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Optimal unambiguous discrimination of Bell-like states with linear optics

Dov Fields ,1 János A. Bergou,2,3 Mark Hillery ,2,3 Siddhartha Santra,1,4 and Vladimir S. Malinovsky 1

1DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA
2Department of Physics and Astronomy, Hunter College of the City University of New York, New York, New York 10065, USA

3Graduate Center of the City University of New York, New York, New York 10016, USA
4Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

(Received 7 December 2021; revised 7 July 2022; accepted 25 July 2022; published 8 August 2022)

Quantum information processing using linear optics is challenging due to the limited set of deterministic
operations achievable without using complicated resource-intensive methods. While techniques such as the
use of ancillary photons can enhance the information processing capabilities of linear optical systems, they
are technologically demanding. Therefore, determining the constraints posed by linear optics and optimizing
linear optical operations for specific tasks under those constraints, without the use of ancillae, can facilitate their
potential implementation. Here, we consider the task of unambiguously discriminating between Bell-like states
using linear optics and without the use of ancillary photons. This is a basic problem relevant in diverse settings,
for example, in the measurement of the output of an entangling quantum circuit or for entanglement swapping
at a quantum repeater station. While it is known that exact Bell states of two qubits can be discriminated with
an optimal success probability of 50%, we find, surprisingly, that for Bell-like states the optimal probability
can be only 25%. We analyze a set of Bell-like states in terms of their distinguishability, entanglement as
measured by concurrence, and parameters of the beam-splitter network used for unambiguous discrimination.
Further, we provide the linear optical configuration comprising single-photon detectors and beam splitters with
input-state-dependent parameters that achieves optimal discrimination in the Bell-like case.
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I. INTRODUCTION

Linear optical platforms are a promising route for building
quantum information processing devices in computation [1],
communication [2], and metrology [3]. On the one hand,
qubits encoded into the quantum state of a photon can have
long coherence times [4,5], and photonic circuits can poten-
tially be scalably integrated [6–9]. On the other hand, there are
fundamental limitations on the type of operations that can be
implemented without prohibitive resource costs. A simple but
important example of this kind of limitation is in the case of
discriminating measurements on a set of mutually orthogonal
entangled pure quantum states. In other platforms, such as
superconducting qubits [10] and ion traps [11], there are no
fundamental limitations on perfectly discriminating between
the orthogonal states using measurements in arbitrary orthog-
onal bases. However, in linear optical systems that is no longer
the case: It may not be possible to achieve saturation of the
quantum mechanically allowed statistical distinguishability
among the given states using only linear optical setups. A case
in point is the set of the four maximally entangled states of two
qubits, or Bell states, only two of which can be discriminated
without the use of ancillary photons.

In principle, given access to certain extra resources such
as prepared entangled quantum states and ancillary photons,
linear optical elements can be used to implement a universal
set of operations for quantum information processing [12].
In particular, with increasing use of resources, Bell-state

discriminations can be implemented with a success probabil-
ity asymptotically approaching 1 [13,14]. However, increas-
ing the number of ancillary photons to achieve the stated
precision is technologically challenging [1]. Without ancillary
photons, only two of the four possible Bell states can be
unambiguously discriminated, giving the protocol a maximum
efficiency of 50% [15–17].

Generalizing this situation is the problem of unambigu-
ously discriminating between a set of mutually orthogonal
partially entangled states of two qubits encoded into four
photonic modes, which we call the set of Bell-like states. The
formal structure of Bell-like states in terms of the mode cre-
ation operators is identical to that of the Bell states. However,
the crucial difference is in the value of their concurrence,
which is strictly less than 1; that is, they are partially en-
tangled. Obtaining the linear optical operation that optimally
discriminates between Bell-like states is, therefore, an im-
portant task since partially entangled states are realistic in
the practical scenario. While conditions have been derived
in order to determine whether a desired transformation is
implementable using linear optics [18–20], these results have
limited utility in determining the optimal transformation for
specific tasks.

The goal of this paper is to derive the efficiency of optimal
linear optical discrimination of Bell-like states and the corre-
sponding setup, i.e., a network of beam splitters and photon
detectors which achieves the optimal efficiency. Our focus is
on the case where no ancillary photons are used. The approach
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is to derive constraints required by unambiguous discrimina-
tion between the Bell-like states that allow us to construct
feasible linear optical transformations under those constraints.
The transformations are then optimized to maximize their
probability of success. Completing these steps allows us to
design a general method for optimally discriminating any set
of Bell-like states. We find that the efficiency, or maximum
success probability, of the optimal unambiguous discrimina-
tion is only 25%, in contrast to the 50% that can be achieved
for Bell states [15–17].

