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Generation of arbitrary vector Bessel beams on higher-order Poincaré
spheres with an all-dielectric metasurface
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Vector Bessel beams may have a spatially varying polarization state combined with a Bessel-type transversal
intensity profile. Such beams can carry both spin angular momentum and orbital angular momentum (OAM) and
be characterized by points on higher-order Poincaré (HOP) spheres. We report a method to produce vector Bessel
beams on any point of a HOP sphere of any topological charge by utilizing only a single all-dielectric planar
metasurface. Specifically, by a proper choice of the input polarization and distance from the metasurface, the
entire HOP sphere surface can be covered. The proposed method is simple and efficient and applies to any nth-
order HOP sphere. Furthermore, it yields an extremely high OAM mode purity. Our paper demonstrates a robust
approach for generating arbitrary high-quality vector Bessel beams and will likely inspire future applications
ranging from optical manipulation to laser beam engineering.
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I. INTRODUCTION

Following the discovery of Bessel beams in 1987 [1],
propagation invariant optical fields of many different types—
scalar, electromagnetic, partially coherent, nonstationary
(pulsed)—have been extensively studied [2]. Such beam fields
have found numerous uses in manufacturing [3] and various
areas of optics [4–8], owing to their finite beam width, non-
diffractive propagation, high intensity extended focus over
considerable distances, and general regenerative properties
behind obstacles. Vector Bessel beams may also possess
transversally varying polarization states [9,10]. Typically, vec-
tor Bessel beams are characterized by two common forms
of polarization states, namely, the radial and azimuthal po-
larizations. Polarization transformation between these states
in vector Bessel beams normally requires a complex combi-
nation of wave plates [11]. Besides, Bessel-beam generation
itself also necessitates conventional lens pairs, diffractive op-
tical elements, or spatial light modulators [12–15], which are
bulky and unavoidably affect beam quality and often reduce
energy efficiency.

The polarization states of vector Bessel beams are conve-
niently described by points on a higher-order Poincaré (HOP)
sphere [16]. In contrast to the classical Poincaré sphere, the
nth-order HOP sphere is a generalized Bloch sphere with
two orthogonal circular polarization states represented at the
poles. The HOP sphere poles correspond to vortex beams of
uniform polarization distribution, a phase pattern of the form
einϕ (ϕ is the azimuthal angle), and a nonuniform intensity
profile. The other points on HOP spheres correspond to dif-
ferent elliptical and linear polarizations. Importantly, beams
characterized by the HOP sphere can carry both spin angular
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momentum (SAM) and orbital angular momentum (OAM),
respectively [16,17]. There are many approaches to generate
HOP sphere beams, including the use of q plates and wave
plates in a laser cavity [18], optical fibers [19], liquid crystals
[20], and other methods [21–23].

Metasurfaces, which consist of subwavelength scale res-
onator arrays, are typically flat and smaller in size than
conventional optical elements. Therefore, metasurfaces offer
an appealing miniaturized approach for generating various
scalar or vectorial beams. For instance, rectangular nanopil-
lars have been utilized to produce hybrid-order Poincaré
beams (but not higher-order Poincaré Bessel beams) [24].
Demonstrations cover both microwave and optical regimes
[25–33]. However, these setups only realize beams which
correspond to certain specific points on a HOP sphere. Thus,
although numerous designs have been investigated, a general
approach is put forward here to efficiently create any vector
Bessel beam on an arbitrary HOP sphere by means of a single
metasurface.

In this paper, we demonstrate theoretically a construction
of an all-dielectric metasurface for arbitrary vector Bessel-
beam generation. By controlling a wave-plate rotation angle
for incident polarization state selection and choosing an ap-
propriate distance behind the metasurface, we can create
Bessel beams that cover the entire surface of a HOP sphere.
Moreover, the simulations indicate that the metasurface de-
sign strategy is suitable for arbitrary nth-order HOP spheres,
whereas maintaining a high beam quality. For example, in
the case of n = +2, we find mode purity in excess of 99.8%
for circularly polarized vortex Bessel beams carrying OAM
in analogy with the Laguerre-Gaussian modes [17]. Our
paper provides a generic approach for metasurface-based po-
larization control and may have great potential in various
applications, such as optical trapping and spanning, laser man-
ufacturing, and communication.
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II. PRINCIPLE OF GENERATING VECTOR BESSEL
BEAMS ON HOP SPHERES

