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Realization of a sign-distinguishable higher-order optical differentiation

Junfan Zhu, An Wang, Fuhua Gao,* and Zhiyou Zhang †

College of Physics, Sichuan University, Chengdu 610064, China

(Received 23 May 2022; accepted 5 August 2022; published 18 August 2022)

A differential operation, which can highlight features of images, is of significant importance in fields such
as machine vision. As a front-end action, optical differentiation can overcome the shortcomings of traditional
computer differentiation and runs at the speed of light. Compared with the conventional first-order optical
differentiation technique, a higher-order one with the correct sign of a differential field obtained can facilitate the
recognition of finer features, although relevant studies are relatively scarce. Here, we propose a method to realize
sign-distinguishable arbitrary-order optical differentiation by coupling the momentum and polarization of a light
field, the feasibility of which is further confirmed by a proof-of-principle experiment. We hope our method will
promote the development of optical analog computing, image recognition, and other relevant applications.
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I. INTRODUCTION

With the advent and development of computer science,
machine vision and computer vision have gradually attracted
extensive attention [1–3]. In the era of big data, facial recog-
nition [4], autonomous driving [5], and many other techniques
using artificial intelligence are booming. How to quickly filter
out the useless from mass information has naturally become a
big concern. Traditionally, this task has been accomplished by
computer algorithms. However, the ever-increasing amount of
data has been slowing down computation speed. Considering
that advancement in semiconductor manufacturing is reaching
its ceiling, we are obliged to seek other possible solutions.

Differential operations were found to be such an effective
method [6]. In a wide variety of applications, machines recog-
nize and classify images by their features. More specifically,
features manifest in the intensity variations of these images.
A first-order differentiation can highlight areas where the
intensity changes dramatically, for instance, the boundaries,
and meanwhile can erase the background of a homogeneous
light field. If a further step is taken to implement a second-
order differentiation, even a uniformly varying light field
can be suppressed, and the rate of changes in intensity can
be better evaluated. In other words, it can be deemed that
with a higher-order differentiation, fine features can be recog-
nized more easily such that image classification can be more
convenient and accurate [6,7]. Currently, due to intelligent
algorithms and strong computing power, differentiation can
be done very well. Nevertheless, it still takes up a certain
amount of computing resources. More significantly, computer
differentiation deals with the data captured by a detector such
as a charge-coupled device (CCD). Therefore, the accuracy
of differentiation depends directly on the capability of the
detector. Suppose that differentiation is done before detecting;
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then not only will the above problems be solved, but it will
also be possible to obtain subpixel information. This front-end
action should be physical and as fast as possible. Optical
differentiation comes into sight.

Optical differentiation, a branch of optical analog comput-
ing, aims to realize differentiation using optical elements at
the speed of light. It has had a long history of research and
has borne fruitful results [8,9]. Recently, being combined with
metamaterials [10–17], surface plasmons [18,19], quantum
entanglement [20], weak measurement [21], and other fields
[22–24], the optical differentiation technique has been further
developed. These achievements have enabled optical differ-
entiation to be implemented in modest tabletop laboratory
conditions with accessible experimental apparatus.

Moreover, the sign of a differential field is usually not
distinguishable due to the fact that we can directly detect only
an intensity distribution instead of a field. If the sign can be
recovered, more detailed features can be dug out. Efforts have
been made to obtain the sign information by introducing a bias
light field [25,26]. Benefiting from the precise control system,
these methods have great practicability in the first-order dif-
ferentiation but cannot be plainly generalized to higher-order
cases.

In this work, we propose a method of optical differenti-
ation, the fundamental unit of which is a 4 f system (where
f denotes the focal length) with a preselection in the front, a
postselection in the rear, and a particular medium placed in the
spectrum plane. By cascading the units together and arrang-
ing the pre- and postselections inside, a sign-distinguishable
arbitrary-order differentiation can be achieved. Furthermore,
we experimentally realize a second-order optical differentia-
tion of a Gaussian field to demonstrate the feasibility of our
method.

II. OPTICAL DIFFERENTIATION UNIT

The system depicted in Fig. 1 plays the role of a fun-
damental unit in our method of optical differentiation. Let
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FIG. 1. Schematic diagram of an optical differentiation unit.
Lenses 1 and 2 establish the framework of a 4 f system, where f
denotes the focal length. The front-focal plane of lens 1 is the input
plane, the back-focal plane of lens 2 is the output plane, and the
confocal plane of lenses 1 and 2 is the intermediate plane, also known
as the spectrum plane. The plate placed in the spectrum plane gives
the anisotropic modulation described in the text. PRE and POST
represent the preselection and postselection, respectively.

|ϕ0〉 denote the quantum state of photons in the input plane.
Hence, the wave function in the position representation is
ϕ0(x, y) = 〈x, y|ϕ〉, where (x, y) indicates the planar coordi-
nates. The other essential ingredient of optical differentiation
is harnessing the polarization. For simplicity, we consider that
photons are preselected in the state |ψ1〉 = (|0〉 + |1〉)/

√
2,

with |0〉 and |1〉 denoting the right-handed and left-handed
polarization states, or, alternatively, the horizontal and vertical
polarization states.