The structure of our paper is outlined as follows. In Sec. II,
we review the basic mathematical framework underlying lin-
ear optical setups for state discrimination. Next, in Sec. III, we
define the Bell-like states and proceed to derive the optimal
unambiguous discrimination achievable using linear optical
setups. We show, in particular, that only two out of the four
given states can be successfully discriminated. In Sec. IV, we
analyze the optical network allowing the optimal unambigu-
ous discrimination between the Bell-like states showing the
25% efficiency of success. After presenting the results, we
conclude by discussing some possible follow-up directions.

II. LINEAR OPTICS FRAMEWORK FOR STATE
DISCRIMINATION

Let us consider the discrimination of two-qubit quan-
tum states, employing the dual-rail representation for qubits
[1,21,22]. The basic elements of this representation are single-

mode photons described by the Fock states, |nm〉 ≡ â†n
m√
n!

|∅〉,
where â†

m is the creation operator for the mth photon mode,
nm is the number of photons in that mode, and |∅〉 is
the vacuum mode. Qubit states in the dual-rail represen-
tation are given as |0〉 = |11, 02〉 = â†

1 |∅〉 , |1〉 = |01, 12〉 =
â†

2 |∅〉. Adding a second qubit can be represented by an-
other photon in two other modes, giving the following
two-photon states: |00〉 = â†

1â†
3 |0〉 , |01〉 = â†

1â†
4 |0〉 , |10〉 =

â†
2â†

3 |0〉 , |11〉 = â†
2â†

4 |0〉. Therefore, the first qubit is repre-
sented by one photon in the first two modes, and the second
qubit is represented by one photon in the second two modes. It
is important to note that, by the nature of this representation,
the computational space is only a subset of all possible states.

The relevance of this qubit encoding is that any trans-
formation allowed by linear optical elements, i.e., any
transformation using only beam-splitter and phase-shifter
generators, can be described by unitary transformations on the
creation and annihilation operators [23]. We can define the
output operators {b̂†

i |i = 1 · · · m} in terms of the input opera-
tors as b̂†

i = ∑
j Ui j â

†
j . Note that the transformations allowed

by linear optics span only an M-dimensional Hilbert space,
where M is the total number of modes. The Fock space of
n photons in M modes, however, spans a Hilbert space with
(M + n − 1

n ) dimensions. Not all transformations in the full Fock
space are achievable through linear optical setups, and it is this
fundamental limitation that makes the perfect unambiguous
discrimination of the Bell and Bell-like states impossible.

Now we describe the generalized operations that can be
performed on these two-photon states using linear optical
setups, as shown in Fig. 1. At the input of the scheme are the
photon modes {â†

i |i = 1 · · · 4} that can be coupled with aux-

FIG. 1. The general scheme for linear optical operations on two-
photon states. The input modes â†

i (the system, i = 1, 2, 3, 4) and the
auxiliary modes (the ancilla, i = 5, . . . , m) are coupled via a network
of beam splitters and phase shifters to form the output modes. The
action of the linear optic network can be described by a total unitary
transformation U . At the output, some of the modes are measured
using photon-resolving detectors, while the remaining undetected
modes can be used as input for further processing.

iliary photon modes {â†
i |i = 5 · · · m}. These input modes are

connected to the output modes {b̂†
i |i = 1 · · · m} utilizing beam

splitters and phase shifters. Some of the output modes can be
detected by photon-resolving detectors, while the photons in
the remaining modes can be treated as new states that can be
used as input for further processing.

For the purposes of this paper, we restrict our consideration
to a special class of linear optical schemes in which the auxil-
iary photon modes are empty. Additionally, we focus only on
the optimal measurement for a single iteration, barring the use
of conditional measurements.

III. BELL-LIKE STATE DISCRIMINATION

In order to derive the optimal unambiguous discrimination
of Bell-like states using linear optical setups, we will divide
our analysis into three distinct sections. First, we will define
the Bell-like states and give a general formula for calculating
the probability of any two-photon detections occurring as a
function of both the input state and the unitary that describes
the linear optical network. Specifically, we define the unitary
in terms of its orthonormal column vectors, allowing us to
calculate detection output probabilities as a function of the
input state and two columns of this unitary. Following this,
we will look specifically at the case of discriminating the |�3〉
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state. We will be able to define specific constraints on what
orthonormal vectors can be used in order to produce a detec-
tion result that can be used for unambiguous discrimination.
Finally, by using the derived constraints, we will give the form
a unitary that will result in the unambiguous discrimination of
|�3〉 in one of the output detections and of |�4〉 in another of
the output detections. By analyzing the remaining detection
outcomes, we will determine the parameters that will give the
optimal discrimination of 25% of the Bell-like states.

