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Enhanced unconventional photon-blockade effect in one- and two-qubit
cavities interacting with nonclassical light
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The antibunching effect generated in a cavity containing first a single two-level atomic system and then two
identical atoms is explored for off-resonant interactions, in strong- and weak-coupling regimes. The cavity is
driven by coherent and squeezed sources. Using the second-order correlation function analytically derived in
the weak-excitation regime, we show that squeezed light achieves and improves strong antibunching, leading to
a photon blockade. This enhancement is due to a destructive quantum interference mechanism induced by the
nonclassical light, creating a supplementary transition pathway. The best effect is obtained for equal frequency
detunings in the strong-coupling regime. More interestingly, our investigation reveals that the two-atom-cavity
system can further improve the antibunching effect compared to the single-atom cavity. It turns out that the
additional couplings appearing in the cavity due to the implementation of the two atoms, combined with the
squeezed light, could substantially enhance the photon-blockade effect.
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I. INTRODUCTION

Photon-blockade effects play a crucial role in exchang-
ing and handling photonic quantum information [1–5]. First
proposed by Imamoglu et al. [6], these intriguing effects
have been studied in various systems [7–19]. Generally, a
blockade means that the emission of photons can be blocked
by a single photon in a cavity. This results in a one by
one sequential photon transmission in the output side of the
cavity, with sub-Poissonian statistics. In order to obtain pho-
ton blockade, a strong quantum nonlinear source is needed.
For example, this aspect was studied using a system with
an intrinsic nonlinear susceptibility [20–24]. Unfortunately,
the requirement of strong nonlinearity is hard to realize
experimentally. First discovered by Liew and Savona [25],
systems possessing weak nonlinearities can exhibit another
type of the photon-blockade phenomenon, known as uncon-
ventional photon blockade. The first physical explanations of
the unconventional photon blockade were given by Bamba
et al. [26]. They are underlined by the fact that there are
two or more different paths for the transition from the one-
photon state to the two-photon state, leading to destructive
quantum interference and strong antibunching [27–29]. A uni-
fying interpretation of the conventional and unconventional
photon-blockade mechanisms was proposed by Casalengua
et al. [30].

On the other hand, squeezed states of light constitute a
strong resource for several quantum technologies [31,32].
This kind of radiation is characterized by quantum noise
in one quadrature lower than a coherent state. The applica-
tions include essentially the precision improvement of the
optical measurements [33,34], quantum communication [35],

gravitational wave detection [36,37], and quantum computing
[38–41]. The most notable application of squeezed light was
to increase the astrophysical limits of gravitational-wave de-
tectors including the laser interferometer gravitational-wave
observatory (LIGO) [42] and the gravitational-wave observa-
tory (GEO 600) detectors [43]. In general, squeezing comes
from nonlinear interactions in a quantum system. Widely in-
vestigated platforms in quantum optics are the quantum well
cavity [44–49] and the two-level atomic system [50–55]. They
still offer fascinating behaviors due to their exceptional quan-
tum properties.

In light of this, we investigate in this paper the antibunch-
ing effect in a cavity containing first a two-level atomic system
and then two atoms. The cavity is doubly pumped by coherent
and squeezing sources of light. We show that the antibunching
achieved by the single-atom cavity can be strongly enhanced
by applying the squeezing source and choosing the appro-
priate frequency detunings and amplitude of the squeezed
light. This improvement is also observed for the two-atom
cavity. However, more interestingly, this last system is able to
produce higher antibunching than the single-atom case. This
is attributed to the additional coupling.

The paper is organized as follows. In the next sec-
tion we consider the single-atom-cavity system. We derive the
Hamiltonian and the dynamics. Then we determine the equal-
time second-order correlation function in the weak-excitation
regime. After that, we focus on the antibunching effect for
weak and strong couplings. Section III is dedicated to the
two-atom-cavity system. We study the antibunching and take
the opportunity to compare the nonclassical effect generated
by the two systems. In the Appendix we extend the study of
the single-atom cavity to off-resonant interactions.
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FIG. 1. (a) Scheme of a two-level system trapped in a single-
mode cavity. The cavity is coherently pumped by a laser of amplitude
ε. A second-order nonlinear crystal is attached to the cavity in such a
way that the generated squeezed photons interact with the two-level
system. (b) Transition paths for different photon states induced by
coherent and squeezed sources.

