
i limits

the coherence of state |D〉. Throughout the discussion we
set �

φ
i /2π = 0.2 MHz, which is reported [35] even if the

transmons are biased away from their flux sweet spots. The
spontaneous decay rate of the state |B〉 is �1

B/2π = 40 MHz
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FIG. 4. Demonstration of �-type EIT and ATS in a degenerate TCQ. Refer to Fig. 1 for the setup and Sec. III for the simulation
parameters. Steady-state atomic absorption response Im(ρSS

GB) is shown as a function of probe detuning δp for (a) 	0

/2π = 13.1 MHz and

(c) 	0

/2π = 69.0 MHz, respectively. (b, d) Corresponding dispersion responses Re(ρSS

GB) of (a) and (c), respectively. The symbols indicate
the results of numerical simulation from Eq. (8). The results that include the six lowest levels of the system are also shown as crosses here
for comparison. The fitting curve adapted from Eq. (10) is presented as black solid lines. (e) Extracted fitting parameters γBB/2π (black star),
γDD/2π (black cross), and 	0


/2π (red square) of Eq. (10) to Im(ρSS
GB) are shown as a function of 	0


. The lines indicate the parameter values
used in the simulation. (f) ω̄EIT and ω̄ATS against 	0


. ω̄EIT > 0.5 indicates where the EIT spectrum fits better. The shaded region indicates the
corresponding EIT regime 	0


 < |γBB − γDD|.

when embedded in a one-dimensional open transmission line
and �1

B/2π = 0.1 MHz when embedded in a far-detuned res-
onator.

Figure 3 illustrates the parametric drive induced mode
transfer by the aforementioned numerical method. By ap-
plying sinusoidal flux 
a(t ) = 
̄ + δ
 sin(ω
t ) with ω
 ≈
2J , ωa is parametrically modulated. As a result, the atomic
population can be swapped between |B〉 and |D〉 [Fig. 3(a)].
Spontaneous decay from |B〉 to the ground state |G〉 is present.
In Fig. 3(b), stepwise growing of ρGG features the contrasting
decay rate �1

B and �1
D, respectively. The swapping rate 	eff =√

	0



2 + 
2

 , where the Rabi frequency 	0


 = 1
2

∂ωa

∂
̄
δ
. The

detuning 

 ≡ ω
 − (ωB − ωD) ∼= ω
 − 2J .
The upper limit of the available 	0


 depends on two factors:
the flux bias point 
̄ and the interqubit coupling J . Figure 3(c)
demonstrates 	0


 as a function of δ
 at different 
̄, and
therefore different ωB. Remarkably, the linear regime of 	0




versus δ
 covers a wide range from sub-MHz up to 100 MHz
as long as 	0


 � J . The result shows a great potential for
fast-control applications.

We also perform the simulation in the subspace consti-
tuted by only {|G〉, |D〉, |B〉} states. The three-state subspace
simulation results are shown in Figs. 3(b) (black lines) and
3(c) (solid symbols) for comparison. The effect of parametric
drive induced mode transfer shows no difference between the
three-state subspace and the six-state subspace simulations.
This is because the system has no nearby transition in re-
sponse to the parametric drive except between |D〉 and |B〉
(see Appendix B). Meanwhile, the strong coupling J has little

effect on parametric drive induced transfer between |D〉 and
|B〉 (see Appendix D for details). The appropriateness of the
three-state subspace simulation echoes the principal idea of
the parametrically induced transition based on the Jaynes-
Cummings Hamiltonian [Eq. (1)] described in Sec. II. In the
following sections, most of the numerical demonstrations are
done in the three-state subspace to save computation power.

IV. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY AND AUTLER-TOWNES SPLITTING

Consider a TCQ embedded in an open transmission line.
As a probe beam 	p is shined onto the waveguide, to-
gether with an applied parametric drive 	
 onto the flux line
[Fig. 1(b)], the system Hamiltonian reads

Hm = ωD|D〉〈D| + ωB|B〉〈B|
+ [	p(t )|G〉〈B| + 	
(t )|D〉〈B| + H.c.]. (9)

The weak probe beam 	p(t ) = 	0
p sin (ωpt ) with detun-

ing δp ≡ ωp − ωB. The coupling beam 	
(t ) = 	0

 sin (ω
t )

with detuning 

 = 0. In Fig. 4, the master equation [Eq. (8)]
is evolved until a steady state is reached to spectroscopi-
cally demonstrate �-type EIT and ATS in a one-dimensional
open transmission line, where we set �1

