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General scheme of differential imaging employing weak measurement
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We propose and experimentally realize a general scheme of differential imaging employing the idea of
weak measurement. We show that the weak coupling between the system of interest and a two-level ancilla
can introduce a two-beam circuit after an arbitrary preselection of the ancilla. By choosing the postselection
orthogonal to the preselection measurement, an effective imaging platform based on differential operations is
achieved. Experimental results on both the Sagnac interferometer and ultrathin Wollaston prism demonstrate
that our imaging scheme successfully yields the boundary information of complex geometric configurations.
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I. INTRODUCTION

As a strategy to go beyond strong projective measurement,
weak measurement has attracted wide attention ever since its
first proposal for yielding unreasonably large experimental
results [1]. To get a large weak value, a postselected mea-
surement which is almost orthogonal to the preselected state
of the system is necessary. Aside from the pre- and postse-
lections operations, a weak coupling between the system of
interest and the meter is important, to make sure that the meter
is not seriously suffering from dephasing (when tracing out
the system) during the whole process. The exotic properties
of weak measurement have made it an important research
tool to tackle fundamental problems [2] and explore novel
phenomena of quantum mechanics. Among the ongoing en-
deavors of applications of weak measurement are precision
estimations [3–17], ultrasensitive sensors [18–22], and fun-
damental physics research [23–28]. However, to the best of
our knowledge a plausible imaging scheme employing weak
measurement has been missing up to now.

Boundaries are the places around which the properties of
some physical distributions (like density, permittivity, etc.)
change dramatically, and consequently are the homes of var-
ious exotic physical phenomena such as the optical spin Hall
effect [7] and the dissipationless edge transport of the topolog-
ical insulator [29,30] to name just a few. So it is important to
recognize the boundaries of arbitrarily shaped configurations.
Once the boundaries are identified, a decent image of the
configuration is obtained. Optical analog differential opera-
tion is a physical method of achieving imaging. As a basic
mathematical operation, differentiation is usually processed
directly in digital operation. However, in some applications
where real-time differential computation is required, such as
in medical and satellite applications [31,32], analog operation
offers a new opportunity to the electronic method. Tradi-
tionally, analog differential mathematical computations are

*hongzhang@scu.edu.cn
†zhangzhiyou@scu.edu.cn

realized as analog computers [33,34], but these solutions are
not used widely because of their large size and slow response.
Optics provides us the opportunity of real-time mathematical
operations, and intensive studies have been carried out to
shrink the size and speed up the response [35–45]. Especially,
Silva et al. suitably designed metamaterial blocks to perform
a variety of mathematical operations, including differential
operation [35]. Recently, others successfully applied the spin
Hall effect of light to spatial differentiation [46–49], and pro-
posed more optical differential operation models [50–52] with
the insight of geometric phase, which will greatly enrich the
technology of edge detection.

As a continuation of the endeavor of applications of weak
measurement, in this paper we report a general and robust
experimental scheme of imaging based on differential opera-
tion. To be more specific, we will try to image the boundaries
of complex geometric distributions with weak measurement
based optical analog differential operations. Our basic idea
is shown in Fig. 1; the input wave of arbitrary function
φ(r) passing through the imaging platform becomes the out-
put wave, which is proportional to the standard differential
function φ′(r), and is finally received by the detector. Pre-
selection initializes the whole system by selecting the input
of a two-level ancilla, such as polarization, and this serves as
the operating handle of the differential calculator consisting
of the weak measurement system, to which the input function
can be loaded. The weak-coupling interaction (∝ |p1〉〈p1| −
|p2〉〈p2|) introduces path-dependent evolution due to the en-
ergy splitting between these relevant paths, Pi. Finally, in order
to achieve the differential operation a proper postselection is
chosen to produce a phase difference of � between the two
paths. Because the pre- and postselections are perpendicular
to each other, the intensity of the output wave is very small.
Consequently, the input function is greatly compressed, which
reduces the detector’s load. It should be emphasized that the
frequency bandwidth here is mainly decided by the response
of the optical devices employed which can be replaced easily
in our experimental scheme if necessary; as a result, our
scheme could be employed for a much wider range of fre-
quency bands compared to schemes based on resonant effect.
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FIG. 1. Schematic diagram of weak measurement. Preselection,
weak coupling, and postselection (perpendicular to the preselection)
together make up the differential calculator; the output beam is
collected at the detector (bottom right).

