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Reshaping the Jaynes-Cummings ladder with Majorana bound states
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We study the optical properties of a hybrid device composed by a quantum dot (QD) resonantly coupled to
a photonic mode of an optical microcavity and a Majorana nanowire: a topological superconducting segment
hosting Majorana bound states (MBSs) at the opposite ends. In the regime of strong light-matter coupling, it
is demonstrated that the leakage of the Majorana mode into the QD opens new optical transitions between
polaritonic states formed due to hybridization of material excitation with cavity photons, which leads to the
reshaping of the Jaynes-Cummings ladder and can lead to the formation of a robust single peak at cavity
eigenfrequency in the emission spectrum. Moreover, weak satellite peaks in the low- and high-frequency regions
are revealed for the distinct cases of highly isolated MBSs, overlapped MBSs, and MBSs not well localized at
the nanowire ends.
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I. INTRODUCTION

Almost a century ago, Majorana discovered the represen-
tation of the Dirac equation having real wavefunctions as
its solutions [1]. They describe exotic particles which are
equivalent to their own antiparticles, known as Majorana
fermions. In the last years, the Majorana proposal attracted
the continuous attention of the researchers outside the high-
energy physics community, once it was shown that Majorana
quasiparticles can emerge in condensed matter systems [2–6].
These Majorana-like excitations arise in topologically pro-
tected phases of matter [4] and possess exotic non-Abelian
statistics [7]. Besides the interest from the fundamental view-
point, the remarkable features of the Majorana quasiparticles
make them attractive potential candidates for performing
decoherence-free quantum computing operations [8,9].

Among several platforms where Majorana quasiparticles
can emerge [2,5], one-dimensional hybrid semiconducting
nanowires with strong Rashba spin-orbit interaction placed
in contact with a superconductor [10–13] have been con-
sidered one of the best options. Under application of an
external magnetic field, these so-called Majorana nanowires
undergo the topological phase transition, characterized by the
emergence of a p-wave superconducting gap supporting zero-
energy Majorana bound states (MBSs) at the opposite ends of
the proximitized nanowire [10].

One of the signatures of the formation of topologically
protected MBSs at the ends of a Majorana nanowire is the
emergence of a quantized zero-bias conductance peak (ZBCP)
in tunneling conductance through a nanowire at very low tem-
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peratures [14–20], which is robust to variations of the system
parameters, such as gate voltages and magnetic fields. In the
corresponding geometry, a quantum dot (QD) side-coupled to
a Majorana nanowire has been employed as a tunneling spec-
troscopic tool to probe MBSs and also measure the so-called
degree of Majorana nonlocality [19,21–27].

While tunneling spectroscopic properties of hybrid QD-
Majorana nanowires have been extensively studied over the
last years, their optical properties did not attract any substan-
tial attention, although some works in this field have started to
appear [28–39]. On the other hand, individual QDs are widely
applied in optical quantum information processing, where
they can be used as a solid-state source of single photons [40],
entangled photon pairs on demand [41–43], and other types of
nonclassical light [44–46], as well as quantum filters [47–49]
and other building blocks of quantum integrated photonic
circuits [50–52].

In this context, a system consisting of a QD embedded
inside a photonic cavity is of particular interest. If the cav-
ity has a high quality factor and the excitonic transition in
the dot is brought in resonance with the photonic eigenfre-
quency, the system enables a dramatic enhancement of the
light-matter interaction. In this situation, the regime of strong
light-matter coupling is achieved [53–55], and light and mat-
ter quantum states become hybridized. The energy spectrum
is dramatically reshaped, and the so-called Jaynes-Cummings
ladder emerges [56–58]. Its formation changes the emission
spectrum, which for a symmetric QD evolves from the Rabi
doublet to a Mollow triplet [59] with increase of the pump
intensity, both for resonant and nonresonant pumping schemes
[60–62]. Incorporation of the spatial inversion asymmetry
into the quantum system further changes the emission pat-
tern and leads to the opening of optical transitions at the
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FIG. 1. (a) The sketch of the proposed device: a quantum dot
(QD) embedded in an optical microcavity and coupled to a Majorana
nanowire hosting Majorana bound states (MBSs) at its opposite ends
(light green circles). λL and λR represent the couplings between the
QD excited level and the left (γL) and right MBSs (γR), respec-
tively, while εM stands for the overlap amplitude between the MBSs.
(b) Optical transitions for a QD placed inside an optical microcavity.
The dot interacts resonantly with a single-mode photonic field of
the pumped cavity with frequency ωc = ωeg = ωe − ωg brought in
resonance with the energy of the optical transition, where ωe and ωg

stand for the energies of the excited and ground states of the QD,
respectively.