Lens 1 transforms ϕ0(x, y) to the field ϕ̃0(xm, ym) in the
intermediate plane by

ϕ̃0(xm, ym) =
∫∫ +∞

−∞
ϕ0(x, y)e−i2π

xmx+ymy
λ f dxdy, (1)

where λ is the wavelength and f is the focal length of lenses
1 and 2. If we make the substitutions kx = 2πxm/λ f and ky =
2πym/λ f , then Eq. (1) can be rewritten as

ϕ̃0(kx, ky) =
∫∫ +∞

−∞
ϕ0(x, y)e−i(kxx+kyy)dxdy

:= F{ϕ0(x, y)}, (2)

where F represents the Fourier transform. Indeed, the pa-
rameters kx and ky characterize a space that is reciprocal to
the position space, and therefore, they can be recognized as
momenta. Thus, the intermediate plane can also be called the
spectrum plane.

Now let us furnish the spectrum plane. We pursue the result
that the components of photons in state |0〉 go through a
modulation of exp(−iγ kx ) and, meanwhile, the components
in state |1〉 are modulated by exp(iγ kx ). This result can be
achieved by placing a metasurface [12] or a Wollaston-like
prism [21] in the spectrum plane. By artificially lithographing
local optical axes with different directions on a substance, a
Pancharatnam-Berry phase can be generated, and the distinc-
tion between the right-handed and left-handed polarization
states can be implemented. However, for a Wollaston prism,
the eigenstates of polarization should be the horizontal and
vertical states instead. It is worth noting that with the spin Hall
effect of light, even an isotropic medium is also likely to meet
the increased requirement [24]. However, the corresponding
mechanism is a bit different.

After the modulation in the spectrum plane, we need to
inversely Fourier transform the light field. In practice, the
function of lens 2 is also a Fourier transform, which is the
same as lens 1. So the difference between a Fourier transform
and an inverse Fourier transform will ultimately be reflected
in the parity inversion x → −x, y → −y of the output field.
Here, we adopt an inverse Fourier transform to keep the out-
put and input fields directly corresponding. According to the
translation property of the Fourier transform, in the output
plane the wave functions polarized in states |0〉 and |1〉 be-
come ϕ0(x − γ , y) and ϕ0(x + γ , y), respectively.

Suppose that the postselection is made a polarizer that
projects photons in the state |ψ ′

1〉 = (|0〉 − |1〉)/
√

2, which is
orthogonal to |ψ1〉. We obtain the wave function in the output
plane, which is given by

ϕ1(x, y) = ϕ0(x − γ , y) − ϕ0(x + γ , y)

2

≈ −γ
∂ϕ0(x, y)

∂x
, (3)

where we have expanded ϕ0(x − γ , y) and ϕ0(x + γ , y) to the
second-order term to give the second line. This approximation
implies that γ should be sufficiently small or the spatial varia-
tion of ϕ0(x, y) should not be too sharp so that the higher-order
terms can be neglected. Equation (3) indicates that a field
which takes the form of the partial derivative of ϕ0(x, y) along
with a decay factor γ appears in the output plane.

So far we have elucidated a method to implement a first-
order optical differentiation. In order to get a second-order
one, an intuitive conjecture is to connect two differentiation
units as shown in Fig. 1 together, with the output plane of the
first unit being the input plane of the second unit. As a result,
the initially prepared state for the second unit is |ψ2〉 = |ψ ′

1〉,
and therefore, we should choose |ψ ′

2〉 = (|0〉 + |1〉)/
√

2 as the
postselected state. It can be readily seen that the wave function
in the last output plane reads

ϕ2(x, y) = ϕ0(x − 2γ , y) + ϕ0(x + 2γ , y) − 2ϕ0(x, y)

4

≈ γ 2 ∂2ϕ0(x, y)

∂x2
, (4)

where ϕ0(x − 2γ , y) and ϕ0(x + 2γ , y) are expanded to the
third-order term to yield the second line. The decay factor now
is γ 2. By connecting more differentiation units one by one, we
come to the important conclusion that if an nth-order optical
differentiation is to be made, then n units are required.