B/2π = 40 MHz and
�

φ
i /2π = 0.2 MHz. Correspondingly γBB/2π = 40.2 MHz

and γDD/2π = 0.2 MHz. Reference [36] gives the general
solution of the steady-state optical susceptibility χGB(δp) of
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Eq. (9):

χGB(δp) = |pGB|2
δ− − δ+

[
δ+ + iγDD

δp − δ+
− δ− + iγDD

δp − δ−

]
, (10)

where δ± = (−iγDD − iγBB ± 	T )/2, with 	T =√
	0




2 − (γDD − γBB)2 . pGB = 〈G|(n̂a + n̂b)|B〉 denotes
the transition moment between |G〉 and |B〉. Additionally,
χGB(ωp) = α̃ρSS

GB(ωp). ρSS
GB(ωp) is the steady-state oscillation

amplitude of the density matrix element. The factor
α̃ = 	0

p/(ε0|Ep|2), with ε0 the vacuum permittivity and
Ep the amplitude of the probe field.

The coherence criterion of �-type EIT, γBB � γDD, is
satisfied in this system. The EIT effect competes with the
ATS one. When 	0


 < |γDD − γBB|, meaning that the control
tone Rabi frequency is smaller than the linewidth of the |B〉
state, quantum interference dominates. Therefore, Eq. (10) re-
duces to χEIT, and a narrow Lorentzian transmission window
emerges at the center of |G〉 to |B〉 absorption, as illustrated
in Figs. 4(a) and 4(b). As 	0


 > |γDD − γBB|, ATS [37,38]
takes over the optical response and Eq. (10) reduces to χATS,
two Lorentzian absorption windows separated by 	0


, as illus-
trated in Figs. 4(c) and 4(d). In both regimes, our simulation
based on Eq. (8) matches the analytical solution Eq. (10) with
excellent agreement. Figure 4(e) shows the fitting parame-
ters {γDD, γBB,	0


} of the simulated Eq. (10) to Im(ρSS
GB) for

different modulation amplitudes 	0

. The result implies the

validity of the effective �-type system activated by parametric
drive induced transition.

Akaike’s information metric [39] is performed to analyze
the steady-state optical response Im(ρSS

GB) as a function of
	0


 [Fig. 4(f)]. Im(ρSS
GB) are fitted to both χEIT and χATS,

respectively. The per-point weights

w̄EIT = e−ĪEIT

e−ĪEIT + e−ĪATS
, (11.1)

w̄ATS = 1 − w̄EIT (11.2)

are then evaluated, where Ī = ln R/N + 2k/N , with N the
number of data points, R the sum of the square of the fitting
residual, and k the number of fitting parameters [10]. Refer-
ence [36] gives the EIT window of the control tone power,
2γDD

√
γDD/(γBB + 2γDD) < 	0


 < |γDD − γBB|, which gives
0.04 < 	0


/2π < 20 MHz in our scheme. It agrees with the
measure in Fig. 4(f).

The nonunity transparency at the center is limited by
the finite decoherence rate γDD of the metastable state |D〉.
Practically, 1 < γBB/2π < 50 MHz is dominated by the spon-
taneous decay, while 0.1 < γDD/2π < 10 MHz is dominated
by the pure dephasing. Consequently, the bottleneck threshold
for the emergence of EIT, γBB > 2γDD, can be easily over-
come. Here we illustrate the case γBB/γDD

∼= 100. Remark
that in principle γBB can be enhanced while γDD can be sup-
pressed independently, owing to their contrary decoherence
channels.

V. STIMULATED RAMAN ADIABATIC PASSAGE

In this section, we show the application of the proposed
�-type system in transient optical response by considering
STIRAP [40–45]. Refer to Eq. (9) for the system Hamiltonian.