Rabi frequency which were forbidden in the symmetric case
[63,64]. As well, transition from the case of small dots, where
material excitations are fermionlike, to large quantum dots,
when excitons behave more as bosons, is also associated with
restructuring of the emission spectrum, which starts to reveal
a complex multiplet structure [65,66].

In the present work, we explore the effects of the cou-
pling between a Majorana nanowire and a QD embedded in
a microcavity (Fig. 1) in the regime of strong light-matter
coupling, with the excitonic transition in the dot brought
in resonance with the cavity eigenfrequency. It is demon-
strated that the leakage of the MBS into the QD opens new
optical transitions between the polaritonic states of the QD-
microcavity system, which were originally forbidden in the
absence of the Majorana nanowire. More specifically, the
opening of these transitions is allowed due to the reshaping
of the primary Jaynes-Cummings ladder due to the QD-
Majorana nanowire finite coupling. The spatial position of the
MBSs with respect to the nanowire ends, as well as the over-
lap between each other, directly affect the way in which the
ladder rungs are reshaped. The emission spectrum is strongly
modified due to the coupling between the QD and Majorana
nanowire, showing a prominent single peak at the cavity
eigenfrequency.

The paper is organized as follows. In Sec. II A, the model
Hamiltonian is introduced. In Sec. II B, the theory describing
the optical transitions and emission spectrum is presented. In
Sec. III, we show the numerical results for the new optical
transitions and corresponding emission spectrum for the cases
of highly isolated and overlapped MBSs. The main results are
summarized in Sec. IV.

II. MODEL AND METHODS

A. The Hamiltonian

We consider the system schematically shown in Fig. 1(a).
A two-level QD, with the ground state |g〉 and the excited state
|e〉, is embedded inside a single-mode cavity with frequency
ωc. In the absence of interaction, the ground state of the QD
corresponds to the case with one electron in the lowest level
and no electrons in the excited level of the QD, i.e, |g〉 ≡
|1, 0〉, while the excited state is the opposite: |e〉 ≡ |0, 1〉.
The QD interacts resonantly with the cavity photonic field
tuned at the frequency ωc = ωeg = ωe − ωg, where ωe and ωg

are the energies of the excited and ground states of the dot,
respectively [see Fig. 1(b)]. The QD excited level is coupled to
both MBSs at opposite ends of a superconducting nanowire in
the topological phase. The full Hamiltonian which describes
the system reads

Ĥ = ĤJC + ĤM, (1)

where

ĤJC = ωca†a + ωed†
e de + ωgd†

g dg

+�R(d†
g dea† + d†

e dga) (2)

is the well-known Jaynes-Cummings (JC) model, describing
optical transitions in the dot within the rotating wave approxi-
mation (RWA) [56,57] (h̄ = 1). The bosonic operator a† (a)
creates (annihilates) the cavity photons and d†

j (d j) creates
(annihilates) an electron in the QD j level, where j = e, g.
The last term on the right-hand side of Eq. (2) describes
the coupling between the cavity photons and an electron in
the QD, with the coupling strength �R (Rabi frequency). It
depends on the dipole matrix element of the optical transition
and the cavity geometry.

The Hamiltonian which describes the topological super-
conducting nanowire (Majorana nanowire) side-coupled to the
excited QD state reads [21,23,26,37,67]

ĤM = ıεMγLγR + λL(de − d†
e )γL

+ λR(de + d†
e )γR, (3)

where the operators γL and γR represent the MBSs at the left
and right ends of the Majorana nanowire, respectively, with
γa = γ †

a [4], obeying the anticommutation relation {γa, γb} =
2δa,b (a, b = L, R). The overlap strength between the MBSs
is given by εM , and λL and λR are the couplings between
the electron at the QD excited level and left and right MBSs,
respectively.

The effective Hamiltonian of Eq. (3) has been widely used
in previous works [21–23,37,67], and allows us to explore the
following situations.

(i) Highly isolated MBSs: This case corresponds to
disorder-free and longer nanowires [68,69], where the topo-
logically protected MBSs are well localized at the opposite
ends of the nanowire (λR = 0) and do not overlap with each
other (εM = 0) [70].

(ii) MBSs localized at the nanowire ends, but with over-
lap between them: As in the former case, the wavefunctions
which describe the left and right MBSs are centered at the
corresponding nanowire ends (λR = 0). However, due to a
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shorter nanowire length these wavefunctions strongly overlap
with each other (εM �= 0) [17,70].