II. THEORETICAL ANALYSIS

Our physical platform consists of a two-level ancilla with
observable Â, preselected as |�pre〉 = α|0〉 + β|1〉, and the
system of interest the information of which such as the ge-
ometric configuration is encoded in φ(r). The effective inter-
action Hamiltonian is given by H = gÂk, where g is the weak-
coupling strength and k is the conjugate variable of the spatial
coordinate r. Of special interest, we have Â = |0〉〈0| − |1〉〈1|
with |0〉 and |1〉 the orthogonal bases of the two-level ancilla.
The physical distribution function φ(r) is Fourier transformed
into φ̃(k) before the interaction is turned on. Due to the inter-
action between the system and the meter as represented by a
unitary operation Û = exp(−igkÂ), the whole system is

|�(k)〉 ≡ 〈k|�〉 = Û |�pre〉φ̃(k)

= (αe−igk|0〉 + βeigk|1〉)φ̃(k). (1)

By inverse Fourier transform we obtain |�(r)〉 =
[αφ(r − g)|0〉 + βφ(r + g)|1〉], which means that after
the interaction there is a split of size g between the |0〉 and |1〉
components. Then a special postselection perpendicular to
the preselection state, i.e., |�post〉 = |�⊥

pre〉 = μ|0〉 + ν|1〉, is
chosen, where |μ|2 + |ν|2 = 1 and μ	α + ν	β = 0. Finally,
the whole system can be expressed as

〈�⊥
pre|�(r)〉 = μ	α[φ(r − g) − φ(r + g)]. (2)

It is worth noting that the postselection gives a phase
difference of π between the two paths |0〉 and |1〉. In weak
measurement, the spatial distance over which the initial field
of the image displays a considerable change (like an obvious
deviation from a linear increase or decrease) is much larger
than the typical distance decided by the coupling strength g, so
the final output wave function is approximately proportional
to the first-order differentiation of the input wave function:

〈�⊥
pre|�(r)〉 � −2μ	αgφ′(r). (3)

However, if the postselection is introduced without the
coordinate in Eq. (1) being transformed from k space to r
space, the final output wave function is

〈�⊥
pre|�(k)〉 � −i2μ	αgkφ̃(k). (4)

It is clear that the output beam is proportional to the function
kφ̃(k), which is not the first-order differentiation of the input

function φ̃′(k) most of the time except for the Gaussian beam
the first derivative of which is kφ̃(k). From Eqs. (3) and (4),
it can be seen that the differential function appears only in
the same space as the small split g. This observation indicates
that the weak-coupling parameter and the input distribution
should be in the same space to achieve the desired differential
operation.

Although the theory shown is for a single photon, the same
idea applies to a macroscopic beam, which is the case in our
experiments in the next section. In the following, we will give
a brief description of the parallel framework for electromag-
netic waves at the classical limit.

Considering a plane wave, we define 0 and 1 as the two
paths of evolution. Under the paraxial approximation, the
incident and outgoing beams have the electric fields

Ei =
∫ [

ui
0Ẽ i

0(k) + ui
1Ẽ i

1(k)
]
eikrdk, (5)

Eo =
∫ [

uo
0Ẽ o

0 (k) + uo
1Ẽ o

1 (k)
]
eikrdk, (6)

where ui
0(1) and uo

0(1) correspond to the path-dependent in-
cident and outgoing beams, respectively. To calculate the
r-space spectral transfer function, we decompose the fields Ei

and Eo into plane waves. The pre- and postselected states are
described in matrix form as Vpre = (αβ) and Vpost = (μν ). Thus,
the Fourier spectrum of the outgoing beam can be obtained

as (Ẽ o
0

Ẽ o
1
) = V 	

postUVpre(Ẽ i
0

Ẽ i
1
) where U is the evolution operator in-

curred by the weak coupling, which can be evaluated through
the geometric phase of the 0 and 1 paths under the paraxial
approximation, as U = (exp(−iθg/2) 0