In cylindrical coordinates (r, ϕ, z) the scalar form of a
Bessel beam can be written as [2]

E (r, ϕ, z) = E0eikzzeinϕJn(krr), (1)

where E0 is a complex amplitude, kz and kr are the axial and
radial wave vectors, related to the vacuum wave number as
k0 = √

k2
z + k2

r , and Jn(·) is the Bessel function of the first
kind and order n. The integer n is the spiral phase order
(topological charge) with respect to the main axis z of propa-
gation. The factor einϕ , thus, indicates that the Bessel beam of
Eq. (1) is capable of carrying orbital angular momentum and
represents an optical vortex. All higher-order Bessel beams
(n �= 0) have a phase singularity and lead to zero-field inten-
sity along the propagation axis. Scalar Bessel beams can be
created by refracting an incident plane wave conically at equal
angles by an axicon [34,35] (the so-called axicon line image
[36]), whereas a phase profile may be added through a phase
plate. The whole approach may also be realized by means of
a single computer hologram [37] or a programmable spatial
light modulator (SLM).

A radially polarized vector Bessel beam can be decom-
posed in the basis of right (RCP) and left (LCP) circularly
polarized Bessel beams,

|R〉 = 1√
2

[
1
−i

]
, |L〉 = 1√

2

[
1
i

]
, (2)

with opposite spiral phase profiles (±ϕ) [10]. Such a light
field can be written as

E(r, ϕ, z) = 1√
2

E0eikzzJ1(krr){eiϕ|R〉 + e−iϕ |L〉}

= E0eikzzJ1(krr)

[
cos ϕ

sin ϕ

]
. (3)

Since the RCP and LCP states may be viewed as the de-
composed components of horizontally or x-polarized light
(|R〉 + |L〉)/

√
2, changing the incident linear polarization di-

rection will result in a different polarization distribution for
the emerging light (see Sec. III). For instance, y-polarized
light i(|R〉 − |L〉)/

√
2 leads to an azimuthally polarized vector

Bessel beam. With spiral phase profiles ±nϕ (n is an integer),
we find a superposition for the nth-order radially polarized
vector Bessel beam as

E(r, ϕ, z) = 1√
2

E0eikzzJn(krr){einϕ|R〉 + e−inϕ |L〉}

= E0eikzzJn(krr)

[
cos(nϕ)
sin(nϕ)

]
. (4)

Fields of this kind can be generated by employing SLMs
or metasurfaces [14,25] which combine an axicon and spiral
phase plates of opposite orders.

On introducing different axial phases for the RCP and LCP
components, whereas retaining the Bessel-like nature, Eq. (4)

is modified into the form

E(r, ϕ, z) = 1√
2

E0eikzzJn(krr)

× {ei�einϕ |R〉 + e−i�e−inϕ |L〉}

= E0eikzzJn(krr)

[
cos(nϕ + �)
sin(nϕ + �)

]
, (5)

with 2� representing the phase difference between the two
Bessel beams. Provided � is arranged to depend on the axial
propagation distance, i.e., � = �(z), then instead of varying
the incident light’s polarization direction, the phase difference
�(z) leads to polarization state changes of the output vector
Bessel beam upon propagation. When n = 1 and the phase
difference �(z) varies from 0 to π/2, the polarization state of
the Bessel beam changes from radial to azimuthal. Conceptu-
ally, whereas �(z) ranges between 0 and π , the output Bessel
beam’s polarization state will cover the entire HOP sphere
equator as shown in Fig. 1(a).

Importantly, realizing generalized vector Bessel-beam
modes on arbitrary HOP spheres requires control over two
degrees of freedom, which in spherical coordinates are the
azimuthal and the polar angle. Our solution allows us to ad-
just the phase difference (2�) between two opposite circular
polarizations necessary for controlling the azimuthal angle,
whereas variation of the input polarization state enables us
to control the polar angle (2α) as is illustrated in Fig. 1(a).
The concept for generating arbitrary vector Bessel beams on
HOP spheres is shown in Fig. 1(b). A QWP of rotation angle
β modifies the initial horizontal polarization into the required
polarization state (if β = ±45◦, the output states are LCP and
RCP). On traversing the QWP the beam illuminates the meta-
surface, which is designed to add different axicon phases to
the RCP and LCP components of an incident Gaussian beam
and, thus, will convert both into Bessel-type beams whereas
maintaining the 2� phase difference.