(iii) Right MBS shifted from its nanowire end: Distinct
from previous situations, now the wavefunction of the right
MBS is not centered at its corresponding nanowire end, lead-
ing to a coupling with the QD (λR �= 0, λR � εM) [22,23].
This case qualitatively emulates MBSs with partial spatial
separation between them, which can appear due to inhomo-
geneous potentials in the nanowire [24,71]. Moreover, the
finite value of λR is associated with the degree of Majorana
nonlocality [23,37], also known as the topological quality
factor [25,26].

It is worth emphasizing that the changing of the QD-
MBS couplings λL and λR, as well as the MBS-MBS overlap
εM , mimics realistic physical situations, as described above.
Moreover, such quantities depend on external tunable pa-
rameters, such as the Majorana nanowire chemical potential
and the magnetic field strength applied perpendicularly to the
nanowire [23,70,72], for instance.

It is convenient to write ĤM [Eq. (3)] in terms of
canonical fermion operators cM , which obey usual anticom-
mutation relations for fermions, {cM, c†

M} = 1 and {cM, cM} =
{c†

M, c†
M} = 0. According to this representation, the Majorana

operators are rewritten as [21,67,73] γL = (c†
M + cM )/

√
2 and

γR = ı(c†
M − cM )/

√
2, and thus ĤM becomes

ĤM = εMnM + �−(dec†
M + cMd†

e )

+�+(decM + c†
Md†

e ), (4)

with nM = c†
McM being the number operator associated to the

fermionic operator given by the combination of the Majorana
operators γL,R and �± = (λL ± λR)/

√
2. Although cM stands

for a canonical operator, it has a nonlocal character, once it
comes from the combination of two MBSs which are spatially
far apart from each other.

It should be noted that, distinct from the case of the JC
Hamiltonian [57,64], [Ĥ, N̂] �= 0, i.e., the system Hamilto-
nian of Eq. (1) does not commute with the excitation number
operator

N̂ = a†a + d†
e de + c†

McM , (5)

due to the presence of the term �+(decM + c†
Md†

e ) in ĤM

[Eq. (3)], indicating that the number of electron-photon ex-
citations in the system is not conserved. This is a consequence
of the superconducting nature of the Majorana nanowire,
which does not conserve the number of excitations.

B. Optical transitions and emission spectrum

The interaction term of the JC Hamiltonian [last one
on the right-hand side of Eq. (2)] corresponds to the pro-
cess of transferring the electron from the ground state |g〉
to the excited state |e〉 or vice versa by absorbing or
emitting one photon from or to the cavity, i.e, |g, n〉 ↔
|e, n − 1〉, with |g(e), n〉 = |g(e), n〉 ⊗ |n〉. These processes
result in the formation of hybridized states, describing the
QD dressed by the cavity photons, known as upper (U)
and lower (L) polaritons. If the cavity is tuned exactly
in resonance with ground-to-excited state transitions, their
wavefunctions are |U, n〉 = (|g, n〉 + |e, n − 1〉)/

√
2, |L, n〉 =

(|g, n〉 − |e, n − 1〉)/
√

2. In the regime of strong light-matter
coupling, the allowed optical transitions between the upper
and lower polaritons due to either emission or absorption of a
cavity photon gives rise to the so-called JC ladder [57,74].

The optical transitions between the eigenstates of Eq. (1)
corresponding to different occupation numbers n of cavity
photons can be computed by considering an exchange be-
tween the cavity photons of Fig. 1 and the “outside world”
(the reservoir of modes outside the system). This exchange is
possible due to both an external incoherent pump applied to
the QD-microcavity system and due to photons being able to
escape the microcavity due to its finite lifetime. The coupling
between the closed system and the reservoir can be accounted
for by the following Hamiltonian:

Ĥex = 	ab† + H.c., (6)

where b† (b) creates (annihilates) a photon in the external
reservoir and 	 is the constant system-reservoir coupling
strength [64]. The transition probabilities corresponding to the
emission of a photon from the cavity to an empty external
reservoir are proportional to

Ii f ∼ |〈ψ f ,n, 1out |Ĥex|ψi,n, 0out 〉|2, (7)

where |ψi,n〉 and |ψ f ,n〉 are initial and final eigenstates asso-
ciated to the system Hamiltonian [Eq. (1)], and 0out and 1out

represent the zero- and one-photon states of the reservoir. By
substituting Eq. (6) into Eq. (7), we obtain

Ii f ∼ |〈ψ f ,n|a|ψi,n〉|2. (8)

Although the analysis of the optical transitions through Eq. (8)
is useful for discussing the opening of new transitions induced
in the QD-microcavity system due to its coupling with the
Majorana nanowire, it does not allow us to obtain the shape of
the corresponding emission spectrum for a given incoherent
pump and cavity photons lifetime.