II. ONE-QUBIT-CAVITY SYSTEM

A. Theoretical model and dynamics

We consider an optical cavity (with a mode frequency
ωc) containing a two-level system (of frequency ωa), weakly
driven by a coherent field. The cavity interacts with squeezed
photons that result from a nonlinear process through a second-
order nonlinear crystal attached to the cavity, as shown
schematically in Fig. 1(a). We note that our discussion deals
with a general model that can be realized in several quan-
tum systems, such as atom-cavity systems, superconducting
qubit-cavity systems, and quantum-dot cavities. The whole
Hamiltonian describing the system, in a rotating frame, can
be written as

H1 = �ca†a + �aσ
†σ + g(σa† + σ †a)

+ (εa† + ε̄a) +
(

λ

2
a†2 + λ̄

2
a2

)
, (1)

where a and a† represent the annihilation and creation oper-
ators of the optical mode of the cavity, respectively, σ and
σ † denote the lowering and raising operators of the two-level
atomic system, respectively, and ε is the strength of the coher-
ent driving field and ε̄ its complex conjugate. The interaction
strength between photons and the atom is represented by the
constant g. The second-order medium of susceptibility χ (2)

is driven by a field of amplitude λp. They are linked by the
relation λ = χ (2)λp. Here �a = ωa − ωp and �c = ωc − ωp

are the two-level system and cavity detunings with respect to
the driving pump frequency, respectively.

The system dynamics can be analyzed with the master
equation for the density matrix ρ, given by ρ̇(t ) = i[ρ, H1] +
κLa[ρ] + γLσ [ρ], where La[ρ] = 2aρa† − a†aρ − ρa†a
and Lσ [ρ] = 2σρσ † − σ †σρ − ρσ †σ are the Lindblad
superoperators describing the dissipations of the cavity
and the two-level system with the decay rates κ and γ ,
respectively. By adopting the weak-driving limit, the system
wave function can be expanded in terms of the bare states up
to a two-photon excitation process as [56,57]

|ψ〉 ≈ Ag,0|g, 0〉 + Ag,1|g, 1〉 + Ag,2|g, 2〉
+ Ae,0|e, 0〉 + Ae,1|e, 1〉. (2)

In this representation, the quantities |Ag,n|2 and |Ae,n|2 con-
stitute the probabilities of the system in the states |g, n〉 and
|e, n〉, respectively. Under these conditions, the system is

described by the effective non-Hermitian Hamiltonian

H ′
1 = H1 − i

κ

2
a†a − i

γ

2
σ †σ. (3)

To obtain the evolution equations of the amplitudes Aα,n

(α = g, e), we employ the Schrödinger equation i∂t |ψ〉 =
H ′

1|ψ〉. Combining Eqs. (2) and (3) into the Schrödinger equa-
tion, we obtain the set of equations relative to the coefficients
of the wave function

iȦg,1 = ε + gAe,0 + �′
cAg,1 +

√
2ε̄Ag,2, (4)

iȦg,2 =
√

2gAe,1 + 2�′
cAg,2 +

√
2εAg,1 +

√
2

2
λ, (5)

iȦe,0 = gAg,1 + �′
aAe,0 +

√
2ε̄Ae,1, (6)

iȦe,1 =
√

2gAg,2 + (�′
a + �′

c)Ae,1 + εAe,0, (7)

with �′
a = �a − iγ /2 and �′

c = �c − iκ/2. Under the weak-
driving condition |Ag,0| � |Ag,1|, |Ae,0| � |Ag,2|, |Ae,1|, the
steady-state solutions (∂t Aα,n = 0) for the amplitudes of each
state are given by

Ag,1B = ε̄[λ�′
a(�′

a + �′
c) +

√
2(2ε2�′

c + g2λ)]

− ε{
√

2λε̄2 + 2�′
a[�′

c(�′
a + �′

c) − g2]}, (8)

Ag,2B = g2

√
2

[λ(�′
a + �′

c) + 2ε2]

− 2ε2 − λ�′
c√

2
[
√

2|ε|2 − �′
a(�′

a + �′
c)], (9)

Ae,0B = 2gε[�′
c(�′

a + �′
c) − g2], (10)

Ae,1B = g[λ|ε|2 + �′
a(λ�′

c − 2ε2) − 2ε2�′
c − g2λ], (11)

where

B = 2g4 + 2
(|ε|2 − �′2

c

)
[
√

2|ε|2 − �′
a(�′

a + �′
c)]

− 2g2[(
√

2 + 1)|ε|2 + �′
c(2�′

a + �′
c)]. (12)