FIG. 5. �-type STIRAP to swap population from |G〉 to |D〉
state, starting with ρ(t = 0) = |G〉〈G| and stopping at time tf =
0.8 μs = 2.57 × 2π/γBB. Refer to Fig. 1(b) for the setup. (a) Control
sequence, with the parametric Stokes pulse 	0


(t ) (red) followed
by the pump pulse 	0

p(t ) (blue). The pulse separation 2τ = 182 ns
and the pulse duration 2T = 200 ns. The black dotted line indicates
	0

rms(t ) with peak Rabi frequency 67.2 MHz. (b) Corresponding
atomic response as a function of time. ρDD(tf ) = 0.969 (dotted) and
ρGG(tf ) = 0.031 (gray solid). The intermediated state ρBB (thick solid
black) reaches 0.014 during the process. Simulation results that in-
clude the six lowest levels of a TCQ are presented as colored shaded
lines for comparison. (c) Transfer efficiency as a function of peak
pulse amplitude 	pk. Colors represent different pulse delays τ . Solid
lines represent the analytical modeling accounting for nonadiabatic-
ity [46,47].

The Stokes tone 	
(t ) = 	0

(t ) sin(ω
t ) is parametrically

applied while the pump tone 	p(t ) = 	0
p(t ) sin(ωpt ) is ap-

plied onto the waveguide. A typical STIRAP sequence is com-
posed of two partially overlapped pulses in the time domain,
	
(t ) followed by 	p(t ), with equal peak Rabi frequency
	pk. With an optimized pulse sequence, the population can
be transferred from |G〉 to |D〉 with negligible population in
the dissipative intermediate state |B〉. Figure 5(a) shows an
illustrative protocol of a �-type STIRAP and Fig. 5(b) is the
simulated corresponding response of the system, where the
master equation [Eq. (8)] is used. The detunings δp = 

 = 0
are assumed. The atomic state is swapped from |G〉 to |D〉 by
a single set of hyper-Gaussian pulses, 	0

p(t ) = 	pkexp[−(t −
τ/2)4/T 4] and 	0


(t ) = 	pkexp[−(t + τ/2)4/T 4]. Here τ is
the pulse separation and 2T characterizes the pulse width.
The transfer efficiency is defined as the metastable state
population at the end of the process, ρDD(tf ). The nonunit
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transfer efficiency of the process is contributed by the nonadi-
abaticity of the protocol, and described by [46,47]

ρBB(tf ) = exp

{
−

∫ tf

0
4γBB

(
θ̇

	0
rms

)2

dt

}
, (12)

where 	0
rms(t ) =

√
	0


(t )2 + 	0
p(t )2 is the average Rabi fre-

quency of the two pulses and θ (t ) = tan−1 [	0
p(t )/	0


(t )] is
the mixing angle. ρDD(tf ) approaches unity as the local adi-
abatic condition for the sequential pulses 	0

rms(t ) � |θ̇ (t )| is
satisfied.

Figure 5(c) shows that the incomplete population transfer
ρDD(tf ) with various protocol parameters {τ , 	} can be ex-
plained by Eq. (12). Remark that, despite the length of the
sequence being comparable to the lifetime of the intermediate
state |B〉, the transfer efficiency can still approach unity as
long as adiabaticity holds throughout the process.

There are pioneering experiments that demonstrate the
STIRAP process in a �-type artificial atom or a qubit-cavity
system in circuit QED architecture [43,44,48]. Here we ad-
dress the possibility of applying STIRAP on this effective
�-type artificial atom, with a relaxation-free final state. Note
that, despite large excited-state decoherence γBB, high transfer
efficiency ρDD(tf ) is obtained. With the TCQ being placed in
a far-detuned cavity, the system with suppressed γBB could
approach unit transfer efficiency.

In the sense of coupled oscillator dynamics, this STIRAP
process is analogous to the cooperation of the in-phase drive
on both objects and stiffness modulation on one of them. It
excites the system from vacuum to out-of phase oscillation,
without any in-phase oscillation.

VI. DISCUSSION

Realization of EIT in superconducting quantum cir-
cuits has been studied and carried out in recent years
[8–11,36,39,49,50]. The main challenge is to create a reli-
able metastable state [36,39,50]. In most of the successful
approaches to create effective �-type levels, a single qubit is
dispersively coupled with a cavity (QC). A strong pumping
field is also applied either to excite a higher-order transition
[8] or to modify the level configuration [9,11]. They overcome
the coherence criteria by making use of the decay rates of
the cavitylike state (excited state) and the Purcell-protected
qubitlike state (metastable state). However, the desires to
have a high cavity decay rate κ and to have low Purcell-
protected qubit decay γκ = (g/
)2κ conflict with each other,
thereby compromising the choice of the cavity bandwidth.
Here g and 
 denote the coupling and detuning between
the qubit and the cavity, respectively. Regarding frequency
tunability of the QC approach, a tunable qubit can slightly
modify the transparency window by g2/
 as it moves toward
the cavity frequency. Meanwhile, degraded Purcell protec-
tion limits the performance of the metastable state in the
QC approach. Alternatively, SQUID loops with high critical
current can be integrated to the coplanar waveguide cavity
to achieve high tunability, while the manufacturing would
become complicated. In contrast, the degenerate TCQ itself
is a �-type system, with ideally zero spontaneous decay from
the dark state. It allows a tunable transparency window up to