A. Defining Bell-like states and calculating detection
probabilities

Bell-like states can be defined as

|�1〉 = (α1â†
1â†

3 + β1â†
2â†

4) |∅〉 , (1)

|�2〉 = (β∗
1 â†

1â†
3 − α∗

1 â†
2â†

4) |∅〉 , (2)

|�3〉 = (α2â†
1â†

4 + β2â†
2â†

3) |∅〉 , (3)

|�4〉 = (β∗
2 â†

1â†
4 − α∗

2 â†
2â†

3) |∅〉 , (4)

where αi and βi are the complex coefficients normalized by
|αi|2 + |βi|2 = 1. The Bell states are recovered for α1 = β1 =
α2 = β2 = 1/

√
2.

As we mentioned above, the most general operation imple-
mentable by linear optics has the form b̂†

i = ∑M
j Ui j â

†
j , and

the inverse transformation yields â†
i = ∑M

j U ∗
jib̂

†
j . We should

note that despite having only four input modes with photons,
we allow for the possibility that our discrimination protocol
can be improved by allowing for t additional output modes,
resulting in a total of M = 4 + t modes. Therefore, we can de-
fine an arbitrary two-qubit state as |e〉 = ∑

( j,k)∈σ α jk â†
j â

†
k |∅〉,

where σ ≡ {( j, k)| j = 1, 2; k = 3, 4}. It should be noted that
the form of |e〉 assumes that there are no ancillary photon
modes. Using these expressions, we can write the input modes
in the basis of the output modes:

|e〉 =
∑

( j,k)∈σ

α jk â†
j â

†
k |∅〉

=
∑

( j,k)∈σ

α jk

(
M∑
l

U ∗
l j b̂

†
l

)(
M∑
m

U ∗
mkb̂†

m

)
|∅〉

=
M∑
m

∑
( j,k)∈σ

α jkU
∗
m jU

∗
mkb̂†

mb̂†
m |∅〉

+
M,M∑

l<m,m

∑
( j,k)∈σ

α jk (U ∗
l jU

∗
mk + U ∗

m jU
∗
lk )b̂†

l b̂†
m |∅〉 . (5)

Since the measurements are performed in the orthonormal
basis of photon modes, we just need to evaluate the probabil-
ities of detecting various combinations of two photons for a
given state. The probability of detecting two photons in mode
m is

| 〈2m|e〉 |2 = 2|
∑

( j,k)∈σ

α jkU
∗
m jU

∗
mk|2 = 2|(U ∗NU †)mm|2

= 2| 〈φm|N |φ∗
m〉 |2

= 1

2
| 〈φm|(N + N	)|φ∗

m〉 |2, (6)

while the detection probability of one photon in mode m and
another in mode n is

| 〈1m, 1n|e〉 |2 = |
∑

( j,k)∈σ

α jk (U ∗
n jU

∗
mk + U ∗

m jU
∗
nk )|2

= |(U ∗NU †)nm + (U ∗NU †)mn|2
= | 〈φn|(N + N	)|φ∗

m〉 |2, (7)

where N is an M × M matrix whose only nonzero elements
are Njk ≡ α jk for ( j, k) ∈ σ . |φ∗

m〉 is the mth column of U †,
and |φm〉 is the mth column of U 	. From the previous two
equations, the probability of detecting two photons in any
mode for an input state |e〉 is c| 〈φn| (N + N	) |φ∗

m〉 |2, where
c = 1 − δmn

2 .
For easier analysis of this equation, it is helpful to note that

there is a linear transformation, π , that maps the vectors |�μ〉
to matrices π (|�μ〉) such that π (|�μ〉) = Nμ + N	

μ . In order
to understand this transformation, let us define the following
matrix Ae that is a straightforward transformation of |e〉:

Ae =
(

α13 α14

α23 α24

)
. (8)

This simple matrix is an element of the four-dimensional
vector space of 2 × 2 complex matrices with the inner product
tr(A†B). We can then explicitly give π (|e〉) using this matrix:

π (|e〉) =
⎛
⎝02×2 Ae 02×t

A	
e 02×2 02×t

0t×2 0t×2 0t×t

⎞
⎠. (9)

Here, we have defined 0t×t as a matrix of size t × t with the
elements of 0. It is helpful to note that the 0 elements of this
matrix correspond to the fact that there are no ancillary input
photons. This representation of π (|e〉) makes it obvious that
π (|e〉)	 = π (|e〉). In order to see how this operator acts on
the (4 + t)-dimensional vector |φ∗

m〉, it is helpful to decompose
|φ∗

m〉 as a direct sum of two two-dimensional vectors, |u∗
m〉 ∈

H2 and |v∗
m〉 ∈ H2, and one t-dimensional vector, |w∗

m〉 ∈ Ht :
|φ∗

m〉 ≡ |u∗
m〉 ⊕ |v∗

m〉 ⊕ |w∗
m〉, where

|u∗
m〉 =

(
U ∗

m1
U ∗

m2

)
, |v∗

m〉 =
(

U ∗
m3

U ∗
m4

)
, |w∗

m〉 =
⎛
⎝U ∗

m5
...