However, the wave function cannot be directly detected.
The observable quantity is the probability, which is math-
ematically equal to the square modulus of the output wave
function. As for the first-order differentiation, it is |ϕ1(x, y)|2,
indicating the probability of finding a single photon in the
positions labeled by x and y. In practice, since the number of
photons used is enormous, we detect the statistical accumu-
lation of |ϕ1(x, y)|2, namely, the light-intensity distribution.
In this way, we cannot tell whether ∂ϕ0(x, y)/∂x is positive
or negative, so this kind of optical differentiation is incom-
plete. Knowledge of the sign is necessary in the cases where
detailed information about a differential field is required. For
example, we are concerned with the change in a local part of
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the wave function that should be ϕ0(x, y) = −x. In this way,
we cannot tell whether ϕ0(x, y) is increasing or decreasing as
x grows. More discussion about the significance of a sign-
distinguishable differentiation is presented in Appendix A.

Another problem exists in that when the phase of the orig-
inal wave function ϕ0(x, y) also varies in space, the amplitude
and phase information are entangled and then presented in the
final light-intensity distribution. For the purpose of realizing
a first-order differentiation, we have proposed a method to
extract the amplitude and phase separately [21]. However, in
the case of higher-order differentiation, the differential fields
will be so complicated that separately obtaining the amplitude
and phase information becomes hardly possible. To solve this
problem, changes in the phase can be suppressed. The most
straightforward way is to modulate only the amplitude of a
plane wave, which is, nonetheless, too strict. Let us further
write the input field as ϕ0(x, y) = a(x, y)eib(x,y), where a(x, y)
denotes the amplitude and b(x, y) denotes the phase. So the
first-order differential field is ϕ1 = ( ∂a

∂x + ia ∂b
∂x )eib. To neglect

the phase part, there should be a relation where | ∂a
∂x | 	 a| ∂b

∂x |.
We consider a Gaussian beam, which is a typical light source
and takes the form

G(x, y) = e− x2+y2

w2 (z) e−i π (x2+y2 )
λR(z) , (5)

where λ is the wavelength and w(z) and R(z) are two z-
dependent parameters. The exact expressions of w(z) and R(z)
are provided in Ref. [27]. In this case, the above relation
is w2(z) 
 λR(z)/π . On the other hand, if the amplitude is
nearly constant and the phase is small enough, we can approx-
imately have ϕ0(x, y) ≈ 1 + ib(x, y), which thereby indicates
that the phase can be considered equivalent to the amplitude
in an optical differentiation.

III. SIGN-DISTINGUISHABLE HIGHER-ORDER
DIFFERENTIATION

Henceforth, we assume that changes in the phase of
ϕ0(x, y) are relatively small such that only the amplitude

is considered. A measurement scheme will be proposed in
which the sign of an arbitrary-order differential field can be
recognized and then a complete optical differentiation can
be achieved. In order to simplify the calculation, we adopt
operator language. The position operator x̂ and the momentum
operator k̂x obey the commutation relation [x̂, k̂x] = i, where
the reduced Planck constant h̄ has been omitted. In the output
plane of the nth differentiation unit, it can be found that

ϕn(x, y) = 〈x, y|〈ψ ′
n|e−iγ σ̂ k̂x |ψn〉|ϕn−1〉, (6)

where σ̂ = |0〉〈0| − |1〉〈1|. The physical meaning of the uni-
tary operator e−iγ σ̂ k̂x will be clear if we write it as e−iγ σ̂ k̂x =
e−iγ k̂x |0〉〈0| + eiγ k̂x |1〉〈1|, with e−iγ k̂x and eiγ k̂x being two dis-
placement operators. So the fields in states |0〉 and |1〉 are
shifted by a value of γ and −γ in the x direction, respectively.
Supposing that γ is small enough or the spatial variation of
ϕn−1(x, y) is slow, we can expand e−iγ σ̂ k̂x and keep it up to the
first-order term, namely, e−iγ σ̂ k̂x ≈ 1 − iγ σ̂ k̂x. It follows from
Eq. (6) that

ϕn(x, y) ≈ 〈x, y|〈ψ ′
n|(1 − iγ σ̂ k̂x )|ψn〉|ϕn−1〉

= 〈ψ ′
n|ψn〉(1 − iγ σnk̂x )ϕn−1(x, y)

= 〈ψ ′
n|ψn〉

(
1 − γ σn

∂

∂x

)
ϕn−1(x, y), (7)

where k̂x|x〉 = i ∂
∂x is used and σn, which is a complex number,

is defined as σn = 〈ψ ′
n|σ̂ |ψn〉

〈ψ ′
n|ψn〉 . It can be noted that σn takes a

form identical to the weak value in weak-measurement theory
[28]. It is also notable that 1 − γ σnk̂x plays the role of the
transfer function of our optical differentiation unit. Repeating
Eq. (7) n times, the relation between the final output wave
function ϕn(x, y) and the initial wave function ϕ0(x, y) can be
established, which is given by

ϕn(x, y) = 〈ψ ′
n|ψn〉〈ψ ′

n−1|ψn−1〉 · · · 〈ψ ′
1|ψ1〉 ×

(
1 − γ σn

∂

∂x

)(
1 − γ σn−1

∂

∂x

)
· · ·

(
1 − γ σ1

∂

∂x

)
× ϕ0(x, y)

