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Topological edge states of the PT -symmetric Su-Schrieffer-Heeger model:
An effective two-state description
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We consider the non-Hermitian, parity-time- [(PT )-] symmetric extensions of the one-dimensional Su-
Schrieffer-Heeger model in the topological nontrivial configuration. We study the properties of the topologically
protected edge states and develop an effective two-state analytical description of the system that accurately
predicts the PT -symmetry-breaking point for the edge states. We verify our analytical results by exact numerical
calculations.
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I. INTRODUCTION

Following the discovery of the quantum Hall effect, the
notion of topological order was used extensively as a new
criterion for classifying distinct quantum phases of matter
[1–3]. One of the most significant achievements in this field
was the prediction and observation of topological insulators—
electronic materials that support conducting states localized
on their surface or edges despite being insulating in their
interior due to the existence of a bulk energy gap [4,5].
This property is a consequence of the combined effect of
topological order and symmetry protection which provides
extraordinary robustness to disorder and external perturba-
tions. Topological insulators are of fundamental importance
and practical significance for various potential applications,
such as high-performance electronic and robust spintronic
devices, protection from decoherence in quantum computing,
etc. [6–9].

Recently, an optical counterpart of topological insula-
tors was proposed [10,11] and realized [12] using photonic
devices. The classical nature of optical platforms makes ex-
perimental observation and manipulation of electromagnetic
waves substantially easier, preserving at the same time most
of the engaging physics related to topology and symmetry
protection. This extension then offers new perspectives in the
broad field of topological physics [13–15].

In the meantime, another symmetry-based phenomenon—
that of parity-time- [(PT )-] symmetry and exceptional
points—has attracted much attention in optical physics
[16–20]. Specifically, it was recently realized that optical
amplification (gain) and dissipation (loss) can be employed
to implement complex potentials and explore the counterin-
tuitive physics of non-Hermitian effects. If, in addition, this
optical gain and loss is incorporated in a balanced antisym-
metric manner that respects PT symmetry, the corresponding
system can possess completely real spectrum despite being

non-Hermitian [21]. Then, by fine-tuning the gain-loss con-
trast, one can actualize spontaneous PT -symmetry breaking
in the system, whereby its eigenvalues coalesce into excep-
tional points (non-Hermitian degeneracies) and turn from real
to complex.

It is then natural to combine the two effects and ex-
plore their interplay. Due to their seemingly contradictory
character with topology inherently related to robustness and
non-Hermiticity and exceptional points to extreme sensitivity,
it was initially debated whether the two phenomena could
coexist [22–24]. But recent theoretical and experimental stud-
ies have shown that the combined effect of topology and
non-Hermiticity yields an even more exotic and unexpected
physical behavior [25–34], featuring non-Hermitian topologi-
cal light funneling [35] and steering [36] as well as topological
lasing [37–39].

The simplest system where PT symmetry and topology
can coexist is the Su-Schrieffer-Heeger (SSH) model with
alternating gain and loss on the neighboring lattice sites. In
the topologically nontrivial configuration, the SSH model pos-
sesses zero-energy edge states that are robust with respect to
lattice disorder. But in any experimental realization of the
model, the finite size of the lattice leads to the coupling
of the edge states, and thereby to their splitting, which is
now sensitive to lattice disorder. It was then suggested to
use non-Hermitian degeneracies to recover the exact zero-
energy modes at or beyond the critical value of the gain
and loss, which was experimentally confirmed using a lat-
tice of lossy silicon waveguides [31]. Hence, paradoxically,
the PT -symmetry breaking can strengthen the topologically
protected characteristics of the edge states in finite SSH lat-
tices.

In this paper, we focus on the properties of the edge
states of the PT -symmetric SSH model. Using an appropri-
ate ansatz for the edge-state wave functions, we derive an
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FIG. 1. (a) Schematic of a SSH lattice of N = 8 sites (four unit
cells) with alternating nearest-neighbor couplings v < w (topolog-
ically nontrivial configuration) as described by Hamiltonian (1).
(b) Wave-function profiles of the ansatz edge states |L, R〉 of Eqs. (7)
for u = v/w = 0.5

effective two-state model Hamiltonian that includes the cou-
pling between the edge states and their (complex) energies.
This model then leads to approximate analytical expressions
for the values of the gain-loss contrast at the PT -symmetry-
breaking (exceptional) point of the edge-state eigenvalues at
zero energy. We also show that, under appropriate conditions,
our effective description can accurately predict the excep-
tional points for a large variety of non-Hermitian potentials
as long as they respect the basic symmetries of the model and
retain its bulk gap open. In all cases, we verify our analyti-
cal results with exact numerical calculations and discuss the
extent of validity of our approach.