U ∗
mt

⎞
⎠. (10)

Given this, we can see that π (|e〉) |φ∗
m〉 = Ae |v∗

m〉 ⊕
A	

e |u∗
m〉 ⊕ 0.

Using the linearity of the representation π and the defi-
nition of the Bell-like states given in Eqs. (1)–(4), we can
determine the two-photon detection probabilities for these
states:

c| 〈φl |π (�1)|φ∗
m〉 |2 = c|α1 〈φl |π (|00〉)|φ∗

m〉 (11)

+β1 〈φl |π (|11〉)|φ∗
m〉 |2, (12)

c| 〈φl |π (�2)|φ∗
m〉 |2 = c|β∗

1 〈φl |π (|00〉)|φ∗
m〉

−α∗
1 〈φl |π (|11〉)|φ∗

m〉 |2, (13)
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c| 〈φl |π (�3)|φ∗
m〉 |2 = c|α2 〈φl |π (|01〉)|φ∗

m〉
+β2 〈φl |π (|10〉)|φ∗

m〉 |2,
c| 〈φl |π (�4)|φ∗

m〉 |2 = c|β∗
2 〈φl |π (|01〉)|φ∗

m〉
−α∗

2 〈φl |π (|10〉)|φ∗
m〉 |2. (14)

B. Restrictions on transformations resulting in the
unambiguous discrimination of |�3〉 in a detection output

In the previous section, we derived a simple method for cal-
culating the probability of detecting one photon in mode l and
one photon in mode m, P(1l , 1m), for all four Bell-like states.
In order for such a detection to contribute to the unambiguous
discrimination of one of the four input states, this probability
needs to be zero for three of the input states and nonzero for
the remaining state. If, e.g., we want this detection event to
contribute to the unambiguous discrimination of |�3〉, we get
the conditions

α1 〈φl |π (|00〉)|φ∗
m〉 = −β1 〈φl |π (|11〉)|φ∗

m〉 , (15)

α∗
1 〈φl |π (|11〉)|φ∗

m〉 = β∗
1 〈φl |π (|00〉)|φ∗

m〉 , (16)

〈φl |π (�3)|φ∗
m〉 �= 0, (17)

β∗
2 〈φl |π (|01〉)|φ∗

m〉 = α∗
2 〈φl |π (|10〉)|φ∗

m〉 . (18)

For completeness, Eq. (17) can be explicitly written as

α2 〈φl | π (|01〉) |φ∗
m〉 �= β2 〈φl | π (|10〉) |φ∗

m〉 . (19)

We first look at the consequences of the conditions (15),
(16), and (19). Multiplying Eqs. (15) and (16) and rearranging
the result slightly yield

(|α1|2 + |β1|2) 〈φl |π (|00〉)|φ∗
m〉 〈φl |π (|11〉)|φ∗

m〉 = 0. (20)

Due to the normalization condition |α1|2 + |β1|2 = 1, the only
way to satisfy this and both of Eqs. (15) and (16) is for
〈φl |π (|00〉)|φ∗

m〉 = 〈φl |π (|11〉)|φ∗
m〉 = 0. We should note that

these two conditions hold for all values of α and β; that is,
they hold unconditionally.

One convenient way of satisfying these conditions is
by choosing |φl,m〉 such that either π (|11〉) |φ∗

m〉 = 0 or
π (|11〉) |φ∗

l 〉 = 0. It is worth noting that if we choose both of
these options, the condition from Eq. (17) [or (19)] cannot be
satisfied. If we start by choosing π (|11〉) |φ∗

m〉 = 0, we get the
following: (

0 0
0 1

)
|v∗

m〉 ⊕
(

0 0
0 1

)
|u∗

m〉 = 0. (21)

In order to satisfy this equation, we require

|v∗
m〉 ∝

(
1
0

)
, |u∗

m〉 ∝
(

1
0

)
, (22)

resulting in the following form for |φ∗
m〉:

|φ∗
m〉 = ϕm1

(
1
0

)
⊕ ϕm2

(
1
0

)
⊕ ϕm3 |w∗

m〉 . (23)

Here, |w∗
m〉 is an arbitrary normalized t-dimensional vec-

tor. The normalization of |φ∗
m〉 is enforced by the condition∑3

i |ϕmi|2 = 1. Additionally, it is worth noting that there
exists one alternate solution where both |v∗

m〉 = |u∗
m〉 = 0.