=
[

1 +
(∑

i

σi

)(
− γ

∂

∂x

)
+

(∑
i1<i2

σi1σi2

)(
− γ

∂

∂x

)2

+ · · ·

+
( ∑

i1<i2<···<in−1

σi1σi2 · · · σin−1

)(
− γ

∂

∂x

)n−1

+
(

σ1σ2 · · · σn

)(
− γ

∂

∂x

)n
]
ϕ0(x, y), (8)

where the prefactor 〈ψ ′
n|ψn〉 · · · 〈ψ ′

1|ψ1〉 is neglected since
it contains no information about the wave function. Be-
cause only the nth-order differential term is to be re-
tained, we must have

∑
i σi = 0,

∑
i1<i2

σi1σi2 = 0, . . . ,∑
i1<i2<···<in−1

σi1σi2 · · · σin−1 = 0. Taking σ1 as the only vari-
able and then solving these equations, it follows that
σ2σ3 · · · σn = (−1)n−1σ n−1

1 . Under the circumstances, Eq. (8)

is simplified to

ϕn(x, y) =
[

1 + (−1)n−1σ n
1

(
− γ

∂

∂x

)n]
ϕ0(x, y). (9)

Equation (9) indicates that the greater the value of |σ n
1 | is, the

more weight the differential field will carry in ϕn(x, y). Thus,
according to the formulation of σ1, if 〈ψ ′

1|ψ1〉 is close to zero,
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a slight change in a differential field can be amplified and then
manifested in ϕn(x, y).

Suppose that σ n
1 is a real number, and let σ n

1 equal +αn

and −αn, where α is chosen to be real. Recall that only
the amplitude is considered, which indicates that ϕ0(x, y) is
real and therefore ϕn(x, y) is real. Two fields ϕ+

n (x, y) and
ϕ−

n (x, y) can be generated, and then two corresponding inten-
sity distributions, say, 
+

n (x, y) = |ϕ+
n (x, y)|2 and 
−

n (x, y) =
|ϕ−

n (x, y)|2, can be detected. It can be readily found that


n(x, y) = 
+
n (x, y) − 
−

n (x, y) = −4(αγ )n ∂nϕ0(x, y)

∂xn
,

(10)

where the nth-order differential field emerges.
The remaining question is therefore how to gain the

two values ±αn out of σ n
1 . For the case where n is odd,

we can simply make σ1 be ±α. In practice, this intention
can be achieved by setting the two polarization states in
|ψ1〉 = (|0〉 + |1〉)/

√
2 and |ψ ′

1〉 = cos( π
4 ± ε)|0〉 − sin( π

4 ±
ε)|1〉, respectively. It can be calculated that σ1 = ∓ cot ε.
When n is even, the question gets more complicated. σ1 being
two real values apparently cannot satisfy the requirement.
Thus, we take full advantage of the fact that σ1 is a com-
plex value and write it as σ1 = u + iv. Then we solve the
two equations Re{(u + iv)n} = ±αn and Im{(u + iv)n} = 0.
For example, if n = 2, we can have the possible solution
σ1 = α, iα. If n = 4, the two equations may yield two valid
solutions, σ1 = α, (α + iα)/

√
2. As we want to practically

get a complex σ1, the two polarization states can be chosen
to be |ψ1〉 = (|0〉 + |1〉)/

√
2 and |ψ ′

1〉 = eiθ cos( π
4 + ε)|0〉 −

e−iθ sin( π
4 + ε)|1〉. Assuming that θ, ε 
 1, we have σ1 ≈

− ε−iθ
ε2+θ2 . With suitable selections of θ and ε, the required σ1

can be generated.

IV. PROOF-OF-PRINCIPLE EXPERIMENT

In the following, we use a proof-of-principle experiment to
confirm the feasibility of our method, in which the second-
order differentiation of a Gaussian beam G(x, y) with a
wavelength of 633 nm is implemented. Two differentiation
units are required. Since the size of a Gaussian laser increases
with propagation and the relation w2(z) 
 λR(z)/π must
hold, we make the distance between the two lenses of each
unit slightly longer than 2 f , such that the laser spot can be
shrunk. A Wollaston prism is placed in the spectrum plane.
Thus, the ground state |0〉 and |1〉 should respectively be the
horizontal state, say, |H〉, and the vertical state, say, |V 〉. The
value of γ depends mainly on the length-width ratio of the
Wollaston prism and the focal length of the lenses. To clearly
understand how an optical differentiation can be achieved by
a Wollaston prism, readers may refer to Appendix C. In our
experiment, γ is about 10 μm. Let the preselection of the first
unit be a polarizer (P1) with its axis lying at an angle of π/4
such that the preselected state is |ψ1〉 = (|H〉 + |V 〉)/