B. Second-order correlation function determination

Usually, to study the quantum statistics of the optical
cavity field we use the equal-time second-order correlation
function g(2)(0), which is proportional to the probability of
detecting two photons simultaneously. Its value determines
the nature of the produced light: g(2)(0) = 1 for coher-
ently emitted radiation and g(2)(0) > 1 for super-Poissonian
bunched light, whereas when g(2)(0) < 1 the field statistics are
sub-Poissonian corresponding to antibunched or nonclassical
light. In particular, the value g(2)(0) � 1 is a signature of the
photon-blockade phenomenon, when only one-photon exci-
tation is possible. The steady-state second-order correlation
function of the cavity optical field can be written as

g(2)(0) =〈ψ |a†a†aa|ψ〉SS

〈ψ |a†a|ψ〉2
SS

, (13)

where |ψ〉SS is the system wave function in the steady state.
The stationary values are linked to the mean value of num-
ber of photons by 〈ψ |a†a|ψ〉SS = |Ag,1|2 + |Ae,1|2 + 2|Ag,2|2,
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from which the autocorrelation function for weak excitation
takes the form [after considering real ε in Eqs. (8) and (9) in
order to simplify the study of g(2)(0)]

g(2)(0) = |√2Ag,2|2
[|Ag,1|2 + |Ae,1|2 + 2|Ag,2|2]2

	 2|Ag,2|2
|Ag,1|4

= N1 + N2

N3|D|2 , (14)

with

N1 = ( 1
4

{
�2

a(8ε2 − 4λ�c) + �a
[− 4λ�2

c + 8ε2�c

+ κλ(2γ + κ ) + 4g2λ
] + λ�c[γ (γ + 2κ ) + 4g2]

+ 2ε2[4g2 − γ (γ + κ )]
})2

, (15)

N2 = ( 1
8

{
8�a[λ�c(γ + κ ) − ε2(2γ + κ )] + 4κλ�2

a

+ 4γ�c(λ�c − 2ε2) − λ(γ + κ )(γ κ + 4g2)
})2

, (16)

N3 =
[

4ε2
(
4�2

a + γ 2
)

4(κ�a + γ�c)2 + (−4�a�c + γ κ + 4g2)2

]2

,

(17)

and

D = 1
8 [2i�a(κ + 2i�c) + 2iγ�c + γ κ + 4g2]

× [2i�a(κ + 2i�c) + 2i�c(2i�c + γ + 2κ )

+ κ (γ + κ ) + 4g2]. (18)

The above general relation of the autocorrelation function
characterizes the quantum statistics and the degree of anti-
bunching in the emergent light. According to Eq. (14), if
Ag,2 = 0, we have g(2)(0) = 0. Thus, in this particular case,
light will exhibit strong antibunching, leading to an optimum
photon blockade.

C. Quantum-interference-based photon blockade induced
by squeezed light for the one-qubit cavity

As mentioned earlier, the two-level atomic system is a
good prototype to produce the photon-blockade effect, ei-
ther by strong nonlinearity between polaritons, qualified
as conventional photon blockade (CPB), or via a quantum
interference mechanism, known as unconventional photon
blockade (UCPB). Despite their mechanisms being different,
CPB and UCPB share the same photon quantum statistics.
Here we explore the effect of the squeezed light on the anti-
bunching effect produced by the two-level cavity system. For
this, we begin with the total resonance case (�a = �c = 0).
The correlation function is reduced to

g(2)(0) = λ2α + 16ε4(γ κ + 4g2)2[γ (γ + κ ) − 4g2]2

16γ 4ε4[κ (γ + κ ) + 4g2]2
, (19)

with α = (γ + κ )2(γ κ + 4g2)4. We note that the previous
correlation function depends on the amplitude of the co-
herent pumping ε, contrarily to the correlation function in
the absence of the squeezing source. To illustrate the above
expression, we represent in Fig. 2 g(2)(0) against the normal-
ized coupling strength g/κ for three values of the squeezed
light amplitude λ/κ . For the system parameters, we choose

FIG. 2. Second-order correlation function g(2)(0) plotted at total
resonance (�a = �c = 0) as a function of the normalized coupling
strength g/κ for ε/κ = 0.01, γ = κ/2, and three values of the
squeezed light amplitude λ.

ε = 0.01κ and γ = κ/2. The plot shows that for λ = 0, a
strong antibunching effect of the order of 10−4 can be attained.
As λ increases, the antibunching decreases and vanishes pro-
gressively for stronger squeezed pumping. Indeed, at total
resonance, the squeezed light is unfavorable to the photon
blockade (PB). This is well justified by the optimal condition
for the photon blockade derived from Eq. (19), satisfying
λ = 0 and g = 1

2

√
γ (γ + κ ).