However, with such a solution Eq. (17) cannot be satis-
fied. Applying the same approach to 〈φl |π (|00〉)|φ∗

m〉 = 0, we
see that choosing π (|00〉) |φ∗

m〉 = 0 requires |φ∗
m〉 = 0. This

choice violates the condition in Eq. (17) and hence cannot
contribute to unambiguous discrimination. This leaves us with
setting π (00) |φ∗

l 〉 = 0, giving

|φ∗
l 〉 = ϕl1

(
0
1

)
⊕ ϕl2

(
0
1

)
⊕ ϕl3 |w∗

l 〉 . (24)

The orthogonality condition 〈φ∗
l |φ∗

m〉 = δlm is preserved by
requiring that 〈w∗

l |w∗
m〉 = δlm. With some simple substitution,

we can see that the probability of successfully discrimi-
nating |�3〉, given this detection, is | 〈φl |π (|�3〉)|φ∗

m〉 |2 =
|α2ϕl1ϕm2 + β2ϕm1ϕl2|2. Using the triangle inequality, we
get | 〈φl | π (|�3〉) |φ∗

m〉 | � |αϕl1ϕm2| + |β2ϕm1ϕl2|. Using the
normalizations

∑3
i |ϕmi|2 = 1 and

∑3
i |ϕli|2 = 1, it is clear

that this term is maximal when ϕl3 = ϕm3 = 0. From this
point, we can confidently state that the optimal solution is
to reduce our total number of output modes to four. Despite
allowing for additional output modes, we can conclude that
without allowing for ancillary input photons, additional output
modes will not assist in the unambiguous discrimination of the
Bell-like states. At this point, by considering the requirements
of unambiguous discrimination from a single detection, we
have derived significant restrictions on the form the unitary
must take if the network it represents will have an output
detection that will contribute to the unambiguous discrimi-
nation of |�3〉. If we, without loss of generality, choose that
a measurement of |11, 12〉 (m = 1, l = 2) should unambigu-
ously discriminate |�3〉, we can use this to determine the first
two columns of the unitary as follows:

U † =

⎛
⎜⎜⎝

cos ω1 0 · · · · · ·
0 cos ω2 · · · · · ·

sin ω1eiρ1 0 · · · · · ·
0 sin ω2eiρ2 · · · · · ·

⎞
⎟⎟⎠. (25)

In this equation, we have satisfied the condition |ϕi1|2 +
|ϕi2|2 = 1 by defining ϕi1 = cos ωi and ϕi2 = eiρi sin ωi for
i = 1, 2. The third and fourth columns of this unitary will be
determined in the next section.

Finally, we are left to consider the consequences of the final
condition, Eq. (18). Using the condition from Eq. (18), we get
that if we want a measurement of |11, 12〉 to unambiguously
discriminate |�3〉, then we need

β∗
2 cos ω1 sin ω2eiρ2 = α∗

2 cos ω2 sin ω1eiρ1 . (26)

This gives us one of two equations that we will use to deter-
mine the final unitary.

C. Unambiguous discrimination from other detection results

Having considered the consequences of requiring the
measurement of |11, 12〉 to contribute to the unambiguous
discrimination of |�3〉, we can now focus on the usefulness
of the remaining outputs, for instance, |11, 14〉. Assuming that
we want our detector to be able to succeed for more than one
of the input states, we need to look at using this output to
discriminate a different state. If we choose the output |11, 14〉
to unambiguously discriminate |�4〉, we can use the analysis
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above to require that Eq. (24) also apply to |φ∗
4 〉. If we do this,

it is straightforward to show that Eqs. (15) and (16) are already
satisfied. This fixes the full form of our unitary:

U †

=

⎛
⎜⎜⎜⎜⎝

cos ω1 0 − sin ω1e−iρ1 0

0 cos ω2 0 − sin ω2e−iρ2

sin ω1eiρ1 0 cos ω1 0

0 sin ω2eiρ2 0 cos ω2

⎞
⎟⎟⎟⎟⎠

The only other condition, which can be derived in the same
fashion as Eq. (26), that needs to be satisfied is

α2 cos ω1 cos ω2 = β2 sin ω1 sin ω2ei(ρ1−ρ2 ). (27)

Solving Eqs. (26) and (27) simultaneously gives cos ω1 =
sin ω1 = 1√

2
and α2

β2
= tan ω2ei(ρ1−ρ2 ). ρ1 is not fixed by these

equations, and we can, without loss of generality, choose ρ1 =
0. Combining everything, we derive the following unitary:

U † =

⎛
⎜⎜⎜⎜⎝

1√
2

0 − 1√
2

0

0 β∗
2 0 −α2

1√
2

0 1√
2

0

0 α∗
2 0 β2

⎞
⎟⎟⎟⎟⎠. (28)