√
2. If

the postselection in the first unit is another polarizer (P2) that
is orthogonal to the first one, which gives σ1 → ∞, then we
arrive at the result same as in Eq. (3). Since the postselection
of the first unit can simply be the preselection of the second
unit, henceforth, we take into account only the postselection
in the second unit. If this postselection is also a polarizer (P3)

FIG. 2. Light-intensity distributions when (a) σ1 → ∞, (b)
σ1 = α, and (c) σ1 = iα. (d) The second-order differential field of
a Gaussian beam. All distributions are normalized.

whose axis is orthogonal to that of P2, we arrive at Eq. (4),
and the corresponding intensity distribution that is detected by
a CCD is shown in Fig. 2(a). It can be seen that there are three
peaks. The middle peak is the highest. The left and right peaks
with nearly the same height are symmetrically distributed with
respect to the middle one. In the following, we will obtain the
second-order differential field by respectively setting σ1 = α

and iα.
First, we consider σ1 = α. Because σ1 is real, the post-

selection in the first unit can also simply be a polarizer,
namely, P2, with its axis lying at ε − π/4 such that |ψ ′

1〉 =
cos( π

4 − ε)|H〉 − sin( π
4 − ε)|V 〉. It follows that σ1 = cot ε =

α. Recalling that the relation σ1 + σ2 = 0 should hold, we
rotate P3 to a particular angle in which σ2 = −σ1. Since any
two successive polarization states are no longer orthogonal
to each other, the total intensity of the field increases with
the increase of the prefactor 〈ψ ′

2|ψ2〉〈ψ ′
1|ψ1〉 in Eq. (8), or,

more specifically, with the increase of ε. However, we are
not concerned about the growth of the total intensity, so the
prefactors are disregarded, and intensity distributions are nor-
malized. In this case, it seems that the height of the middle
peak increases while the heights of the two side peaks de-
crease, which leads to the distribution shown in Fig. 2(b).
Second, let us consider the case where σ1 = iα. We reset
every two successive polarizers to the mutually orthogonal
polarization states. When σ1 is purely imaginary, we can place
a quarter-wave plate (QWP) before P2, and then the QWP
and P2 together constitute the postselection. The fast axis of
QWP is parallel to the polarization direction of P2. When P2
is rotated by an angle of −θ , the postselected state becomes
|ψ ′

1〉 = (eiθ |H〉 − e−iθ |V 〉)/
√

2 (see Appendix B). So it fol-
lows that σ1 = i cot θ = iα. It is important to note that for
this case the preselected state in the second unit is not |ψ ′

1〉,
but |ψ2〉 = cos( π

4 + θ )|H〉 − sin( π
4 + θ )|V 〉. To simplify the

question, we rotate the coordinate system of the second unit
by an angle of −θ such that |ψ2〉 = (|H〉 − |V 〉)/

√
2, and

meanwhile, the axis of P3 will change to π/4 + θ , indicating
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FIG. 3. The cross-section distribution of the second-order differ-
ential field of a Gaussian beam. The red solid curve and the blue
dashed curve correspond to the theoretical and experimental results,
respectively.

a rotation angle of θ . After we insert another QWP before
P3 with its fast axis pointing at π/4, it can be calculated
that σ2 = −i cot θ = −σ1. With θ increasing, the height of
the middle peak shrinks, but the two symmetric peaks grow,
which is just the inverse of the case of a real σ1. By making θ

equal to ε, we show the resultant distribution in Fig. 2(c).
The last step is to subtract the distribution of σ1 = α from

that of σ1 = iα, as indicated by Eq. (10). Due to the limitation
of experimental conditions, we cannot get the absolute values
of light intensities. Nonetheless, through numerical simula-
tion, we found that when the maximum intensity of σ1 = α

was nearly twice as strong as that of σ1 = iα, the experimental
result of the cross-section distribution ∂2G(x, 0)/∂x2 agreed
well with the theoretical expectation, as presented in Fig. 3.
The slight deviation of the theoretical and experimental curves
in the middle peak may result from the imperfection of the
laser source and the diffraction effects in the propagation
of light. The unequal heights of the two small peaks may
be attributed to the artificial error when polarizers and wave
plates were not precisely rotated. So eventually, we can plot
the second-order differential field in Fig. 2(d), where two
relatively small peaks have positive heights and the highest
peak located in the middle is negative.