a few GHz [Fig. 2(b)] with standard SQUID loops on both
qubits. Meanwhile, the spontaneous decay remains eliminated
[20,21] and insignificant degradation of the pure dephasing
could be achieved [35]. Figure 4(b) measures the slow light
effect with vg

∼= 5% of the speed of light. Benefiting from
the tunability of the system, frequency transduction between
the encoded and retrieved light could be possible in such a
quantum memory.

Note that the main difference between this scheme and a
conventional �-type atomic level is that a negligible sponta-
neous decay from |B〉 to |D〉 is mediated by the local flux lines
with noise near ωB − ωD. �1

DB could be below 1 Hz [3,35].
Therefore, frequency down-conversion due to spontaneous
emission [51,52] is absent in this system.

The proposed scheme can be generalized for different plat-
forms. For example, it can be applied to different types of
qubits, as well as with alternative realization of strong trans-
verse coupling. The shortcoming of this scheme is that the
frequency tunability of the system introduces non-negligible
dephasing, which is the main decoherence source of the
metastable state. Advanced effort can be made to suppress
the pure dephasing either by surface treatment [45] or by
considering different types of qubits [53].

VII. CONCLUSION

In conclusion, we propose a simple and effective �-type
system made of a resonant superconducting qubit pair. The
symmetric state plays the role of the excited state and the
antisymmetric state represents the metastable state. They are
mediated by a parametric drive on one of the qubits. Its
applications on �-type EIT, ATS, and STIRAP are numeri-
cally demonstrated. Compared to other approaches in circuit
QED architecture, our proposed �-type scheme features large
level tunability, while retaining sufficient coherence of the
metastable state. The device volume is compact and the man-
ufacturing can be directly implemented by a transmon-type
approach. It provides a solution of having a �-type system in
on-chip superconducting quantum circuits.
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APPENDIX A: PARAMETRIC MODULATION ON
DETUNED QUBITS

Consider detuned qubits with modulation on Qa:

Hm =
[
ωa + 2	
 J

J ωb

]
in the basis of

(|eg〉
|ge〉

)
, (A1)

where ωa,b = ω0 ± δ. The two lowest excited states of the
system read

|−〉 = 1√
2G(G + δ)

[(−J|eg〉 + (G + δ)|ge〉], (A2a)

|+〉 = 1√
2G(G + δ)

[(G + δ)|eg〉 + J|ge〉] (A2b)
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FIG. 6. Energy levels and selection rules of a degenerate TCQ.
(a) Six lowest eigenstates {| j〉} of a degenerate TCQ. They are
presented in the basis of {na, nb}, with truncated net cooper pair
number ni ∈ {−7, 7}. The color bar represents the probability am-
plitude ψ (na, nb). The opposite sign (red and blue) only indicates
the relative phase. (b) The selection rules between state | j〉 and |k〉,
determined by the transition moment 〈 j|N̂ |k〉, with N̂ the number
operator of Cooper pairs. The allowed transition (black arrows) and
parametrically available driving channel (red circular arrow) are
indicated.

where G ≡ √
J2 + δ2. The Hamiltonian Eq. (A1) described in

the basis of Eq. (A2) becomes

Hm =
[
ω0 − G + 	


(
1 − δ

G

) −	
J/G

−	
J/G ω0 + G + 	


(
1 − δ

G

)
]
.

(A3)

Compared to Eq. (6) which describes the zero detuning,
the off-diagonal terms in Eq. (A3) are scaled by J/G � 1. As
a result, despite finite detuning, the parametric drive activates
significant swapping between the lowest two eigenstates of
the system as long as J � δ. Note that the parametric drive
is proportional to ∂ω

∂

J
G . As the TCQ is in degeneracy and the

|−〉 state is decay free and has forbidden transition to the |+〉
state, the parametric drive is of particular interest.