This unitary is fixed, other than a total phase factor of eiρ1 , and
all that is left is to determine whether any of the remaining
detections of photons contribute to the unambiguous discrim-
ination of any state. Using the unitary above, we can see that
the detections of |12, 13〉 or |13, 14〉 could only contribute to
the unambiguous discrimination of |�3〉 or |�4〉 when either
|α2|2 = |β2|2 or α2β2 = 0. Thus, it is clear that these two de-
tections can only be useful in unambiguously discriminating
ideal Bell states or separable states. Similarly, we can see
that any of the remaining detections will only ever be useful
for the unambiguous discrimination of either |�1〉 or |�2〉
when the input states are separable. For Bell-like states, only
detections of photons in |11, 12〉 and |11, 14〉 will result in
successful unambiguous discrimination. The probabilities of
measuring photons in these detectors when their associated
states are sent can be calculated as | 〈φ1| π (|�3〉) |φ∗

2 〉 |2 =
| 〈φ1| π (|�4〉) |φ∗

4 〉 |2 = 1
2 . If we assume that each state will

be sent with equal probability, this unitary will successfully
discriminate |�3〉 and |�4〉 with an optimal probability of
25%.

What we have ultimately shown in this section is that there
is no linear optical setup that will enable better than a 25%
probability of successfully discriminating any set of Bell-like
states. In order to reach this conclusion, we first gave a gen-
eral calculation of the probability of two-photon measurement
occurring for each of the Bell-like states in Eqs. (11)–(14).
Following this, we focused specifically on |�3〉 and derived, in
Eqs. (23) and (26), specific restrictions on the unitary defining
the linear optical transformation in order for it to allow for the
unambiguous discrimination of |�3〉 in one of the two-photon
measurements. Finally, after choosing for the |11, 12〉 mode to
contribute to unambiguous discrimination, we analyzed what
remaining detection outcomes could be used for successful
unambiguous discrimination of the remaining states. Our spe-

cific choice of the |11, 12〉 and |11, 14〉 measurements was
arbitrary, and a similar analysis would follow if we started by
choosing any other modes. A permutation of the above unitary
would be derived, which would cause different two-photon
detectors to be useful for the unambiguous discrimination
task. Similarly, instead of having started from trying to un-
ambiguously discriminate |�3〉, we could have started from
any other state. For instance, following arguments similar to
those above, we could have found the following unitary, which
unambiguously discriminates |�1〉 and |�2〉 with a probability
of 25%:

U † =

⎛
⎜⎜⎜⎜⎝

β∗
1 0 0 −α1

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0

α∗
1 0 0 β1

⎞
⎟⎟⎟⎟⎠. (29)

Ultimately, we conclude that the optimal probability of un-
ambiguous discrimination of Bell-like states in linear optical
systems is 25% when no ancillary photons are introduced.

IV. IMPLEMENTATION AND ANALYSIS

In the previous section, we provided a rigorous proof of
the optimal method of discriminating between Bell-like states.
In this section, we explicitly provide and analyze the optical
setup. Specifically, our goal is to better understand the re-
lationship between the entanglement of the input states and
the success probability of unambiguous discrimination. First,
without loss of generality, we can, for convenience, choose
all four parameters in Eqs. (1)–(4) to be real and rewrite the
possible Bell-like states in the form

|�1〉 = (sin θ1â†
1â†

3 + cos θ1â†
2â†

4) |∅〉 , (30)

|�2〉 = (cos θ1â†
1â†

3 − sin θ1â†
2â†

4) |∅〉 , (31)

|�3〉 = (sin θ2â†
1â†

4 + cos θ2â†
2â†

3) |∅〉 , (32)

|�4〉 = (cos θ2â†
1â†

4 − sin θ2â†
2â†

3) |∅〉 . (33)

We can also use concurrence as an entanglement measurement
for these states, calculating concurrence for these states as
follows: C1,2 = | sin(2θ1)|, C3,4 = | sin(2θ2)|. The unitary in
Eq. (28) can be implemented by two beam splitters. Before
looking explicitly at the optimal solution, it is first helpful to
consider any general two-beam-splitter strategy:(

b̂†
1

b̂†
3

)
=

(
cos φ1 sin φ1

− sin φ1 cos φ1

)(
â†

1

â†
3

)
, (34)

(
b̂†

2
b̂†

4

)
=

(
cos φ2 sin φ2

− sin φ2 cos φ2

)(
â†

2

â†
4

)
. (35)

This setup is depicted in Fig. 2(a), while the setup in
Fig. 2(b) requires mapping 3 ↔ 4 in the previous equations.
In order to simplify our analysis, we will fix the first beam
splitter to being a 50:50 beam splitter, φ1 = π

4 . Using this,
we calculate the probabilities of measuring each possible out-
come for each possible input state. In Table I, P(m, n) is the
probability of detecting one photon in detector m and one
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TABLE I. Probability of each possible combination of photon detections for each input state [setup described in Fig. 2(a)]. When φ2 = θ2,
a detection of |11, 12〉 unambiguously discriminates |�3〉, and a detection of |11, 14〉 unambiguously discriminates |�4〉.