Now we consider resonance between the cavity and the
driving field, �c = 0. In Fig. 3(a) we depict the autocor-
relation function versus �a/κ in the weak-coupling regime
(g � κ, γ ). We choose the atom-cavity coupling strength

�

�

FIG. 3. Second-order correlation function g(2)(0) plotted versus
normalized detuning �a/κ (�c = 0) for γ = κ/2, ε/κ = 0.01, and
three values of the squeezed light strength λ are considered in
(a) the weak-coupling regime g/κ = 0.45 and (b) the strong-coupling
regime g/κ = 10.

023704-3



H. JABRI AND H. ELEUCH PHYSICAL REVIEW A 106, 023704 (2022)

g = 0.45κ . It is shown that for an appropriate value of the
squeezed photons amplitude, the PB can be strongly en-
hanced. However, by further increasing λ, the nonclassical
effect decreases. Additionally, we observe that g(2)(0) is
redshifted and the maxima no longer correspond to the res-
onance. The strong-coupling regime (g � κ, γ ) is illustrated
by Fig. 3(b). The coupling strength is chosen to be g = 10κ .
Starting from λ = 0, light shows highly bunched states near
resonance [g(2)(0) � 1] or coherent states for large detunings
[g(2)(0) → 1]. Interestingly, when squeezed photons come
into play and even for small nonlinearities, a strong antibunch-
ing can be achieved in the region where the coherent pumping
frequency is higher than the atomic one (ωa < ωp).

The optimal conditions for PB are derived from the limit
g(2)(0) → 0. This means that the real and imaginary parts of
Eq. (9) should be equal to zero. Thus, we obtain a set of two
equations with variables λ and �a. Solving this system, under
the weak-excitation condition |ε| � κ , yields four solutions
for the couples (λ,�a) as

λ1,2 = ±i

√
2(β + 2γ 2κ + 2γ κ2 + κ3) + 8g2(γ + κ )√
κ (γ + κ )(γ κ + 4g2)[κ (2γ + κ ) + 4g2]

× [−β + κ (2γ + κ )2 + 12g2(γ + κ )]ε2,

�a,1,2 = ∓
√

−β − κ (2γ 2 + 2γ κ + κ2) − 4g2(γ + κ )

2
√

2
;

(20)

λ3,4 = ±i

√
2(−β + 2γ 2κ + 2γ κ2 + κ3) + 8g2(γ + κ )√

κ (γ + κ )(γ κ + 4g2)[κ (2γ + κ ) + 4g2]

× [−β + κ (2γ + κ )2 + 12g2(γ + κ )]ε2,

�a,3,4 = ∓
√

β − κ (2γ 2 + 2γ κ + κ2) − 4g2(γ + κ )

2
√

2
, (21)

where β = [κ4(2γ + κ )2 + 16g4(γ + κ )(γ + 5κ ) + 8g2κ2

(γ + κ )(2γ + κ )]1/2.
From Eq. (9), optimal λ could be real or complex depend-

ing on the phase of the pump laser, ε = ε′eiϕ and ε̄ = ε′e−iϕ .
For an appropriate choice of phase angle, λ3,4, for example,
are real solutions. These solutions are plotted as a function
of the coupling strength in Fig. 4 with the frequency de-
tunings �a,3,4. Obviously, the total resonance conditions are
included and observed in these figures. The most important
ascertainment is that for weak or intermediate couplings, a
quasiresonant excitation and a relatively strong second-order
nonlinearity are needed to achieve optimal PB. However, in
the strong-coupling regime, a very weak nonlinearity is suf-
ficient, but for large detunings, to obtain optimal PB. The
two parameters vary oppositely and are compensated by each
other. This optimal condition behavior explains the differ-
ences between the weak and strong couplings observed in
Fig. 3, especially for the increasing detuning.

Here we consider resonance between the two-level system
and the driving field (�a = 0). For weak coupling [Fig. 5(a)],
the squeezed light highly increases the blockade of photons
where the peaks of g(2)(0) are also redshifted. A stronger
pumping λ reduces the antibunching (dashed line). In addi-
tion, the antibunching appears in another range of �c/κ away

FIG. 4. Optimal PB conditions for (a) squeezed light amplitude
λ3,4 and (b) detunings �a,3,4 plotted as a function of the coupling
strength g/κ for γ = κ/2 and ε/κ = 0.01.

from resonance (dotted line). Unfortunately, in the strong-
coupling regime, the interaction with the nonlinear crystal is
always favorable to higher bunched states of light [Fig. 5(b)].