By properly controlling the rotation angle β and choosing
the propagation distance z, this method allows us to cover
the entire HOP sphere. Under these circumstances, the output
beam field can finally be represented as

E(r, ϕ, z) = 1√
2

E0eikzzJn(krr)

× {cos αei�einϕ |R〉 + sin αe−i�e−inϕ |L〉}. (6)

The relationship between the polar angle α and the QWP
rotation angle β is α = π/4 + β. The emergent beam may,
consequently, be represented as

|�out〉 = cos αei� |Rn〉 + sin αe−i� |Ln〉 , (7)

where |Rn〉 = einϕ |R〉 and |Ln〉 = e−inϕ |L〉 are the RCP and
LCP vector Bessel beams corresponding to the north and
south poles, respectively, on the HOP sphere of topological
charge n.

The connection between axial phase difference 2� and the
propagation distance z can be understood from the properties
of axicons [35]. The geometric length Zmax of the axicon line
focus is given by [37]

Zmax = Rmaxd

λ
, (8)
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FIG. 1. (a) Polarization vector states and beam intensities at special positions on the equator of the n = 1 HOP sphere. Examples of the lobe
patterns are shown for transmitted intensity passing through a linear polarizer oriented horizontally (white arrow). The positions are labeled
by their (2α, 2�) parameter values. (b) Conceptual illustration of an arbitrary vector Bessel-beam mode generation on a HOP sphere. The
desired polarization state is achieved by transmitting a horizontally polarized Gaussian beam through a quarter wave plate (QWP) rotated at
angle β. A metasurface then converts the incident beam into a Bessel type, whereas simultaneously introducing a 2� phase difference between
the RCP and the LCP components. This results in varied vector states along propagation. This two-step process can cover the entire arbitrary
HOP sphere.

where Rmax is the radius of the metasurface, d is the radial
period of the axicon, and λ is the operating wavelength. In our
case, we apply two axicons of different radial periods, so Zmax

is restricted by the smaller d . For specificity, we take d1 < d2

with d1 and d2 being associated with the RCP and LCP beams,
respectively. The length Zmax from Eq. (6) thereby attains the
value of Rmaxd1/λ. With the different radial periods d1 and d2,
the phase distributions for the axicons read as

φ1(r) = 2πr

d1
, φ2(r) = 2πr

d2
, (9)

and the phase difference �φ(r) at a specific radius r is

2 �φ(r) = φ1(r) − φ2(r) = 2πr(d2 − d1)

d1d2
. (10)

The axicon phase φ1(r) is the sum of φ2(r) and 2 �φ(r). So,
the effect of φ1(r) can be viewed as refracting incident planar
light into an angle θ , whereas contributing a radially depen-
dent phase difference �φ(r). The refraction angle θ refers to
λ = d2 sin θ ≈ d2r/z [11] as is illustrated in Fig. 2. Using the
relation r = zλ/d2, the quantity �φ(r) can be converted into
the z-dependent phase �(z) as

�(z) = πzλ(d2 − d1)

d1d2
2

. (11)

The phase difference �(z) between the RCP and the LCP
beams along the propagation axis leads to the alternating
polarization state. The distance zP = z2 − z1 between two
identical polarization states requires that �(z2) − �(z1) = π

whereby zP is given by

zP = d1d2
2

λ(d2 − d1)
. (12)

Obviously, zP must be smaller than Zmax, and the beam mode
evolution on a HOP sphere can be only found in the overlap-
ping Bessel-beam region.

III. METASURFACE DESIGN

For vector Bessel-beam generation on HOP spheres, we
first consider an incident linearly polarized beam propagating
along the z axis. The beam can be decomposed into the cir-
cular basis of |L〉 and |R〉 [24]. In our case, we require the

FIG. 2. Incident light is refracted by the two axicons into approx-
imately the same angle θ . The phase-shift �φ(r) leads to changes in
the polarization state along the z axis. The distance zP, corresponding
to a π variation in �φ(r), is the axial polarization modulation period.
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metasurface to perform the transformation,

T |L〉 = eiφ1(r) |Rn〉 , T |R〉 = eiφ2(r) |Ln〉 , (13)

where |Rn〉 = einϕ |R〉 and |Ln〉 = e−inϕ |L〉 as before, and nϕ

is an azimuthal phase. The quantities φ1(r) and φ2(r) are
the phase profiles of two axicons. The circularly polarized
input basis, thus, transforms into Bessel-type beams with axial
phase difference and azimuthal phase factors e±inϕ , where n
is an integer. The two output circularly polarized (LCP and
RCP) Bessel beams have helical phase fronts of order n,
but opposite handedness and annular intensity profiles with
a phase singularity (n �= 0).