The standard way of computing both the external incoher-
ent pumping P and the decay of photons, γph, from the closed
system to the reservoir is obtaining the full density matrix ρ

of the system through the master equation [74]

∂tρ = − ı

h̄
[Ĥ, ρ] + Lρ, (9)

where L is the Lindblad superoperator. By solving numer-
ically Eq. (9), the density matrix in the steady-state (SS)
regime, ρSS, can be found, which provides the information
about the occupations of different quantum states of the sys-
tem for a given P and γph.

The emission spectrum in the SS regime can be numeri-
cally obtained by a modified Fermi golden rule [64] and reads

S(ω) ∼ (ω)
∑

i, f

ρSS
ii Ii f

γ 2
ph

(εi − ε f − ω)2 + γ 2
ph

, (10)

wherein (ω) ∝ ω3 is the reservoir density of states, Ii f

[Eq. (8)] are the transition probabilities between the initial and
final states of the system Hamiltonian associated with photon
emission to the reservoir, with the corresponding eigenener-
gies εi, f , and ρSS

ii are probabilities to find the system in the
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FIG. 2. Left: Evolution of the first 20 energy levels of the system as a function of the parameters of QD-MBS couplings λL and λR, as well
as the overlap between the MBSs εM . Right: Optical transitions between the system eigenenergies for each corresponding case. The blue lines
represent the initial and final states of each corresponding transition, which is represented by a red arrow. The specific parameters adopted in
each of the right panels are indicated by the light green rectangle in the corresponding left ones. [(a), (b)] The case of well-isolated MBSs
localized at the nanowire ends, with λL = 0.3 in (b). [(c), (d)] The situation of overlapped MBSs well localized at the nanowire ends, for
λL = 0.3 and εM = 0.4 in (d). [(e), (f)] The case wherein the MBSs barely overlap, but are not well localized at the ends of the nanowire, with
λL = 0.6 and λR = 0.3 in (f).

eigenstates of Ĥ which should be obtained by solving master
equation (9).

III. RESULTS AND DISCUSSION

Below, we numerically compute the optical transition prob-
abilities [Eq. (8)] for a QD embedded in the microcavity and
coupled to the Majorana nanowire (λL �= 0), considering the
cases (i), (ii), and (iii) previously discussed in Sec. II A. We
set the following parameters for the QD embedded in the
microcavity: energy of QD excited state, ωe = 0.1, energy of
QD ground state, ωg = −0.9, Rabi frequency �R = 0.1, and
eigenfrequency of the cavity photons, ωc = ωe − ωg = 1.0,
all in energy arbitrary units. The numerical calculations were
carried out using the QUTIP 4.6.2 package (PYTHON 3.8.10)
[75,76]. Moreover, in all the results we use the distance be-
tween ground and excited states as an energy unit.

Figure 2 shows the allowed optical transitions, as well as
the evolution of the first 20 eigenenergies of the Hamilto-
nian [Eq. (1)] for several values related to the QD-Majorana
nanowire parameters λL, λR, and εM . The allowed tran-
sitions between the eigenenergies are represented by red
arrows. Figure 2(a) specifically exhibits the behavior of the
energy spectrum of the composite system (cavity photons–
QD–Majorana nanowire) as the QD–left MBS coupling λL is
increased, for the case wherein the MBSs are well localized at
the nanowire ends, totally apart from each other [case (i)]. It
can be easily seen that a finite λL leads to the appearance of
new energy levels which are not present in the original JC lad-
der. Moreover, the energy levels which belong to the JC model
are renormalized, leading to a shift in the original rungs of the
JC ladder. This reshape of energy levels allows new optical
transitions if compared to the allowed transitions in the JC
model [57,64,74], as shown in Fig. 2(b) for λL = 0.3. It can be
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FIG. 3. Normalized emission spectrum [Eq. (10)] for the situation of isolated MBSs localized at opposite nanowire ends (λR = εM = 0),
with ωc = ωeg = 1.0, �R = 0.1, P = 0.015, and γph = 0.02. [(a), (b)] Intensity of emission spectrum as a function of both emitted photon
frequency ω and QD–left MBS coupling λL , in linear and logarithmic scales, respectively. [(c), (e), (g)] Linecuts indicated by geometric shape
markers in (a); [(d), (f), (h)] the same linecuts, but in logarithmic scale.

noticed that there are transitions between two nearest energy
levels and between two more distant levels. These transitions
will be responsible for an emitted radiation in regions far from
ωc, as we see later on.