0 exp(iθg/2)). Here θg = 2gk
is the geometric phase during weak coupling. Therefore, the
evolution in k space can be effectively described by H (k) ≡
Ẽ o(k)/Ẽ i(k) = V 	

postUVpre. Then, the spectral transfer function
is obtained as

H (k) = μ	α(e−igk − eigk ). (7)

For g|k| 	 1, we have H (k) � −i2μ	αgk. As a result, the
outgoing field in k space is Eo(k) = −2μ	αgkEi(k). It should
be noticed that the outgoing field is gk times the input field;
in terms of light intensity, the output light is only (gk)2 times
the input light. In other words, the data of the input function
are compressed to as few as (gk)2 times. And in r space, the
outgoing field reads

Eo(r) = −2μ	αg
∂Ei(r)

∂r
, (8)

which agrees with Eq. (3). In summary, the theory shows that
the differential operation can be realized via an arbitrary two-
level weak measurement system.

III. EXPERIMENTAL OBSERVATION

In this section, we show two experimental realizations of
our weak measurement based imaging proposal: (1) a Sagnac
interferometer based differential imaging platform, in which
the Sagnac interferometer realizes the differential shear dis-
tance by a small deflection of the rotating mirror (RM), and
at the output the spatial mathematical differential operation is
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FIG. 2. Experimental setup: The light source is a He-Ne laser
(wavelength λ0 = 632.8 nm); L1 and L2, beam expanders; SLM,
spatial light modulator; L3 and L4, lenses with focal lengths 250 mm;
BS, beam splitter; M, mirror; RM, rotating mirror; CCD, Thorlabs
BC106N-VIS.

achieved; and (2) a Wollaston prism based differential imag-
ing platform, in which an ultrathin Wollaston prism performs
the differential shear distance (δ), and the mathematical dif-
ferential operation in the spatial domain is realized along with
the whole weak measurement system.

A. Sagnac interferometer based differential imaging platform

In our Sagnac interferometer based differential imaging
platform, the system consists of three cascaded sub-blocks:
(i) a Fourier transform lens (L3); (ii) Sagnac interfer-
ometer, realizing three steps of weak measurement; and
(iii) an inverse Fourier transform lens (L4) as shown in
Fig. 2.

The laser from the He-Ne laser is expanded by a beam
expander at the first step; it then obtains an image with spe-
cific spatial distribution as passing through the spatial light
modulator (SLM), denoted as |ψi〉 = ∫

drφi(r)|r〉, where r
is the spatial coordinate. In the paraxial approximation, L3
accomplishes the Fourier transform of the image into the
momentum space, i.e., |ψi〉 = ∫

dkφ̃i(k)|k〉. When the light
passes through the beam splitter (BS), it splits into two paths,
propagating along the clockwise and counterclockwise direc-
tions, respectively. Here, the path freedom of the light beam
constitutes a two-level system (| �〉 and | �〉). In other words,
the light is preselected as the state of the superposition of two
paths, i.e., |Rpre〉 = 1√

2
(| �〉 + i| �〉), where i is the phase π/2

of the light induced as the counterclockwise path reflects at
the BS. And the whole initial state is |�i〉 = |ψi〉|Rpre〉. The
rotating mirror (RM) is a mirror that can be rotated by a small
angle, denoted as β, which tilts the lights in the clockwise
and the counterclockwise paths slightly in opposite directions,
�θ = 4β, and this tilt (�θ ) leads to a small displacement of
the transverse momentum of the beam (�kx = k0�θ ). The
observable of paths and the continuous transverse tilt together
form the weak interaction, described by Û = e−ikx Âδ/2 with
δ = l�θ , where Â = | �〉〈� | − | �〉〈� | is the observable of
paths; l is the distance from the RM to the charge-coupled
device (CCD) [8], and kx is the momentum in the x direction

FIG. 3. Gaussian distributions and the differential images of
them. (a, c) Simulated and experimental Gaussian distributions, re-
spectively. (b, d) Corresponding differential images in the x direction.

for the RM rotating in the horizontal plane only. When the
beams pass through the BS again, the postselection applies,
|Rpost〉 = 1√

2
(| �〉 − i| �〉), with the final state of light given

by

|� f 〉 = 〈Rpost|Û |�i〉 = 1

2

∫
dkφ̃i(k)(e−ikxδ/2 − eikxδ/2)|k〉.