By making direct use of Eqs. (13), we can readily find the
Jones matrix T characterizing the metasurface [33]. The result
is

T = 1

2

[
ei(nϕ+φ1 ) + ei(−nϕ+φ2 ) −iei(nϕ+φ1 ) + iei(−nϕ+φ2 )

−iei(nϕ+φ1 ) + iei(−nϕ+φ2 ) −ei(nϕ+φ1 ) − ei(−nϕ+φ2 )

]
,

(14)

where we have suppressed, for brevity, the radial variable r
of the axicon profiles φ1 and φ2. The matrix T provides the
mapping from a linearly polarized input to a desired vector
Bessel beam. It follows at once from Eq. (14) that T is unitary
and, therefore, admits a representation as T = VDV†, where
D is a diagonal matrix containing the eigenvalues of T and
V is a unitary matrix consisting of the associated eigenvectors
[33]. If we write a = nϕ + φ1 and b = −nϕ + φ2, we find that

D =
[

ei(a+b)/2 0
0 ei[(a+b)/2−π]

]
, (15)

V =
[

cos[(a − b)/2] − sin[(a − b)/2]
sin[(a − b)/2] cos[(a − b)/2]

]
. (16)

Physically, the diagonal matrix D represents phase delays
δx and δy in the x and y coordinates, whereas the matrix
V = R(−θ ) can be considered as a counterclockwise rotation
by angle θ on the xy plane whereby V† = R(θ ). Hence, the
metasurface transmission matrix T assumes the factored form

T =
[

cos θ − sin θ

sin θ cos θ

][
eiδx 0
0 eiδy

][
cos θ sin θ

− sin θ cos θ

]
,

(17)
where

δx = 1
2 (φ1 + φ2), (18)

δy = 1
2 (φ1 + φ2) − π, (19)

θ = nϕ + 1
2 (φ1 − φ2). (20)

In the Cartesian reference frame, the polar angle ϕ in
the spiral phase and the axicon phase profiles φ1 and φ2 in
Eqs. (18)–(20) are

ϕ = arctan
(y

x

)
, (21)

φ1 =
√

x2 + y2

(
2π

d1

)
, (22)

φ2 =
√

x2 + y2

(
2π

d2

)
. (23)

FIG. 3. Schematic representation of the metasurface platform for
arbitrary vector Bessel-beam beam generation. The metasurface is
composed of elliptical nanopillars of equal height H = 800 nm, but
different radii RL, RS , and rotation angles θ . The lattice constants
in x and y directions are equal Px = Py = 650 nm. The operating
wavelength λ = 1550 nm is in the telecom range.

For the two axicons, the radial phase profiles φ1(x, y) and
φ2(x, y) and their corresponding radial gradients 2π/d1 and
2π/d2 are different. With a single axicon (φ1) we obtain a
(radially polarized) vector Bessel beam as in Eq. (3), but
combining the effects of the two axicons (φ1 and φ2) we are
able to generate a spatially varying polarized vector Bessel
beam as given by Eq. (5) and characterized in Eq. (12). Such
complex polarization-related beam profiles can be realized
with metasurfaces, which consist of periodic subwavelength
nanostructures and are capable of providing controllably the
required inhomogeneous spatial phase distributions.

A schematic of the metasurface platform for vector Bessel-
beam creation is shown in Fig. 3. The metasurface is
composed of a layer of silicon nanopillars, arranged in a two-
dimensional subwavelength array. Each unit of lattice constant
P = Px = Py houses a single nanopillar with an elliptical cross
section. All nanopillars have the same height H but may
be freely designed in different sizes and orientations to the
control rotation angle θ and the two orthogonal phase delays
δx and δy. The elliptical nanopillars, enabling phase coverage
from 0 to 2π , operate, such as waveguides with different
effective refractive indices along the two ellipse radii. Due
to silicon’s high refractive index (n = 3.478 at λ = 1550 nm
[38]), the incident light is mainly confined into the nanopillars
and further affected by a radius-dependent phase delay [39].
In addition, when the ellipse radii satisfy 2R ≈ λ/n (λ is the
free-space wavelength), a strong magnetic dipole resonance
will effectively be excited and accompany a π -phase change
[40]. We find that all desired δx and δy values can be ob-
tained by properly choosing the geometrical parameters of the
nanopillars.