APPENDIX B: EIGENSTATES OF A DEGENERATE
TUNABLE COUPLING QUBIT

The six lowest eigenstates of a degenerate TCQ in the
{na, nb} basis are presented in Fig. 6. Consider an identical
transmon pair. {|e〉, | f 〉} denote their first excited state and
second excited states, respectively. The upper three eigen-
states are |E〉 = |ee〉, |D2〉 = [| f g〉 − |gf 〉]/√2, and |B2〉 =
[| f g〉 + |gf 〉]/√2, respectively. In addition to the �-type level
structure, one can access N-type transition with state |E〉
involved [Fig. 6(b)] [23]. Note that there is no similar para-

FIG. 7. Simulation of parametric drive with an overestimated
flux crosstalk Cf = 0.1 between Qa and Qb. (a) Effective Rabi oscil-
lation of ρBB(t ). The black line indicates Cf = 0. The crosstalk values
with 	b


 = 0.1	a

(red dashed) and 	b


 = −0.1	a

(blue dotted) are

presented as well. (b) Fitted Rabi frequency 	fit

 as a function of

parametric driving amplitude δ
a on Qa. The symbols represent the
simulation results and the lines give the deduction from Eq. (C4).
The setting parameters here are identical to those of Fig. 3 (a), (b).

metric driving channel between |D2〉 and |B2〉 since transverse
coupling is absent between | f g〉 and |gf 〉.

APPENDIX C: EFFECT OF FLUX CROSSTALK

Neighboring transmon qubits could suffer from residual
flux crosstalk. Typically it could be as low as 1% [54]. To
formalize the problem, one considers modulation on both
tunable qubits:

Hm = [
ω0 + 2	a


(t )
]|eg〉 + [

ω0 + 2	b

(t )

]|ge〉
+ J[|eg〉〈ge| + |ge〉〈eg|]. (C1)

The Hamiltonian expressed in the basis of {|G〉, |D〉, |B〉}
can be written as

Hm = [ωD + 	̄(t )]|D〉 + [ωB + 	̄(t )]|B〉
+ δ	(t )[|B〉〈D| + |D〉〈B|], (C2)

where

	̄(t ) = 	a

(t ) + 	b


(t ), (C3a)

δ	(t ) = 	a

(t ) − 	b


(t ). (C3b)

Considering that nonzero 	b

(t ) comes from δ
a due to

finite flux crosstalk, Eq. (C3b) can be written as

δ	(t ) = 	a

(t ) − 1

2

∂ωb

∂
b
Cfδ
a (C4)

where the factor 0 < Cf < 1 denotes the level of flux
crosstalk. Note that in general the sign of ∂ωb

∂
̄b
can be ei-

ther positive or negative, depending on the flux bias point.
Therefore, the effective Rabi frequency is either enhanced
or suppressed by the factor Cf . Figure 7 shows the modified
effective Rabi frequency with an overestimated crosstalk ratio
Cf = 0.1. Here we demonstrate that with finite flux crosstalk
to the neighboring qubit,the effect of parametric drive remains
the same, while the magnitude is slightly modified.

APPENDIX D: FULL RABI HAMILTONIAN

Considering a pair of resonant qubits ωa = ωb = ω0 with
strong transverse coupling J , the full Rabi Hamiltonian in the
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bare-qubit bases {|gg〉, |eg〉, |ge〉, |ee〉} reads

HR
0 =

⎡
⎢⎣

0 0 0 J
0 ω0 J 0
0 J ω0 0
J 0 0 2ω0

⎤
⎥⎦. (D1)

FIG. 8. Examination of the rotating wave approximation. The
initial condition ρ(t = 0) = |B〉〈B|, bias point 
̄ = 0.25
0, and
driving frequency at zero detuning 

 = 0 are set in the simulation.
(a–c) Snapshots of ρBB(t ) (black solid lines) at different 2J/	0


. The
dashed red lines are the sinusoidal fitting. The parametric driving
amplitude is fixed at 	0


/2π = 23.3 MHz and the interqubit cou-
pling J is varied. (a) 2J/	0


 = 15.8, resulting in εs = 2.6 × 10−4.
(b) 2J/	0


 = 5.8, εs = 2.1 × 10−3. (c) 2J/	0

 = 2.1, εs = 4.6 ×

10−2. (d) The sinusoidal likelihood εs (colored) as a function of 	0



and interqubit coupling J .