V. DISCUSSION AND CONCLUSION

The question of the efficiency of this optical differentiation
method arises. Reconsider the prefactor 〈ψ ′

n|ψn〉 · · · 〈ψ ′
1|ψ1〉

and input it into Eq. (10). If every successive pre- and posts-
election is nearly orthogonal, 
n(x, y) will be approximately
proportional to γ n, which implies that we have to obtain the
nth-order differential field at the cost of γ n attenuation of
the light intensity. Fortunately, detecting an overly high-order
differential field is not of great significance in practice. In
addition, the optical elements that we used, such as lenses, will
introduce aberrations, so the overly high-order differential
setup will be difficult to put to good use due to systematic er-
ror. External perturbation can also worsen the signal-to-noise

ratio. On the other hand, one may worry that two measure-
ments will be so time-consuming that rapid detection cannot
be achieved. This problem can be solved by a beam splitter
that can split ϕ0(x, y) into two paths. In this way, 
+

n (x, y)
and 
−

n (x, y) can be separately and simultaneously obtained.
Methods to miniaturize systems are also an important topic

for optical analog computing. The 4 f systems, which can
modulate the light field and constrain the diffraction effect, are
essential in optical systems that have a rather long length, such
as telescopes and microscopes. However, for a miniaturized
integrated optical system such as a cell phone camera, the
4 f setup may be bulky. It is very likely that the 4 f system
in the differentiation unit could be replaced by an ultrathin
birefringent crystal or a particularly designed metamaterial in
the future.

In conclusion, we have elaborated an optical differentiation
unit which is based on a 4 f system. By connecting such n
units one by one, an nth-order optical differentiation setup
can be established. Since it is hardly possible to separately
extract the amplitude and the phase from a high-order dif-
ferential field, we have paid attention to applications where
the differentiation of the phase can be ignored. Through
particular settings for the pre- and postselections, only the
nondifferential and nth-order differential terms can be re-
tained, and thereafter, a sign-distinguishable differential field
can be obtained by subtraction of two intensity distributions.
We have also implemented a proof-of-principle experiment.
The resultant distribution that contains three peaks is basi-
cally consistent with the characteristics of the second-order
differential field of a Gaussian beam, confirming the validity
of our method. Despite some technical difficulties such as the
elimination of aberrations and the miniaturization of the setup,
we believe this method of optical differentiation will be of
great use in optical analog computing, machine vision, and
many other applications.
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APPENDIX A: SIGNIFICANCE OF A SIGN-
DISTINGUISHABLE OPTICAL DIFFERENTIATION

Conventional applications of optical differentiation are
mostly about edge detection. For edge detection, only the
magnitude of a differential field matters, which means that
the sign distinguishability is unnecessary. Therefore, we will
table some cases other than edge detection to show the sig-
nificance of sign-distinguishable optical differentiation in this
Appendix.

As shown in the differentiation unit, when we place the
working axis of the modulator along the x axis in the spectrum
plane, we can realize a differentiation with respect to x. Now
suppose we want to realize a differentiation with respect to
an arbitrary direction; then we have to rotate the working
axis to the right direction, which is time-consuming and can
introduce experimental error. Alternatively, we can respec-
tively measure ∂ϕ(x, y)/∂x and ∂ϕ(x, y)/∂y, where ϕ(x, y)
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FIG. 4. The top part presents the experimental setup of a second-order optical differentiation, which is obtained by docking two
differentiation units together. The bottom part indicates the pre- and postselections inside. The settings of blocks (a), (b), and (c) correspond
to the results shown in Figs. 2(a)–2(c), respectively.

is the field to be differentiated. Then it is possible to use
the relation ∂ϕ(x,y)

∂s = cos θ
∂ϕ(x,y)

∂x + sin θ
∂ϕ(x,y)

∂y to obtain the
directional differential field with respect to an arbitrary an-
gle θ . This way of obtaining ∂ϕ(x, y)/∂s certainly requires
knowledge of the signs of ∂ϕ(x, y)/∂x and ∂ϕ(x, y)/∂y. An
interesting application derived from this method is identifying
the direction of motion. A snapshot of a moving object could
be blurry. The absolute value of its differential field reduces
to the minimum in the exact motion direction. Therefore, a
powerful identification method is just to find the angle where∫ | ∂ϕ(x,y)

∂s |dxdy is minimized. In our recent work, we experi-
mentally demonstrated it [29].

A sign-distinguishable optical differentiation can also be
utilized to reconstruct wave functions. Let us write a wave
function as ϕ(x) = a(x)eib(x). To obtain the wave function we
first measure da(x)/dx and db(x)/dx and then use an integral
algorithm, e.g., the Fourier integral algorithm [21,26] and the
Hudgin algorithm [30], to recover a(x) and b(x). For any
kind of algorithm, knowledge of the signs of da(x)/dx and
db(x)/dx is necessary. This method can be of great impor-
tance in wave-front sensing.