Figure 2(c) depicts the evolution of the system energy
spectrum as the overlap strength εM between the MBSs bound
at opposite ends of the Majorana nanowire is enhanced [case
(ii)] (we keep λL = 0.3). It can be noticed that the effect of a
finite εM is breaking the degeneracy of certain eigenenergies,
which consequently leads to additional rungs in the ladder, if
compared to Fig. 2(b). The reshape of the energy spectrum due
to the overlap between left and right MBSs also allows new
optical transitions between nearest and more distant rungs, as
shown in Fig. 2(d), where εM = 0.4 [light green rectangle in
Fig. 2(c)].

The case in which the right MBSs are not well local-
ized at the right nanowire end [case (iii)], leading to a finite
coupling with the QD (λR �= 0), is illustrated in Fig. 2(e).
The corresponding energy spectrum evolution for increasing
values of λR, with λL = 0.6 and εM = 10−3, reveals that the
finite QD–right MBS hybridization also leads to a degeneracy
breaking if compared to the case of isolated MBSs [Fig. 2(a)].
As in the previous case of overlapped MBSs [Fig. 2(d)], the
emergence is observed in Fig. 2(f) of new rungs in the ladder,
also allowing new optical transitions. But distinct from the
overlapped case, the coupling between the QD and the right
MBS opens transitions between extremely close ladder rungs,
which will be responsible for near-zero-frequency peaks in
the emission spectrum profile for any value of λR, as we see
further on.

In the following figures, the emission spectrum [Eq. (10)]
behavior is analyzed in detail for the same set of QD-
microcavity parameters adopted in Fig. 2, considering the
incoherent pumping intensity P = 0.015 and the cavity pho-
ton decay rate γph = 0.02. For simplicity, we take the
excitonic decay rate γQD to be zero. Notice that the regime
of strong light-matter coupling �R > |γph − γQD|/4 [74] is
fulfilled.

The emission spectrum for the situation of isolated and
well-localized MBSs at the nanowire ends [case (i)] is shown
in Fig. 3. Figure 3(a) depicts the normalized emission spec-
trum as a function of both the QD–left MBS coupling λL and
emitted photon frequency ω. For λL = 0 (red star marker),
the emission spectrum shows a quadruplet pattern around the
cavity photon eigenfrequency ω = ωc, as shown in Fig. 3(c).
This quadruplet structure is expected for the JC model in the
strong-coupling regime in the presence of a small incoherent
pump [64,77]. This multiplet structure, also known as a JC
fork, is also shown on a logarithmic scale, as depicted in
Figs. 3(b) and 3(d).

Figure 3(a) also reveals that as λL is increased, the mul-
tiplet structure coalesces into a single peak at ω = ωc, with
a smaller peak structure at ω ≈ 0.9. This is better seen in
Fig. 3(e), which corresponds to λL = 0.4 [blue rectangle
marker in Fig. 3(a)]. For bigger values of QD-left MBS cou-
pling, the single-peak structure at ω = ωc undergoes a tiny
splitting, but still preserves its single-peak shape, as shown in
Fig. 3(g).

In addition to the evolution of the JC fork to a single peak
shown in Fig. 3(a), the leakage of the isolated left MBS also
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FIG. 4. Top: Normalized emission spectrum [Eq. (10)] as a function of the frequency of the emitted photon ω, for the situation in which
the MBSs are well localized at the nanowire ends and do not overlap with each other (λR = εM = 0.0), with ωc = ωeg = 1.0, �R = 0.1,
P = 0.015, and γph = 0.02, considering distinct values of the QD–left MBS coupling λL . Bottom: Allowed optical transitions of the system
which correspond to the peaks in the top panels, labeled by colored numbers.

drives the formation of weaker peaks in the emission spectrum
far from the cavity eigenfrequency region, which are visible
only on a logarithmic scale, as depicted in Fig. 3(b) and the
corresponding linecuts shown in Figs. 3(f)–3(h). Fig. 3(h),
for instance, shows a finite emitted radiation at very low
frequency ω close to the Rabi frequency, as well as some
peaks near the double frequency ω = 2ωc. The low-frequency
signal can be amplified by placing the QD microcavity inside
a terahertz-frequency cavity, which will resonantly enhance
the density of states ρ(ω) and increase the emission up to a
factor of 10 [78,79].

In Fig. 4, we investigate in detail the evolution of the nor-
malized emission spectrum as a function of the emitted photon
frequency ω, visible on a linear scale, and the correspond-
ing optical transitions responsible for the emission spectrum
peaks as λL is turned on, considering the same parameters
adopted in Fig. 3. Figure 4(a) shows the emission spectrum
when the QD-microcavity system is decoupled from the Ma-
jorana nanowire (λL = 0), wherein the well-known JC fork
structure appears, with a well-resolved double peak around
the cavity eigenfrequency ωc = 1.0. This multiplet profile
comes from the JC ladder shown in Fig. 4(b) [64,77], in which
each optical transition between the system eigenenergies cor-
responds to a peak in Fig. 4(a), as labeled by the red numbers.