In this case, optimal PB conditions for λ and �c read

λ1,2 = ± ε2{4
√

γ (γ κ + 8g2)[4g2 − γ (γ + κ )]}
[γ (γ + 2κ ) + 4g2]

√
(γ + κ )(γ κ + 4g2)

,

�c,1,2 = ∓
√

(γ + κ )(γ κ + 4g2)[4g2 − γ (γ + κ )]

2
√

γ (γ κ + 8g2)
.

For strong coupling, λ1,2 can be approximated simply to
λ1,2 	 ±2

√
2γ ε2/(g

√
γ + κ ). For weak coupling, they are

given by λ1,2 	 ±4iε2/(γ + 2κ ). Both solutions also could
be complex via adjusting the phase. Plots of these conditions
show behavior similar to the previous case when �a = 0
(figures are not shown here).

For a more generalized situation, we examine the case of
equal detunings (�a = �c = �). A very strong antibunching
is obtained in the weak-coupling regime at � = 10κ, 20κ

[Fig. 6(a)] and especially in the strong-coupling regime for
larger detunings � = 100κ, 200κ [Fig. 6(b)]. In the latter
regime, the antibunching effect increases considerably: The
value of g(2)(0) changes from 10−1 to a value close to 10−5,
which corresponds to an almost perfect photon blockade. An
extension to off-resonant interactions �a �= �c is given in the
Appendix.

Full analytical solutions for optimal PB conditions of this
situation are too long to be presented here. However, it is
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�

�

�

�

FIG. 5. Second-order correlation function g(2)(0) plotted as a
function of the normalized detuning �c/κ (�a = 0) for γ = κ/2,
ε/κ = 0.01, and three values of λ in (a) the weak-coupling regime
g/κ = 0.45 and (b) the strong-coupling regime g/κ = 10.

�

�

FIG. 6. Second-order correlation function g(2)(0) plotted versus
the normalized detuning �/κ for γ = κ/2, ε/κ = 0.01, and several
values of λ in (a) the weak-coupling regime g/κ = 0.45 and (b) the
strong-coupling regime g/κ = 10.

possible to obtain simple approximated relations for strong
coupling as

λ1,2 = ±ε2[(21γ + 17κ ) − 3ξ ]
√

(7γ + 3κ ) + ξ

8g
√

2κ (γ + κ )
,

�1,2 = ∓
√

(7γ + 3κ ) + ξ

2
√

2κ
g; (22)

λ3,4 = ±ε2[(21γ + 17κ ) + 3ξ ]
√

(7γ + 3κ ) + ξ

8g
√

2κ (γ + κ )
,

�3,4 = ∓
√

(7γ + 3κ ) − ξ

2
√

2κ
g, (23)

where ξ = (49γ 2 + 58γ κ + 25κ2)1/2, and weak coupling as

λ1,2 = ±i
(5γ + 3κ ) − 3(γ − κ )

(γ + κ )(γ + 3κ )
ε2,

�1,2 = ∓
√

κ (−5γ 2 + 2γ κ + κ2) + η

4
√

2κ
; (24)

λ3,4 = ±i
(5γ + 3κ ) + 3(γ − κ )

(γ + κ )(γ + 3κ )
ε2,

�3,4 = ∓
√

κ (−5γ 2 + 2γ κ + κ2) − η

4
√

2κ
, (25)

where η = (γ − κ )(3γ + κ ). These conditions behave simi-
larly to those discussed above.

When there is no external squeezed source applied to
the system, we have two different transition pathways that
correspond to the transition from |g, 1〉 to |g, 2〉: the direct ex-
citation |g, 1〉 → |g, 2〉 and the coupling-mediated transition
|g, 1〉 → |e, 0〉 → |e, 1〉 → |g, 2〉. The insertion of the optical
parametric oscillator medium results in the creation of a third
pathway transition directly from the ground state |g, 0〉 to
|g, 2〉 ensured by the parameter λ, as shown in Fig. 1(b). Con-
sequently, the improvement of PB outlined above is attributed
to this additional transition, making destructive quantum inter-
ference stronger. On the other hand, the squeezed interaction
may lead also to a constructive quantum interference which
explains the high bunching.