To evaluate nanopillar phase modulation capacity, we
employ finite difference time-domain numerical simulation
(Lumerical). We first explore different radii RL and RS of a sin-
gle nanopillar and record the phase shift. For δx we consider
x-polarized and for δy y-polarized plane-wave incidence [see
Fig. 4(a)]. The radii studied range between 50 and 300 nm,
and their corresponding phase delay combination δx, δy forms
a library to enable our size parameter selection [as shown in
Figs. 4(b) and 4(c)]. The field transmittance as a function of
RL and Rs is plotted in Figs. 4(d) and 4(e). For most radius
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FIG. 4. (a) Schematic of elliptical nanopillar field modulation.
Light in x and y polarizations experiences different changes in
transmitting the nanopillar. (b) and (c) Simulated phase delays and
(d) and (e) transmittances of a single nanopillar of varying radii RL

and RS [(b) and (d): x-polarized incidence, (c) and (e): y-polarized
incidence].

pairs, both transmittances tx and ty exhibit large values, which
is crucial for high-energy efficiency. In Table I, 13 nanopillars
that cover a 2π -phase range are chosen from the data library,
and their radii as well as transmittances T = (tx + ty)/2 are
listed. The simulated phase delays δx and δy for these se-
lected nanopillars are depicted in Fig. 5(a), confirming the
full 2π coverage. Meanwhile, a constant π -phase difference
between δx and δy is obtained as required by Eqs. (18) and
(19). In Fig. 5(b), by rotating each selected nanopillar with
θ , a phase ϕ = 2θ (so-called Pancharatnam-Berry phase) is
added to the wavefront [41]. To summarize, each unit of the
metasurface has three degrees of freedom (size, ellipticity,
and orientation of the nanopillar) that allow a complete phase
control for realizing the T matrix discussed above. We note

TABLE I. Nanopillar radii (nm) and transmittances.

Number RL RS T Number RL RS T

1 and 13 260 90 0.94 7 90 260 0.94
2 270 100 0.97 8 100 270 0.97
3 260 120 0.98 9 120 260 0.98
4 270 130 0.98 10 130 270 0.98
5 270 140 0.97 11 140 270 0.97
6 280 150 0.98 12 150 280 0.98

FIG. 5. (a) Numerically established phase delays δx and δy for se-
lected nanopillars (1–13). A constant π -phase difference is observed
between δx (circles, blue line) and δy (squares, red line). (b) Phase
modulation ϕ for selected nanopillars as a function of the rotation
angle θ .

that one might also consider using different heights or even
different materials for the nanopillars to further optimize the
performance of the proposed metasurface.

IV. RESULTS

We first consider basic HOP spheres on the order of n =
±1. For the HOP sphere with n = +1 as shown in Fig. 6(a),
the points (π/2, 0) and (π/2, π ) on the sphere are radial
and azimuthal polarization states, which can be described by
Eq. (4). For n = −1 as shown in Fig. 6(c), the polarization
states at the same points on the sphere are the so-called π -
radial and π -azimuthal polarizations [42]. The poles on both
HOP spheres correspond to vortex beams of opposite circular
polarization, whereas intermediate points between the poles
and the equator represent different elliptically or linearly po-
larized vortex beams. Each point on the HOP spheres denotes
a vortex beam of space variant polarization, represented by
Eq. (6), with the state compactly described by Eq. (7) in the
spherical coordinate system (2α, 2�).

Two metasurfaces (named Meta1 and Meta2) were de-
signed to generate different vector Bessel beams on the n =
±1 HOP spheres. To demonstrate that our method can, in-
deed, completely map out the entire HOP spheres and to
characterize the fidelity of the metasurfaces, we select five
incident beam polarization states [shown in Fig. 6(b)]. The
polarization states are controlled by the QWP rotation angle β.
The characterization of Meta1 for incident polarization states
I–V are shown in Fig. 6(d). Numerically simulated intensity
patterns and phase profiles are presented at different propa-
gation distances z. It is readily observed that the polarization
state changes with increasing z and the horizontal polarization
forms a two-lobe pattern which rotates in the counterclock-
wise direction as expected from the theory. For instance, for
case III when the distance z ranges from z0 to z0 + 0.75zP, the
intensity patterns and phase features comply with the vector
mode evolution on the HOP sphere equator. Likewise, for
the other incident polarization states, such as elliptical and
circular polarization, all output beams match the vector modes
described on the HOP sphere with n = +1.