In/Out P(1,1) P(2,2) P(3,3) P(4,4) P(1,2) P(1,3) P(1,4) P(2,3) P(2,4) P(3,4)

|�1〉 sin2 θ1
2

cos2 θ1 sin2 (2φ2 )
2

sin2 θ1
2

cos2 θ1 sin2(2φ2 )
2 0 0 0 0 cos2 θ1 cos2(2φ2) 0

|�2〉 cos2 θ1
2

sin2 θ1 sin2 (2φ2 )
2

cos2 θ1
2

sin2 θ1 sin2 (2φ2 )
2 0 0 0 0 sin2 θ1 cos2(2φ2) 0

|�3〉 0 0 0 0 cos2(θ2−φ2 )
2 0 sin2(θ2−φ2 )

2
cos2(θ2+φ2 )

2 0 sin2(θ2+φ2 )
2

|�4〉 0 0 0 0 sin2(θ2−φ2 )
2 0 cos2(θ2−φ2 )

2
sin2 (θ2+φ2 )

2 0 cos2(θ2+φ2 )
2

photon in detector n. If we swap the two beam splitters, then
we get the same table, but with 1 ↔ 2 and 3 ↔ 4. If we swap
the interactions, as depicted in Fig. 2(b), such that the first
beam splitter has the 1 and 4 modes as its input and the second
beam splitter has modes 2 and 3 as its input, we also get a
similar table, but with the first two and last two rows of this
table swapped and with θ1 ↔ θ2. For each output, we can use
Bayes’s theorem to calculate the confidence [24,25]:

P(|�i〉 |m, n) = P(m, n| |�i〉)p(|�i〉)∑
i P(m, n| |�i〉)p(|�i〉)

, (36)

D(m, n) = max
i

{P(|�i〉 |m, n)}. (37)

Here, we have defined P(m, n| |�i〉) as the probability of a
given detection outcome of one photon in the m detector and
one photon in the n detector for the input state |�i〉. The
confidence P(|�i〉 |m, n) is the probability that the input state
was |�i〉 given that a detection of one photon in each of the m
and n detectors occurred. D(m, n) is the maximum confidence
for this measurement. In addition, we have assumed that all
Bell-like states are sent with equal probability: p(|�i〉) = 1

4 .
One final note is that Eq. (36) only holds when the denomina-
tor is nonzero.

This calculation of confidence gives us a clear way to
relate the entanglement of the input states to the ability to use
specific detection measurements for unambiguous discrimina-
tion. The maximum confidence D(m, n) is a measure of how
well a detection of one photon in mode m and one photon in
mode n can be correlated to one of the input states. When the
maximum confidence is 1

4 , there is no correlation between the
detection and any input state, and when the maximum confi-
dence is 1, there is perfect correlation between the detection

FIG. 2. Discrimination of Bell-like states, with two beam split-
ters defined by η1 and η2. As described in Eqs. (34) and (35), in
(a) modes 1 and 3 interact in the first beam splitter, and modes 2 and
4 interact in the second. In (b), modes 1 and 4 interact in the first
beam splitter, and modes 2 and 3 interact in the second.

and the associated input state. In the case where maximum
confidence is 1, that detection results in the unambiguous
discrimination of one of the input states. From all the columns
of the table we only get three different equations for maximum
confidence:

D(1, 1) = D(2, 2) = D(3, 3) = D(4, 4) = D(1, 3) ≡ D1,

D(1, 2) = D(1, 4) ≡ D2,

D(2, 3) = D(3, 4) ≡ D3,

D1 =
1 +

√
1 − C2

1

2
, (38)

D2 =
1 + |

√
1 − C2

3 cos (2φ2) + C3 sin (2φ2)|
2

, (39)

D3 =
1 + |

√
1 − C2

3 cos (2φ2) − C3 sin (2φ2)|
2

. (40)

D1 is the maximum confidence for any detection of two pho-
tons in the same mode, while D2 and D3 are the confidences
gained by the detection of photons in either {|11, 12〉 , |11, 14〉}
or {|12, 13〉 , |13, 14〉}, respectively. In Fig. 3, we illustrate a
plot of both D2 and D3 as a function of C3 and φ2. Since
unambiguous discrimination is only achieved when the max-
imum confidence is 1, we can see that since D1 = 1 is only
satisfied for C1 = 0, detections of two photons in the same
mode only contribute to unambiguous discrimination when
the first two states are separable. In order to satisfy either
D2 = 1 or D3 = 1, or, equivalently, for the associated detec-
tions to contribute to unambiguous discrimination, we only
need to choose φ2 = θ2 or φ2 = π

2 − θ2, respectively, which is
the optimal solution derived in the previous section and results
in the unitary given in Eq. (28) up to a simple permutation of
the unitary. For both D2 = 1 and D3 = 1 to be satisfied, we
need either C3 = 1 and φ2 = π

4 , which is the case for Bell
states, or C3 = 0 and φ2 = 0, which is the case for separable
states.