III. TWO-QUBIT CAVITY SYSTEM

A. Theoretical model and dynamics

In this section we consider two identical two-level systems
trapped in a cavity. We assume that the coupling strengths
between atoms and light are the same. The total Hamiltonian
is written as

H2 = �ca†a +
2∑

j=1

[�aσ
†
j σ j + g(σ ja

† + σ
†
j a)]

+ (εa† + ε̄a) +
(

λ

2
a†2 + λ̄

2
a2

)
, (26)

where j designates the jth two-level system. Then the master
equation governing the system dynamics can be expressed as

ρ̇(t ) =i[ρ, H2] + κLa[ρ] +
2∑

j=1

γL( j)
σ [ρ], (27)
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FIG. 7. Transition pathways in the two-atom cavity system in the
presence of squeezed light. The antisymmetric Dicke states |−, 0〉
and |−, 1〉 are dark states, decoupled from the other states of the
system.

where L( j)
σ [ρ] denotes the dissipation term of the jth two-level

system. The whole system can be derived using the collec-
tive states {|gg〉, |±〉, |ee〉} as the basis. In this representation,
the states |±〉 = (|eg〉 ± |ge〉)/

√
2 are the symmetric and an-

tisymmetric Dicke states, respectively. Then the system wave
function can written as

|ψ〉 ≈
2∑

n=0

Agg,n|gg, n〉 +
1∑

n=0

A±,n|±, n〉 + Aee,0|ee, 0〉. (28)

Transition pathways are shown in Fig. 7. The evolution equa-
tions of the wave-function coefficients can then be deduced
as

iȦgg,1 =
√

2gA+,0 + �′
cAgg,1 + ε +

√
2ε̄Agg,2, (29)

iȦgg,2 =2gA+,1 + 2�′
cAgg,2 +

√
2εAgg,1 +

√
2

2
λ, (30)

iȦ+,0 =�′
aA+,0 +

√
2gAgg,1 + ε̄A+,1, (31)

iȦ+,1 = (�′
a + �′

c)A+,1 + 2gAgg,2 +
√

2gAee,0 + εA+,0,

(32)

iȦee,0 =2�′
aAee,0 +

√
2gA+,1, (33)

with �′
a and �′

c defined earlier in Sec. II. By solving the
previous set under the steady-state approximation, we obtain
for the amplitudes

Agg,1C = 2ε̄�′
a[λ�′

a(�′
a + �′

c) + 2ε2�′
c + g2λ]

− 2ε�′
a

[
λε̄2 + 2�′2

a �′
c + 2�′

a

(
�′2

c − 2g2
) − 2g2�′

c

]
,

(34)

A+,0C = 2
√

2gε̄[g2λ − �′
a(λ�′

a + 2λ�′
c − 2ε2)]

+ 4
√

2gε
[
�′2

a �′
c + �′

a

(
�′2

c − 2g2
) − g2�c

]
, (35)

Aee,0C = 2g2[−λ|ε|2 + �′
a(2ε2 − λ�′

c) + 2ε2�′
c + 2g2λ],

(36)

A+,1C = 2
√

2g�′
a

× [λ|ε|2 + �′
a(λ�′

c − 2ε2) − 2(ε2�′
c + g2λ)],

(37)

Agg,2C =
√

2g2{�′
a[λ(2�′

a + 3�′
c) + 2ε2] − 2g2λ}

−
√

2�′
a(2ε2 − λ�′

c)[|ε|2 − �′
a(�′

a + �′
c)], (38)

FIG. 8. Plots of the second-order correlation function g(2)(0)
at total resonance (�a = �c = 0) as a function of the normalized
squeezed light strength λ/κ for the two systems considered for
the parameters ε/κ = 0.01 and γ = κ/2 in (a) the weak-coupling
regime case (g = 0.5κ) and (b) the strong-coupling regime (g =
10κ).

where

C = 4�′2
a

[
(�′

a + �′
c)

(
�′2

c − |ε|2) − 4g2�′
c

] + 8g4�′
c

+ 4�′
a

[ − �′2
c (|ε|2 + 3g2) + |ε|2(|ε|2 − 3g2) + 4g4

]
.