Figure 4(c) depicts the emission spectrum for λL = 0.1.
We can notice that the JC fork lineshape from Fig. 4(a) is
deformed and the well-resolved peaks around ω = ωc be-
come merged into each other. This changing in the emission
spectrum profile comes from the emergence of new system
eigenenergies or, equivalently, new rungs in the JC ladder, due
to the leaking of the isolated left MBS into the QD, which
opens new optical transitions, as depicted in Fig 4(d). The

peaks in the emission spectrum around ωc in Fig. 4(c), for
instance, come from transitions (2) and (3) shown in Fig. 4(d).

For λL = 0.2, Fig. 4(e) shows that the JC fork struc-
ture is completely absent, with the appearance of a single
peak at ω = ωc = 1.0. This single peak indicates that optical
transitions with the frequency on resonance with the cavity
eigenfrequency are now allowed in the system. Particularly,
these transitions are labeled by the green number (3) in
Fig. 4(f) and the other optical transitions yield the satellite
peaks in Fig. 4(e). In addition, comparison between Figs. 4(d)
and 4(f) suggests that the increasing of λL moves each closest
pair of ladder rungs (system eigenenergies) apart from each
other (see also Fig. 2), thus opening the possibility of new
optical transitions in distinct frequencies and, hence, changing
the corresponding emission spectrum profile as a function
of ω.

In Fig. 5, we particularly analyze the competition of λL

and �R energy scales in the mutation of the doublet structure,
formed very near to ω = ωc in the emission spectrum for λL =
0 [Fig. 4(a)], to a single peak localized at ω = ωc when λL �= 0
[Figs. 3(e) and 4(e)], considering the same other parameters
adopted in Fig. 3.

Figures 5(a) and 5(b) exhibit the emission spectrum as a
function of the emitted photon frequency for distinct values of
λL, in linear and logarithmic scales, respectively, considering
the same value of Rabi frequency �R = 0.1 adopted through-
out this work. Both panels indicate that the well-resolved
doublet structure around ω = ωc for λL = 0 (red line) trans-
forms into an almost single peak, with two peaks merging with
each other for λL � �R (green and magenta lines). For the
biggest value of λL adopted in Figs. 5(a) and 5(b) (blue line),
a well-defined single-peak structure is seen at ω = ωc due to
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FIG. 5. Top: Normalized emission spectrum [Eq. (10)] as a func-
tion of the emitted photon frequency ω, for the situation where the
MBSs are well localized at the nanowire ends and do not overlap
with each other (λR = εM = 0.0), considering two values of Rabi
frequency �R, with ωc = ωeg = 1.0, P = 0.015, γph = 0.02, and dis-
tinct values of QD–left MBS coupling λL . Middle: Same emission
spectra of upper panels, but in logarithmic scale. In both top and
middle panels, the plots are slightly shifted in the y axis for a better
visualization. Bottom: Evolution of the normalized transition prob-
abilities [Eq. (8)] at frequency ω ≈ ωc as a function of the QD–left
MBS coupling λL .

new allowed optical transitions in the system, as discussed
earlier. The positions of the satellite peaks also change for
distinct values of λL, as better visualized in Fig. 5(b).

To investigate if the well-resolved doublet structure around
ω = ωc is indeed modified for λL � �R, in Figs. 5(c) and
5(d) we consider �R = 0.25. For this value of Rabi fre-
quency, a single peak already arises at ωc for λL < �R (dashed
green line) and remains for bigger values of λL adopted. The
emission spectrum in the logarithmic scale shows a shift in
the positions of satellite peaks with λL, as also observed in
Fig. 5(b).

The findings shown in Figs. 5(a)–5(d) can be explained
by Fig. 5(e), which depicts the behavior of the normalized
transition probabilities of the system [Eq. (8)] at the cavity
eigenfrequency ω ≈ ωc as a function of λL, for both the val-
ues of �R adopted in the upper panels. For �R = 0.1, there
is no optical transition allowed at the cavity eigenfrequency
when λL � �R. This is the reason why we see merging peaks
very near ω = ωc instead of a well-defined single peak in
Figs. 5(a) and 5(b) when λL = 0.05 and λL = 0.1, although
the characteristic well-resolved doublet structure around the
cavity eigenfrequency for λL = 0 is suppressed. When the
Rabi frequency is increased for �R = 0.25, Fig. 5(e) reveals
that λL � �R is enough for allowing optical transitions with
frequency on resonance with the cavity eigenfrequency, thus
yielding well-defined peaks at ω = ωc in the emission spec-

trum. Nevertheless, Fig. 5 shows that a small leaking strength
of the left MBS into the QD λL � �R spoils the well-resolved
emission spectrum doublet structure around ω = ωc, leading
to either merging peaks or a well-defined single peak at the
cavity eigenfrequency, being this last one due to finite transi-
tion probabilities at this frequency.