The simulation results for Meta2, shown in Fig. 6, illustrate
that our method can yield all beam modes on the n = −1
HOP sphere as well. Now, the output beams are superposi-
tions of two opposite circular polarizations with topological
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FIG. 6. (a) and (c) HOP sphere representations for the cases of n = +1 and n = −1. (b) Selected incident polarization states and the
corresponding QWP rotation angles β. (d) and (e) Simulated output intensities (left) and phase profiles (right) after transmission through a
horizontal linear polarizer; (d) for n = +1 and (e) for n = −1. Each row from left to right shows the results obtained for the ensuing vector
Bessel beam as the propagation distance increases in steps from z0 to z0 + zP. Rows I–V correspond to the selected incident polarization states
as the QWP rotation angle is varied from β = +45◦ to −45◦. The color bar indicates the normalized intensity (0 to 1) and the normalized
phase (0–2π ).

charge n = ∓1. This can be explicitly confirmed from the
phase profiles plotted for states I–V in Fig. 6(e). All annular
intensity patterns are captured though a horizontal linear po-
larizer at different propagation distances z, indicating that the
output beams show spatially variant polarization distributions
which match the states on the n = −1 HOP sphere. No-
tably, at z0 and z0 + 0.5zP, such output beams are π -radially
and π -azimuthally polarized vector modes [42]. Comparing
with the n = +1 case, the intensity pattern rotates clockwise
with increasing z if a horizontally aligned linear polarizer is
introduced.

Besides the basic n = ±1 HOP spheres, our metasurface
design principle can further be utilized for the generation of
any arbitrary higher-order HOP sphere beams. Cases I–III in
Fig. 7(a) show the ensuing transverse intensity patterns at
z = z0 and z = z0 + 0.5zP with RCP, horizontally polarized,
and LCP beam illuminations, corresponding to β = +45◦, 0◦,
and −45◦, respectively. We also calculate the OAM mode
purity for the output beam modes at z0 + 0.5zP by employing
the modal decomposition method [43] (mode purity is defined
as In/Itotal, where In is the intensity of the mode n in question
and Itotal is the total beam intensity). As shown in Fig. 7(b),
the mode purity for cases I and III reaches 99.8% and 99.9%

FIG. 7. (a) Transverse intensity patterns of output beams passing
a horizontal linear polarizer, evaluated at two propagation distances
z0 and z0 + 0.5zP. Cases I–III correspond to β = +45◦, 0◦, and
−45◦. (b) Mode purity analysis of the output beams at z0 + 0.5zP for
β = ±45◦. (c) Normalized intensity profiles of vector Bessel beams
(n = +1, −1, and +2) along the propagation direction.
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for n = ±2. This means that we can achieve maximum mode
purity for beams carrying OAM. Figure 7(c) shows the inten-
sity profiles along the beam propagation direction for n = +1,
−1, and +2 HOP sphere beams, clearly displaying typical
Bessel beam features. The results explicitly demonstrate that
our metasurface designs can produce arbitrary HOP sphere
vector Bessel beams whereas maintaining high beam quality.

V. CONCLUSIONS

We have put forward a general method to produce vector-
Bessel beams that can cover all states on the HOP spheres
of any given order n by a single all-dielectric metasurface.
We have further demonstrated numerically the fidelity of
the technique for silicon metasurfaces at telecom wavelength
λ = 1550 nm. Although controlling the input polarization
state (via adjusting a QWP rotation angle β) together with
choosing the appropriate propagation distance z behind the
planar metasurface, the output beams can assume any po-

larization states from the entire nth-order HOP sphere. This
demonstrates a complete control over the vector nature and
OAM of the output beams. Our method can be applied to any
arbitrary order HOP spheres whereas maintaining high beam
quality (mode purity in excess of 99.8% was simulated) and
exhibiting the features characteristic of vector Bessel beams.
It is also important to emphasize that lithographic fabrication
of subwavelength dielectric nanowire patterns, including ar-
rays of high aspect ratio elliptical nanopillars in silicon, is
currently well established [44]. Based on these advantages,
our approach may offer considerable potential for various
applications in optical communication, laser processing and
manipulation, and optical metrology.
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