In image recognition, the sign of a differential field also
contains information. Suppose a light beam is reflected by a
slab which is composed of several kinds of materials. Due
to the differences of different materials in reflectivity and
roughness, the amplitude of the reflected light will no longer

be constant but will carry information about the distribution
of different materials. For the case where the sign of a differ-
ential field is unknown, we can identify only where the kind
of material changes. If the sign is known, then it becomes
possible to further ascertain the kinds of materials in different
regions. Moreover, we can consider that the transition area
is not narrow, so the amplitude of the reflected light can be
smoothly and slowly changed, in which case higher-order
differentiation can be useful.

To sum up, the sign distinguishability can be critical in
some application scenarios.

APPENDIX B: DETAILS OF THE EXPERIMENT

We provide more details about how we obtained Fig. 2 in
the main text to help readers better understand the experiment.

First, we show how to obtain Fig. 2(a). To realize a second-
order optical differentiation, we cascade two differentiation
units together to give the setup shown in Fig. 4. Let us write
the wave function in the leftmost input plane as ϕ0(x, y). The
three circles in block (a) indicate the setting of the pre- and
postselections. The preselection of unit 1 is a polarizer (P1)
with its axis pointing at π/4, which means the preselected
state is

|ψ1〉 = 1√
2

(|H〉 + |V 〉). (B1)
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The postselection of unit 1 is another polarizer (P2) with its
axis pointing at −π/4. So the postselected state is

|ψ ′
1〉 = 1√

2
(|H〉 − |V 〉). (B2)

According to Eq. (7), the wave function in the output plane of
unit 1 is given by

ϕ1(x, y) = 〈x, y|〈ψ ′
1|(1 − iγ σ̂ k̂x )|ψ1〉|ϕ0〉

= 〈x, y|(−iγ k̂x )|ϕ0〉

= −γ
∂

∂x
ϕ0(x, y), (B3)

where σ̂ = |H〉〈H | − |V 〉〈V |. Since the postselection of unit
1 can be directly utilized as the preselection of unit 2, the
preselection of unit 2 can simply be none, and therefore, the
preselected state of unit 2 is |ψ2〉 = |ψ ′

1〉. We set the postse-
lection of unit 2 to be a polarizer (P3) whose axis lies at π/4,
and then the postselected state of unit 2 is

|ψ ′
2〉 = 1√

2
(|H〉 + |V 〉). (B4)

In a similar manner, the wave function in the output plane of
unit 2 is given by

ϕ2(x, y) = 〈x, y|〈ψ ′
2|(1 − iγ σ̂ k̂x )|ψ2〉|ϕ1〉

= 〈x, y|(−iγ k̂x )|ϕ1〉

= −γ
∂

∂x
ϕ1(x, y)

= γ 2 ∂2

∂x2
ϕ0(x, y). (B5)

For the case where a Gaussian beam is considered as the
initial input, it leads to ϕ0(x, y) = G(x, y). We finally obtain
the intensity distribution, which is presented in Fig. 2(a).

Next, we manage to obtain the intensity distribution shown
in Fig. 2(b). In this case, we choose the experimental settings
depicted in block (b). The preselection of unit 1 is still a polar-
izer (P1) with its axis set at π/4, and therefore, the preselected
state remains the same. However, the second polarizer (P2) as
the postselection of unit 1 is rotated by an angle of ε, which
yields the postselected state

|ψ ′
1〉 = cos

(
π

4
− ε

)
|H〉 − sin

(
π

4
− ε

)
|V 〉. (B6)

Now the wave function in the output plane of unit 1 is given
by

ϕ1(x, y) = 〈x, y|〈ψ ′
1|(1 − iγ σ̂ k̂x )|ψ1〉|ϕ0〉

=
(

1 − γ cot ε
∂

∂x

)
ϕ0(x, y), (B7)

where the prefactor 〈ψ ′
1|ψ1〉 has been neglected. The prese-

lected state of unit 2 takes the form of the postselected state of
unit 1, say, |ψ2〉 = |ψ ′

1〉. The axis of the polarizer (P3) which
plays the role of the postselection in unit 2 should be chosen
at a particular angle τ such that

|ψ ′
2〉 = cos τ |H〉 + sin τ |V 〉 (B8)

and the relation σ2 = − cot ε = −σ1 is satisfied. Therefore,
the field in the output plane is

ϕ+
2 (x, y) = 〈x, y|〈ψ ′

2|(1 − iγ σ̂ k̂x )|ψ2〉|ϕ1〉
= 〈x, y|[1 − iγ (σ1 + σ2)k̂x − γ 2σ1σ2k̂2

x

]|ϕ0〉

=
(

1 − γ 2 cot2 ε
∂2

∂x2

)
ϕ0(x, y), (B9)

where the prefactor 〈ψ ′
2|ψ2〉 has also been neglected.