Figure 6(a) exhibits the normalized emission spectrum
as a function of the emitted photon frequency ω and the
overlap strength εM between the MBSs at opposite ends of
the nanowire [case (ii)], for λL = 0.3. It is noticed that the
increasing of εM does not change the single-peak structure
at ωc = 1.0 present in the previous case of isolated MBSs
(Fig. 3). The persistent central peak in the presence of a finite
MBS-MBS overlap is also shown in the linecuts of Figs. 6(c),
6(e), and 6(g), respectively.

The difference between the current case of finite εM and
the previous case of isolated MBSs is unveiled in the loga-
rithmic scale, as exhibited in Fig. 6(b) and the corresponding
linecuts in Figs. 6(d), 6(f), and 6(h). The emergence is seen of
several peaks near each other with very low amplitude, even
on a logarithmic scale. These low-amplitude multipeaks arise
owing to the opening of new optical transitions caused by
the degeneracy breaking of the energy levels due to εM �= 0
[Figs. 2(c) and 2(d)].

The situation [case (iii)] wherein the right MBSs are not
well localized at the nanowire end (λR � εM) is illustrated in
Fig. 7, for λL = 0.6. Figure 7(a) reveals the emission spectrum
behavior as a function of both the emitted photon frequency
ω and QD–right MBS coupling λR. As in the previous case of
overlapped MBSs localized at the nanowire ends (Fig. 6), the
single-peak structure at the cavity eigenfrequency ωc = 1.0
still remains, even for higher values of λR. The single peak in
the emission spectrum also can be seen in the corresponding
linecuts shown in Figs. 7(c), 7(e), and 7(g).

The difference between the current case and the previous
situations of highly isolated MBSs [Fig. 3(b)] and overlapped
MBSs [Fig. 6(b)] is observed in the emitted radiation of low
and high frequency, and thus it is only visible on a logarithmic
scale, as shown in Fig. 7(b). The most striking difference is
the presence of a peak at very low frequency (ω ≈ 0.1), as
well as a peak near the region of double frequency, precisely
at ω ≈ 1.75, which remain for all values of λR adopted, as
depicted in the corresponding linecuts shown in Figs. 7(d),
7(f), and 7(h), respectively. The emitted radiation at very low
frequency comes from allowed optical transitions between the
nearest energy levels of the corresponding ladder shown in
Fig. 2(f), for instance. Oppositely, the emitted radiation in the
region around ω ≈ 1.75 appears due to transitions between
the farthest rungs of the corresponding ladder.

IV. CONCLUSIONS

We have analyzed the optical response of a quantum dot
(QD) embedded in a microcavity and coupled to a Majorana
nanowire hosting Majorana bound states (MBSs) at its op-
posite ends. In the regime of strong light-matter coupling,
we demonstrated that the coupling between the Majorana
nanowire and the QD opens new optical transitions be-
tween the polaritonic states of the QD-microcavity system,
thus reshaping the well-known JC ladder. Moreover, we also
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FIG. 6. Normalized emission spectrum [Eq. (10)] for the situation of MBSs localized at opposite nanowire ends (λR = 0.0), but with a
finite overlap εM between each other, with λL = 0.3, ωc = ωeg = 1.0, �R = 0.1, P = 0.015, and γph = 0.02. [(a), (b)] Intensity of emission
spectrum as a function of both emitted photon frequency ω and left-right MBS overlap εM , in linear and logarithmic scales, respectively. [(c),
(e), (g)] Linecuts indicated by geometric shape markers in (a); [(d), (f), (h)] the same linecuts, but in logarithmic scale.