(9)

After the inverse Fourier transform by L4, the outgoing state
is

|�o〉 = −1

2
δ

∫
dr

∂φi(x)

∂r
|r〉. (10)

Finally, our CCD measures the light, which is the first deriva-
tive in the x direction of the specific spatial distribution image
φi(r). To illustrate the spatial differentiation effect, we mea-
sure the outgoing field distribution under a Gaussian beam
illumination firstly. Figures 3(c) and 3(d) show the mea-
sured intensity profiles for the incident and outgoing beams,
respectively. To quantitatively illustrate the performance of
spatial differentiation, the incident beam is numerically fitted
with a Gaussian profile, and its differential function in the
x direction is calculated numerically, as shown in Figs. 3(a)
and 3(b), respectively. The experimental outgoing fields show
a good agreement with the ideal spatial differentiation. Then,
the spatial transfer function of the Sagnac interferometer
based differential imaging platform is calculated based on
experiments. From the relation of the incident and outgoing
spatial spectra, we have the spatial transfer function, H (k) =
Eo(k)/Ei(k). The outgoing field distribution under a Gaus-
sian beam can be measured with the device shown in Fig. 2,
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FIG. 4. Measurement of the spatial spectral transfer function.
(a) Gaussian beam for ky = 0. (b) The first derivative of the Gaus-
sian beam in the x direction for ky = 0. (c) Spatial spectral transfer
function for ky = 0. (d) Spatial spectral transfer function for ky = 0
[consider a tiny random light noise (0.01%)]. Experimental results
are shown in red dots, and theoretical results are in black lines.

i.e., the outgoing spatial spectrum is at the back focal plane
of L4. Then we block arbitrarily one of the paths, and the
incident spatial spectrum is at the back focal plane of L4.
Since the CCD can only receive the intensity distribution of
light in spatial space, we calculate the electric field with the
equation of |E (r)| = √

I (r). With the help of L4, the spatial
coordinate r is related to the momentum k, r = f k/k0, where
f is the focal distance of L4, so we obtain E (k) = E (r)k0/ f .
Finally the spatial transfer function can be calculated
as

H (k) =
√

Io(k)/
√

Ii(k) =
√

Io(r)/
√

Ii(r), (11)

and the theoretical transfer function is obtained by H (k) =
E ′

G(k)/EG(k), where EG(k) is the electric field of the Gaussian
function. The results are shown in Fig. 4: it is clear from
Fig. 4(c) that the experimental transfer function matches that
of the theory well in the central region, but not in other
regions, as a result of the pervasive noise. Even though it is
tiny (<0.01%), the noise could seriously affect the experi-
mental results since the amplitude of the Gaussian beam is
small away from the central region. To roughly account for
the ubiquitous noise residing in the laser beam, such as the
randomly distributed speckles, we add a uniformly distributed
random term, i.e., H (k) = [E ′

G(k) + c × rand(k)]/[EG(k) +
c × rand(k)], where c is less than 0.01% of the amplitude of
the otherwise ideal Gaussian beam; then the theoretical and
experimental results agree well with each other in all regions,
as shown in Fig. 4(d). According to the differential imaging
theory above, the differential operation can be performed in
any direction, but here we only measure the derivative of the
incident fields in the x direction as our RM in the Sagnac
interferometer can only rotate in the horizontal plane (the x
direction). Figure 5(a) shows the incident image of a disk gen-
erated with amplitude modulation by using the SLM, where
the inside region of the circle is filled with light, while the

FIG. 5. Disk distributions and the differential images of them.
(a, c) Incident images of disk distributions generated with amplitude
and phase modulation, respectively. (b, d) Corresponding differential
images in the x direction.

outside is dark. Figure 5(b) shows the measured outgoing
intensity distribution. It clearly exhibits the outline of the
disk with spatial differentiation. In Fig. 5(b), since the dif-
ferentiation is along the x direction, the edges perpendicular
to the x direction are most visible and those of the x direc-
tion are invisible. Furthermore, the edge of the input beam
can be detected as long as it is not completely along the x
direction.