(39)

B. Quantum-interference-based photon blockade induced
by squeezed light for the two-qubit cavity

At total resonance where coherent drive, cavity, and atomic
frequencies are equal, the correlation function is written as
(for simplicity, here ε is considered real)

g(2)(0) 	 2|Agg,2|2
|Agg,1|4

	 (γ κ + 8g2)2{16γ 2ε4[γ (γ + κ ) − 4g2]2 + Z}
16γ 4ε4[γ κ (γ + κ ) + 4g2(2γ + κ )]2

,

(40)

where Z = λ2(γ κ + 8g2)2[γ (γ + κ ) + 4g2]2. From Eq. (40)
we can see that the two-atom cavity satisfies the same op-
timum condition as the single-atom case, particularly the
condition λ = 0. This is clearly observed in Fig. 8(a), which
represents g(2)(0) versus λ/κ for weak coupling. It is shown
that maximal antibunching appears as a single peak when
no squeezed light is injected. Otherwise, squeezed light de-
creases the antibunching effect. For this resonant interaction,
there are three different pathways for two-photon excita-
tion. The first transition is |gg, 1〉 → |gg, 2〉, the second one
is |gg, 1〉 → |+, 0〉 → (|+, 1〉 ↔ |ee, 0〉) → |gg, 2〉, and the
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FIG. 9. Second-order correlation function g(2)(0) plotted versus
of the normalized strength of squeezed light λ/κ for the two systems
(�c = 0 and �a = −0.5κ) for the parameters ε/κ = 0.01 and γ =
κ/2 in (a) the weak-coupling regime (g = 0.5κ) and (b) the strong-
coupling regime (g = 10κ).

third is represented by the direct transition generated by the
squeezed light |gg, 0〉 → |gg, 2〉, as shown by the schematic
representation of Fig. 7. This last pathway transition enhances
constructive quantum interference leading to antiblockade. An
interesting observation is that the two-atom system is able
to produce stronger antibunching than the single-atom case.
Hence, the photon-blockade phenomenon is improved. This
improvement is due to the enhanced destructive interference
effect which results from the additional coupling provided by
the two atoms. For strong coupling [Fig. 8(b)], light exhibits
a very high bunching, even much higher than the single-atom
cavity.

Now we consider resonance between the cavity and the
driving field (�c = 0) [Fig. 9(a)]. The PB is clearly observed
for weak coupling. Again, we notice here that the antibunch-
ing effect is stronger for the two-atom system. The increase
of the light-atom coupling suppresses the antibunching effect
with higher values of g(2)(0) in favor of the two-atom system
[Fig. 9(b)].

The equal-time second-order correlation function when
the coherent driving field is resonant with the atomic sys-
tem (�a = 0) is illustrated by Fig. 10. For weak coupling
[Fig. 10(a)] the value of g(2)(0) is of the order of 10−4 for the
two-atom system, for very weak second-order nonlinearities.
For the same system parameters, g(2)(0) of the single-atom
system is close to 10−1. Here also the collective coupling en-
hances the destructive interference, yielding the improvement
of the PB effect. However, in the strong-coupling regime, we
observe only a highly bunched state resulting from a construc-
tive interference mechanism [Fig. 10(b)].

FIG. 10. Plots of the second-order correlation function g(2)(0)
against the normalized strength of squeezed light λ/κ for the two
systems (�a = 0 and �c = −0.5κ) for parameters ε/κ = 0.01 and
γ = κ/2 in (a) the weak-coupling case (g = 0.5κ) and (b) the strong-
coupling case (g = 10κ).

Optimal PB conditions, derived from Eq. (38) by setting
Agg,2 = 0, can be written as

λ1,2 = ± 4γ ε2

γ (γ + 2κ ) + 12g2

×
√

(γ κ + 16g2)[4g2 − γ (γ + κ )]√
(γ κ + 8g2)[γ (γ + κ ) + 4g2]

,

�c,1,2 = ∓
√

(γ κ + 8g2){16g4 − [γ (γ + κ )]2}
2γ

√
γ κ + 16g2

and can be approximated for weak coupling to λ1,2 	
±4iε2/(γ + 2κ ), which is the same relation as for the single
two-level system. For strong coupling, it can take the form
λ1,2 	 ±√

2γ ε2/3g2. Due to the additional coupling gener-
ated by the second two-level atom, this last condition varies
in 1/g2. This explains the rapid attenuation of the curve in
Fig. 11(a) (dotted line). The detunings �c,1,2 vary now in
g2, whereas it showed a linear evolution for the single atom
[Fig. 11(b)].