Figure 2(b) shows the intensity distribution 
+
2 (x, y) =

|ϕ+
2 (x, y)|2.
The principle of getting Fig. 2(c) is the same as that of

getting Fig. 2(b). However, this time an imaginary σ1 is to be
generated. Therefore, a quarter-wave plate (QWP1) with its
fast axis placed at −π/4 is inserted before (or to the left of)
the second polarizer (P2), as shown in block (c). QWP1 and
P2 together constitute the postselection of unit 1. With |H〉
and |V 〉 being the eigenvectors, the action of QWP1 can be

represented by the matrix 1√
2

[
1 −i
−i 1

]
. So the postselected

state reads

|ψ ′
1〉 = 1√

2

[
1 −i
−i 1

][
cos

(
π
4 + ε

)
− sin

(
π
4 + ε

)
]

= 1√
2

eiπ/4

[
eiε

−e−iε

]

≡ 1√
2

(eiε|H〉 − e−iε|V 〉), (B10)

where in the third line the phase term eiπ/4 has been discarded
since it does not contribute to the intensity distribution. It
follows that σ1 = i cot ε. The remaining problem is how to
construct σ2 = −σ1. We must note that since P2 is the last
element in the postselection of unit 1, here, the preselected
state of unit 2 is no longer just the postselected state of unit
1. Instead, it is solely decided by P2, i.e., |ψ2〉 = cos( π

4 +
ε)|H〉 − sin( π

4 + ε)|V 〉. Note that σ2 should also be imagi-
nary, so another combination of a quarter-wave plate (QWP2)
and a polarizer (P3) is set as the postselection of unit 2. If we
rotate the coordinate system of unit 2 by an angle −ε, then the
preselected state becomes |ψ2〉 = 1√

2
(|H̃〉 − |Ṽ 〉). In the new

coordinate system, the fast axis of QWP2 is placed at π/4,
and the axis of P3 is placed at π/4 − ε. The postselected state
is then given by

|ψ ′
2〉 = 1√

2

[
1 i
i 1

][
cos

(
π
4 − ε

)
sin

(
π
4 − ε

)
]

= 1√
2

eiπ/4

[
e−iε

eiε

]

≡ 1√
2

(e−iε|H̃〉 + eiε|Ṽ 〉). (B11)

We have σ2 = −i cot ε = −σ1. In the output plane, the wave
function is given by

ϕ−
2 (x, y) =

(
1 + γ 2 cot2 ε

∂2

∂x2

)
ϕ0(x, y). (B12)
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FIG. 5. Function diagram of the Wollaston prism.

We can experimentally detect the intensity distribution

−

2 (x, y) = |ϕ−
2 (x, y)|2, which is shown in Fig. 2(c).

APPENDIX C: WOLLASTON PRISM

In this Appendix, we give a more detailed description of the
Wollaston prism, which is used as a modulator in the spectrum
plane of our differentiation unit.

A function diagram of the Wollaston prism is shown
in Fig. 5. Let no and ne denote the refractive indices of
the so-called ordinary light (O-light) and extraordinary light
(E-light). O-light and E-light correspond to the horizontal
polarization state |H〉 and vertical polarization state |V 〉,
respectively. Through straightforward calculation, it can be
found that

β1 ≈ β2 ≈ arcsin[tan θ (no − ne)] ≡ β. (C1)

Let the input field be ϕ0(x, y). Then in the spectrum plane
where the Wollaston prism is placed, the Fourier-transformed
field is given by

ϕ̃0(xm, ym) =
∫∫ +∞

−∞
ϕ0(x, y)e−i2π

xmx+ymy
λ f dxdy, (C2)

where λ is the wavelength and f is the focal length of
lens. As can be seen in Fig. 5, O-light is rotated by an
angle of β, and E-light is rotated by −β, which means
the corresponding fields can be mathematically expressed as
ϕ̃0(xm, ym)e−i2π

xm sin β

λ |H〉 and ϕ̃0(xm, ym)ei2π
xm sin β

λ |V 〉. By mak-
ing inverse Fourier transforms, it follows that

ϕ1(x, y)|H〉 =
∫∫ +∞

−∞
ϕ̃0(xm, ym)e−i2π

xm sin β

λ ei2π
xmx+ymy

λ f |H〉dxmdym

=
∫∫ +∞

−∞
ϕ̃0(xm, ym)ei2π

xm (x− f sin β )+ymy
λ f |H〉dxmdym

= ϕ0(x − f sin β, y)|H〉 (C3)

and

ϕ1(x, y)|V 〉 =
∫∫ +∞

−∞
ϕ̃0(xm, ym)ei2π

xm sin β

λ ei2π
xmx+ymy

λ f |V 〉dxmdym

=
∫∫ +∞

−∞
ϕ̃0(xm, ym)ei2π

xm (x+ f sin β )+ymy
λ f |V 〉dxmdym

= ϕ0(x + f sin β, y)|V 〉. (C4)

Therefore, it can be found that γ = f sin β, which indicates that we can change the value of γ by changing the length-width
ratio θ or the focal length f .
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