Since the differentiation operates on the electric field rather
than on the intensity, the platform can be used to detect the
edge of the incident field either in the phase or in the ampli-
tude distribution. To show such an effect, we also generate an
incident field with phase modulation, as shown in Fig. 5(c);
the disk is filled with light both inside and outside. Again,
the outgoing light clearly exhibits the edge of the disk in the
x direction as shown in Fig. 5(d). It should be noticed that
the intensity of the right side of the circle is stronger than
that of the left side, as shown in Figs. 5(b) and 5(d). The
reason is that the light is not equally divided into two beams
by the BS employed in the experiment. In order to show that
general graphs can be differentially imaged by the platform,
bell-shaped incident fields are generated. It can be seen from
Fig. 6 that the platform can differentiate the incident field well
whether it is amplitude or phase distribution. Especially for
the phase distribution with a bright mess as shown in Fig. 6(c),
the edge profile of the bell in the x direction is surprisingly
clear after the operation of the differential platform, as shown
in Fig. 6(d).

It can be seen from Figs. 5 and 6 that the output differential
images carry only the edge information of the input images,
and there is no light elsewhere; that is to say, the amount of
data obtained by the CCD is greatly compressed, and as a
consequence the detector’s load is sharply decreased, which
prevents the CCD from being oversaturated by too strong
light.
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FIG. 6. Bell distributions and the differential images of them. (a,
c) Bell distributions generated with amplitude and phase modula-
tion, respectively. (b, d) Corresponding differential images in the x
direction.

B. Wollaston prism based differential imaging platform

Our system of a Wollaston prism based differential imag-
ing platform consists of five cascaded sub-blocks: (i) a Fourier
transform lens (L3), (ii) a preselection (P1), (iii) a weak
coupling (WP), (iv) a postselection (P2), and (v) an inverse
Fourier transform lens (L4), as shown in Fig. 7.

As the laser passes through L3, the state of light is written
as |ψi〉 = ∫

dkφ̃i(k)|k〉. P1 plays the role of preselection and
preselects the light as

|�i〉 = |ψpre〉|ψi〉, (12)

where |ψpre〉 = 1√
2
(|o〉 + |e〉) is the preselected polarization

state of light, and |o〉 and |e〉 indicate ordinary and extraordi-
nary light, respectively. WP plays the role of weak coupling;
as a result of the effect of the ultrathin WP, ordinary and
extraordinary light will split slightly from each other. Sup-
posing the splitting distance is δ (about 20 μm), then the
weak interaction can be written as |�int〉 = Û |�i〉, where Û =
exp(−ikd Âδ/2) is the evolution operator; Â = |o〉〈o| − |e〉〈e|

FIG. 7. Experimental setup: The light source is a He-Ne laser
(wavelength λ0 = 632.8 nm). L1 and L2, beam expanders; SLM,
spatial light modulator; P1 and P2, polarizers; L3 and L4, lenses
with focal lengths 250 mm; WP, an ultrathin Wollaston prism; CCD,
Thorlabs BC106N-VIS.

FIG. 8. Panda distributions and the differential images of them.
(a, d) Panda distributions generated with amplitude and phase modu-
lation, respectively. (b, e) Corresponding differential images in the y
direction. (c, f) Corresponding differential images in the x direction.

is the observable operator and kd is the momentum in the
d direction (d direction means an arbitrary direction; in our
experiments here, d is y or x). P2 is a postselected polar-
izer perpendicular to P1; the state of P2 is described as
|ψpost〉 = 1√

2
(|o〉 − |e〉). And then the light is inverse Fourier

transformed into the coordinate space by L4, so the state of
outgoing light measured by the CCD is

|�o〉 = −1

2
δ

∫
dr

∂φi(r)

∂rd
|r〉. (13)

From Eq. (13), the outgoing light is the first derivative in the
d direction of the specific spatial distribution image φi(r).