FIG. 7. Normalized emission spectrum [Eq. (10)] for the situation where the MBSs are not well localized at the nanowire ends (λR �= 0.0)
and have a negligible overlap between each other (εM  λR, λL), with λL = 0.6, ωc = ωeg = 1.0, �R = 0.1, P = 0.015, and γph = 0.02. [(a),
(b)] Intensity of emission spectrum as a function of both emitted photon frequency ω and QD–right MBS coupling λR, in linear and logarithmic
scales, respectively. [(c), (e), (g)] Linecuts indicated by geometric shape markers in (a); [(d), (f), (h)] the same linecuts, but in logarithmic scale.
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demonstrated that the reshaping of the ladder rungs and cor-
responding optical transitions depend on the spatial location
of the MBSs with respect to the nanowire ends, as well as the
overlap between them. Consequently, the opening of new tran-
sitions strongly affects the cavity emission spectrum, which
shows an asymmetric pattern having a prominent single-peak
structure centered at the cavity eigenfrequency for all the
cases explored, namely, highly isolated MBSs localized at
the nanowire ends, overlapped MBSs, and the right MBS dis-
placed from its corresponding nanowire end. The distinction
between the three situations is observed only in the emitted
radiation of low and high frequency.

ACKNOWLEDGMENTS

This work was supported by the Icelandic Research Fund
(project “Hybrid polaritonics”). V.K.K. acknowledges the
support from the Georg H. Endress foundation. A.C.S. ac-
knowledges support from Brazilian National Council for
Scientific and Technological Development (CNPq), Grants
No. 305668/2018-8 and No. 308695/2021-6. I.A.S. acknowl-
edges support from the Ministry of Science and Higher
Education of Russian Federation, state assignment No.
2019-1246 and Priority 2030 Federal Academic Leadership
Program.

[1] E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Il
Nuovo Cimento 14, 171 (1937).

[2] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[3] S. R. Elliott and M. Franz, Colloquium, Rev. Mod. Phys. 87,
137 (2015).

[4] R. Aguado, Majorana quasiparticles in condensed matter, Riv.
Nuovo Cimento 40, 523 (2017).

[5] B. Jäck, Y. Xie, and A. Yazdani, Detecting and distinguishing
Majorana zero modes with the scanning tunneling microscope,
Nat. Rev. Phys. 3, 541 (2021).

[6] K. Laubscher and J. Klinovaja, Majorana bound states in semi-
conducting nanostructures, J. Appl. Phys. 130, 081101 (2021).

[7] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[8] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[9] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Milestones Toward Majorana-Based
Quantum Computing, Phys. Rev. X 6, 031016 (2016).

[10] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[11] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[12] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[13] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes
in superconductor–semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018).

[14] F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T.
O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C. Gardner,
C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra, K.
Flensberg, and C. M. Marcus, Scaling of Majorana Zero-Bias
Conductance Peaks, Phys. Rev. Lett. 119, 136803 (2017).

[15] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[16] E. Prada, P. San-Jose, and R. Aguado, Transport spectroscopy
of ns nanowire junctions with majorana fermions, Phys. Rev. B
86, 180503(R) (2012).

[17] S. M. Albrecht, A. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. Marcus, Ex-
ponential protection of zero modes in Majorana islands, Nature
(London) 531, 206 (2016).

[18] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht,
M. H. Madsen, E. Johnson, J. Nygård, C. M. Marcus, and
T. S. Jespersen, Epitaxy of semiconductor–superconductor
nanowires, Nat. Mater. 14, 400 (2015).

[19] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Ma-
jorana bound state in a coupled quantum-dot hybrid-nanowire
system, Science 354, 1557 (2016).

[20] H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven,
Quantum transport in Majorana nanowire devices: Next steps,
Nat. Commun. 10, 5128 (2019).

[21] E. Vernek, P. H. Penteado, A. C. Seridonio, and J. C. Egues,
Subtle leakage of a Majorana mode into a quantum dot, Phys.
Rev. B 89, 165314 (2014).
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Vučković, Controlling cavity reflectivity with a single quantum
dot, Nature (London) 450, 857 (2007).

[56] E. Jaynes and F. Cummings, Comparison of quantum and semi-
classical radiation theories with application to the beam maser,
Proc. IEEE 51, 89 (1963).

[57] B. W. Shore and P. L. Knight, The Jaynes-Cummings Model, J.
Mod. Opt. 40, 1195 (1993).

[58] F. P. Laussy, E. del Valle, M. Schrapp, A. Laucht, and
J. J. Finley, Climbing the Jaynes-Cummings ladder by photon
counting, J. Nanophotonics 6, 061803 (2012).

[59] B. R. Mollow, Power spectrum of light scattered by two-level
systems, Phys. Rev. 188, 1969 (1969).

[60] E. del Valle and F. P. Laussy, Regimes of strong light-matter
coupling under incoherent excitation, Phys. Rev. A 84, 043816
(2011).

[61] K. A. Fischer, K. Müller, A. Rundquist, T. Sarmiento, A. Y.
Piggott, Y. Kelaita, C. Dory, K. G. Lagoudakis, and J. Vučković,
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