This analysis makes it clear that the unambiguous linear
optical discrimination of Bell-like states is not a mono-
tonic function of entanglement, or, equivalently, concurrence.
Rather, for all Bell-like states, only one of D2 = 1 or D3 = 1
can be satisfied, and therefore, the Bell-like states can only
be successfully discriminated with a probability of 25%. We
can see this from Table II. If we choose π

4 > θ1, θ2 > 0,
we can see that |�3〉 is unambiguously discriminated when
one photon is measured in each of modes 1 and 2. |�4〉 is
unambiguously discriminated when the one photon is mea-
sured in each of modes 1 and 4. |�1〉 and |�2〉 are never
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TABLE II. Probability of each possible combination of photon detections for each input state when the beam splitters in Eqs. (34) and (35)
are set such that φ1 = π

4 and φ2 = θ2.

In/Out P(1,1) P(2,2) P(3,3) P(4,4) P(1,2) P(1,3) P(1,4) P(2,3) P(2,4) P(3,4)

|�1〉 sin2 θ1
2

cos2 θ1 sin2 (2θ2 )
2

sin2 θ1
2

cos2 θ1 sin2 (2θ2 )
2 0 0 0 0 cos2 θ1 cos2(2θ2) 0

|�2〉 cos2 θ1
2

sin2 θ1 sin2 (2θ2 )
2

cos2 θ1
2

sin2 θ1 sin2 (2θ2 )
2 0 0 0 0 sin2 θ1 cos2(2θ2) 0

|�3〉 0 0 0 0 1
2 0 0 cos2(2θ2 )

2 0 sin2(2θ2 )
2

|�4〉 0 0 0 0 0 0 1
2

sin2(2θ2 )
2 0 cos2(2θ2 )

2

successfully discriminated, while |�3〉 and |�4〉 are success-
fully discriminated half of the time they are received, giving a
total success rate of 25%. For Bell states, both D2 = 1 and
D3 = 1 can be satisfied, allowing for a success probability
of 50% for the discrimination and reproducing the results
in [15–17]. In Table II, we can see this result by choosing

FIG. 3. A plot of the confidences (a) D2 and (b) D3 as a function
of the concurrence C3 and the beam-splitter parameter φ.

θ1 = θ2 = π
4 . Similar to the Bell-like case, |�1〉 and |�2〉 are

never successfully discriminated. However, |�3〉 is success-
fully discriminated upon a detection of one photon in each of
modes 1 and 2 or one photon in each of modes 3 and 4. |�4〉
is successfully discriminated when one photon is detected in
each of modes 1 and 4 or one photon is detected in each of
modes 2 and 3. In total, for Bell states when either |�1〉 or
|�2〉 is received, the discrimination fails, while when |�3〉
and |�4〉 are received, the discrimination succeeds, giving a
success rate of 50% for the total protocol. For completely
separable states, D1 = D2 = D3 = 1 can be satisfied, allowing
for complete discrimination between the four states. We can
see this from Table II by setting θ1 = θ2 = 0. In this case we
see that a detection of one photon in each of modes 2 and 4
will unambiguously discriminate |�1〉, while a detection of
two photons in mode 1 or a detection of two photons in mode
3 will unambiguously discriminate |�2〉. |�3〉 and |�4〉 can be
unambiguously discriminated, as in the previous example.

V. CONCLUSION

In this paper we have derived the optimal efficiency of
unambiguous discrimination between Bell-like states possi-
ble with linear optical setups without the need for ancillary
photons. We have explicitly shown that the optimal efficiency
for Bell-like states is only 25%, as opposed to the 50%
success rate possible for Bell states. The reduced symmetry
of the Bell-like states results in fewer outputs that can be
useful for unambiguous discrimination. When analyzed in
terms of the entanglement measure of the set of states, the
optimal efficiency shows a discontinuity between the set of
Bell-like states and exact Bell states. The main conclusion
is that the upper bound for the success probability of un-
ambiguous discrimination between Bell-like states is 25%.
This result is independent of the concurrence C of the states
for 0 < C < 1, while C = 0, separable states, and C = 1,
maximally entangled states, emerge as singular points. Pre-
vious works on Bell states simply proved that the proposed
transformation is optimal; in this paper we obtained spe-
cific constraints on the unitary and used these constraints
to derive and construct the optimal discrimination protocol.
The systematic approach presented in this paper has the po-
tential to assist in optimizing other types of linear optical
discrimination problems. In follow-up work, we intend to
consider more general classes of orthogonal entangled states.
In addition, there is still room to explore optical setups for
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unambiguous discrimination that make use of ancillary pho-
tons. One final possible extension of this work is using this
approach to derive the optimal minimum error discrimination
or even more general strategies allowed by linear optical se-
tups.
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