In conclusion, to achieve optimal PB in the two two-level
systems we need smaller second-order nonlinearities than the
single-atom cavity (this is clearly observed in Fig. 10 as well
as in Fig. 9 when �c = 0). This seems an important feature
given that it may offer a supplementary solution essentially for
some kinds of materials unable to produce strong squeezing.
In contrast, these weak nonlinearities should be compensated
by strong detunings �c. In other words, for the two-atom sys-
tem, the cavity should be excited far away from the resonance.
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FIG. 11. Optimal PB conditions for (a) squeezed light amplitude
λ1,2 and (b) detunings �c,1,2 plotted as a function of the coupling
strength g/κ for the two systems, with γ = κ/2 and ε/κ = 0.01.

We assume now that �a = �c = �. In Fig. 12(a), which
represents g(2)(0) as a function of the normalized amplitude of
squeezed light λ/κ in the weak-coupling regime, we clearly
observe that the single- and two-atom systems behave simi-
larly. The identical curves indicate the same amount of anti-
bunching, which corresponds to a negative second-order non-
linear susceptibility. For increasing coupling g and contrary
to the previous situations of strong coupling, we can achieve
a high antibunching [Fig. 12(b)]. Interestingly, this phe-
nomenon is enhanced for the two-atom system once again.

To better see the improvement of PB outlined above due
to the additional coupling resulting from the |+, 1〉 ↔ |ee, 0〉
transition in the two-atom system, we consider the equal de-
tuning case of Fig. 12 as an example. The rate of the |+, 1〉 ↔
|ee, 0〉 transition is equal to

√
2g. For strong coupling (g =

10κ), this rate becomes important and the transition effect
begins to be visible in Fig. 12(b). The further increase of the
coupling strength g = 10.3κ induces a higher antibunching.
At the same moment, we notice no change of the optimal
effect for the single-atom cavity [Fig. 12(c)].

IV. CONCLUSION

We have studied the PB effect in a cavity containing a
two-level system and then two two-level atomic systems inter-
acting with squeezed light through second-order nonlinearity.
In the single-atom case, we found that at total resonance
squeezed photons decrease the antibunching. However, for an
off-resonant interaction, the effect can be strongly enhanced in
the weak-coupling and strong-coupling regimes. The highest
magnitude of the antibunching effect is noticed for equal

FIG. 12. Second-order correlation function g(2)(0) plotted versus
normalized amplitude of squeezed light λ/κ for the two systems
(�a = �c = � = −10κ) for the parameters ε/κ = 0.01 and γ =
κ/2 in (a) the weak-coupling regime (g = 0.5κ), (b) the strong-
coupling regime (g = 10κ), and (c) the strong-coupling regime (g =
10.3κ).

detunings and for strong coupling at relatively-high-frequency
detunings. In the two-atom cavity system, the PB is greatly
improved compared to the single-atom case. This improve-
ment results from the additional coupling appearing in the
system due to the two atoms coupled to light.

APPENDIX: OFF-RESONANT INTERACTIONS
FOR THE SINGLE-ATOM CAVITY

Here we extend the study of Sec. II to off-resonant inter-
actions (�a �= �c). We consider the weak-coupling regime
at a fixed coupling strength g = 0.45κ . When there is no
squeezed source interacting with the cavity [Fig. 13(a)], the
density plot of the second-order correlation function shows
two symmetrical branches of bunched light with respect to the
origin (0, 0) and a branch around total resonance correspond-
ing to strong antibunching. We notice that this nonclassical
light is generated for the condition �a�c � 0. The depen-
dence of g(2)(0) on the two-level system detuning �a is better
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FIG. 13. (a)–(c) Density plots of the second-order correlation function g(2)(0) versus the normalized detunings �a/κ and �c/κ for γ =
κ/2, ε/κ = 0.01, and various values of squeezed light strength λ for weak coupling given by g/κ = 0.45: (a) λ = 0, (b) λ = 10−4κ , and
(c) λ = 5 × 10−4κ . (d), (e), and (f) Cross sections of (a), (b), and (c), respectively, along �a.

illustrated as cross sections of g(2)(0) for various cavity de-
tunings �c in Fig. 13(d). It can be seen that the strongest
PB is achieved for slightly-off-resonant excitation, around
(�a,�c) = (−0.1κ, 0.3κ ). When squeezed light acts on the
cavity (λ = 10−4κ), we observe two distinct branches: the
first for high antibunching and the second corresponding to

increasing bunching compared to the previous case [g(2)(0) =
5]. The PB effect may reach a magnitude lower than 10−4 for
(�a,�c) = (−0.22κ, 0.3κ ) [Fig. 13(e)]. Any further increase
of squeezing pumping no longer improves the nonclassical
effect. It simply generates highly bunched light at any given
detunings [Figs. 13(c) and 13(f)].
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