Here we choose two directions to illustrate that weak mea-
surement based differential schemes can operate on the field
in any direction. The relevant results are shown in Fig. 8; both
the edge information of phase and amplitude distributions
of the incident fields (Panda) can be obtained. The incident
amplitude spatial spectrum is measured by removing WP and
rotating the polarizer P2 to the same direction as P1, as shown
in Fig. 8(a). Figures 8(b) and 8(c) show the measured outgoing
intensity distributions being differentiated in y and x direc-
tions, respectively. They clearly exhibit the outlines of Panda
with spatial differentiation. The phase distributions are shown
in Figs. 8(d)–8(f). More details are shown in the Appendix.

IV. CONCLUSION

In conclusion, we have proposed a general scheme of imag-
ing employing the idea of weak measurement and listed two
differential imaging platforms. Also, we have experimentally
demonstrated the generality of spatial differentiation of the
weak measurement differential system. Because the pre- and
postselections are perpendicular to each other, the signal-to-
noise ratio can be improved effectively while the background
noise is reduced. Moreover, with no analog-to-digital conver-
sion or other systematic delays, here mathematical operations
have already got processed as the electromagnetic signals
propagate through the weak measurement system. As a result,
the data of the input image are greatly compressed before
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being received by the CCD. Such designs prevent the detector
from saturating itself with too strong light and thus missing
the signal.
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APPENDIX: THE SPATIAL TRANSFER FUNCTION
OF THE WOLLASTON PRISM BASED DIFFERENTIAL

IMAGING PLATFORM AND ITS OPERATION
ON CIRCLE DISTRIBUTIONS

The spatial transfer function of the Wollaston prism based
differential imaging platform is calculated similarly to that
of the Sagnac interferometer based differential imaging plat-
form. First, we measure the field distribution under a Gaussian
beam illumination at the back focal plane of L4. Figures 9(c)
and 9(d) show the measured intensity profiles for the incident
and outgoing beams, respectively. Then, the incident beam
is numerically fitted with a Gaussian profile, as shown in
Figs. 9(a) and 9(b). The experimental outgoing fields show
a good agreement with the ideal spatial differentiation. Fi-
nally, the spatial transfer function is calculated as H (k) =√

Io(k)/
√

Ii(k). As shown in Fig. 10, the results of experiment
match the theory well in the central region, but not in other re-
gions, and the reason is the same as the Sagnac interferometer
based differential imaging platform.

The disk input function is also operated here to more
clearly show the characteristics of the differential image in
different directions. Figure 11(a) shows the incident image of
a disk of light generated with amplitude modulation by using
the SLM, where the inside of the disk is filled with light, while
the outside is dark. Figures 11(b) and 11(c) show the measured

FIG. 9. Gaussian distributions and the differential images of
them. (a, c) Simulated and experimental Gaussian distributions, re-
spectively. (b, d) Corresponding differential images in the x direction.

FIG. 10. Measurement of the spatial spectral transfer function for
ky = 0. Experimental results are shown in red dots, and theoretical
results are in black lines.

outgoing intensities of y and x directions, respectively. They
clearly exhibit the outline of the disk with spatial differen-
tiation. In Fig. 11(b), since the differentiation is along the y
direction, the edges perpendicular to the y direction are most
visible and those of the y direction are invisible. Furthermore,
as long as the edge is not completely along the y direction,
it can be detected in the outgoing beam. The same thing
happens in the x direction as shown in Fig. 11(c); the edges
perpendicular to the x direction are most visible and those of
the x direction are invisible.

As the differentiation operates on the electric field rather
than on the intensity, the device can be used to detect an
edge either in the phase or in the amplitude distribution of
the incident field. To show such an effect, we also generate an
incident field with phase modulation. Figure 11(d) shows the
incident image of a circle of light generated with phase mod-
ulation; the circle is filled with light both inside and outside.
Again, the outgoing light clearly exhibits the edge of the circle
in the y direction or the x direction as shown in Figs. 11(e)
and 11(f).

FIG. 11. Disk distributions and the differential images of them.
(a, d) Disk distributions generated with amplitude and phase mod-
ulation, respectively. (b, e) Differential images of disks in the y
direction. (c, f) Differential images of disks in the x direction.
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