The eigenvectors are

|G〉 = 1√
2
(
 + ω0)

⎛
⎜⎝

−ω0 − 


0
0
J

⎞
⎟⎠,

|D〉 = 1√
2

⎛
⎜⎝

0
1

−1
0

⎞
⎟⎠, |B〉 = 1√

2

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠,

|E〉 = 1√
2
(
 + ω0)

⎛
⎜⎝

J
0
0

ω0 + 


⎞
⎟⎠, (D2)

where 
 ≡
√

ω2
0 + J2. When the parametric modulation

on Qa is introduced, i.e., ωa(t ) = ω0 + 2	
(t ), the full
Rabi Hamiltonian in the eigenbases {|G〉, |D〉, |B〉, |E〉}

FIG. 9. Search over the tunability of the parametric drive with
J/2π = 700 MHz. (a) Flux tunability ∂ω0/∂
 as a function of bias
point 
̄. (b) 	fit


 (colored). (c) RWA deviation factor εs (colored) as
a function of 
̄ and modulation amplitude δ
.
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becomes

HR
m =

⎡
⎢⎢⎣

(ω0 − 
)(1 − 	
(t )



) 0 0 J



	
(t )
0 ω0 − J + 	
(t ) 	
(t ) 0
0 	
(t ) ω0 + J + 	
(t ) 0

J



	
(t ) 0 0 (ω0 + 
)(1 + 	
(t )



)

⎤
⎥⎥⎦. (D3)

From Eq. (D3) one realizes that (1) the effects of paramet-
ric modulation 	
 on the {|G〉, |D〉, |B〉} subspace remain the
same as in the discussion in Sec. II and (2) the residual effect
from the counter-rotating terms is on the swapping between
|G〉 and |E〉 with suppressed strength J



	
. Furthermore,

the resonant parametric induced transition frequency between
state {|D〉, |B〉} is around 2J/2π ∼= 1.4 GHz, which is far away
from the transition frequency 2
/2π ∼= 10 GHz between
{|G〉, |E〉}. Therefore, it is safe to activate one channel without
affecting the other. As a result, despite the strong interqubit
coupling J , the Jaynes-Cummings approach well describes the
main features of our paper.

APPENDIX E: BEYOND ROTATING WAVE
APPROXIMATION

The RWA fails as 	0

 � 2J no longer holds. Therefore, the

design of interqubit coupling J limits the maximum available
	0


. The examination of RWA is evaluated by the correlation
deviation factor εs, defined as

εs(ρBB, f ) = 1 −
∑

t (ρBB(t ) − ρ̄BB)( f (t ) − f̄ )√∑
(ρBB(t ) − ρ̄BB)2 ∑

( f (t ) − f̄ )
2
.

(E1)
It is the deviation from unity of the correlation of ρBB(t ),

with the fitted sinusoidal function f (t ) = sin (	0

t + φ) + 1

2 .

Here ρ(t = 0) = |B〉〈B| and the decoherence is nulled for
simplicity.

Figure 8 illustrates the response to the parametric driving
protocol beyond RWA. The RWA works well as the level spac-
ing J/2π > 100 MHz for 	0


/2π < 100 MHz (ε < 10−2),
giving large flexibility for the device design.

APPENDIX F: FREQUENCY TUNABILITY

In Fig. 9, full mapping of the available 	0

 at different bias

points 
̄ is studied. It indicates the operation window of the
tunable � system. The available 	0


 is suppressed near the arc
(
̄ = 0) due to low flux sensitivity and increased nonlinearity.
Nevertheless, 	0


/2π ∼= 10 MHz is still available near the
arc. It implies the EIT effect can be preserved with a tunable
transparency window over 1GHz.

The unfavorable operation points are multiples of 1
2
0

since the response of level modulation creates second har-
monics. It is reported that the modulation at the arc is doable
[55–57] and the reduction of flux noise is achieved [58].
However, due to the large nonlinearity, operation at the arc
could slightly change ωa and therefore break the degeneracy
of the TCQ. While the resonance is retained as the two-qubit
detuning |ωa − ωb| � J , we leave that for further studies.
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