We note the earlier relevant studies of the PT -symmetry-
breaking threshold for impurity- or disorder-localized modes
in a lattice [40] or in open and closed chains of dispersive
waveguides with different geometries of gain and loss [41]
and the existence and stability of stationary modes in PT -
symmetric arrays of nonlinear oscillators [42].

The paper is organized as follows. In Sec. II we review
the properties of the Hermitian SSH model focusing on its
topological edge states. In Sec III we study the PT -symmetric
SSH model with uniform gain-loss contrast, derive the ef-
fective edge-state Hamiltonian and compare its analytical
predictions for the exceptional-point position and edge-state
wave functions with exact numerical calculations. In Sec. IV
we generalize our approach to a SSH model with spatially in-
homogeneous but globally PT -symmetric gain-loss contrast.
Our conclusions are summarized in Sec. V.

II. HERMITIAN SSH MODEL

We consider a one-dimensional lattice of N (even) sites
with staggered hopping amplitudes v,w � 0 between the
neighboring sites. The system, thus, consists of two sub-
lattices forming N/2 unit cellsas shown in Fig. 1(a). The

“single-particle” Hamiltonian of the system is

H = v

N−1∑
nodd=1

[|n〉 〈n + 1| + H.c.]

+ w

N−2∑
neven=2

[|n〉 〈n + 1| + H.c.]. (1)

Since sites of each sublattice are coupled only with sites
of the other sublattice, the system possesses chiral (sublat-
tice) symmetry. This symmetry is formally represented by
the operator �z ≡ 1N/2 ⊗ σz, where 1N/2 is the N/2 × N/2
identity operator, and σz is the Pauli matrix for a unit cell. Due
to the chiral symmetry, this operator anticommutes with the
Hamiltonian {�z,H} = 0, leading to a spectrum symmetric
around zero E → −E .

A. Bulk states

The bulk k-space Hamiltonian of the system is

H(k) =
(

0 v + we−ik

v + weik 0

)
≡

(
0 h(k)

h∗(k) 0

)
, (2)

which yields the dispersion relation,

E (k) = ±|h(k)| = ±
√

v2 + w2 + 2vw cos k (3)

for a pair of bands with an energy gap Eg = 2|v − w|. It has
been shown that the topological invariant of the SSH model is
a winding number [23],

W = 1

2π i

∫ π

−π

dk
d

dk
ln h(k) = 1

2π i

∮
|z|=1

dz

v/w + z
. (4)

It then follows from the Cauchy’s integral theorem that the
ratio u ≡ v/w determines the topological properties of the
system: for u < 1 the winding number is nonzero (W = 1),
and the system is topologically nontrivial, possessing zero-
energy topologically protected edge states, whereas for u > 1
the system is topologically trivial (W = 0), and all the states
are the bulk states in the two bands with the positive and
negative energies. At u = 1 (v = w) the gap vanishes and
the spectrum reduces to that of a uniform lattice E (k) =
−2w cos k/2 (k ∈ [−2π, 2π ]).

B. Edge states

We now assume the topologically nontrivial regime u < 1
and consider the two edge states. Following the analysis in
Refs. [43–46], we present an effective description of the edge
states that will be used in the following sections. In the ther-
modynamic limit, the left |L〉 and right |R〉 edge states are
zero-energy eigenstates of the Hamiltonian,

H |L, R〉 = 0 (N → ∞). (5)

Substituting here the Hamiltonian (1), we obtain simple recur-
rence relations for the amplitudes cL,R

n of the wave-functions
|L, R〉 = ∑

n cL,R
n |n〉 as

cL,R
n+2 = −ucL,R

n (n odd), (6a)

cR,L
n = −ucR,L

n+2 (n even). (6b)
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Assuming that |L〉 has support only on the odd sublattice
sites (cL

n = 0 ∀ n even), and |R〉 has support only on the even
sublattice sites (cR

n = 0 ∀ n odd), relations (6) result in the
wave functions,

|L〉 = cL
1

N−1∑
nodd=1

(−u)(n−1)/2 |n〉 , (7a)

|R〉 = cR
N

N∑
neven=2

(−u)(N−n)/2 |n〉 , (7b)

where the normalized amplitudes are given by

∣∣cL
1

∣∣2 = ∣∣cR
N

∣∣2 = 1 − u2

1 − uN
, (8)

and, for simplicity, can be assumed real. Even though for any
finite system the states in Eq. (7) are not exact eigenstates of
Hamiltonian (1), they still approximate well the exact edge
states especially for sufficiently small u < 1 and large N � 1.
In Fig. 1(b) we show the wave functions of states |L, R〉 which
are exponentially localized at the edges of the lattice with a
localization length ξ = −2/ ln(u) (see below).

Since the energies of the edge states |L, R〉 lie in the mid-
dle of the gap between the two bands, their interaction with
the bulk eigenstates can be neglected. We can then write an
effective two-state Hamiltonian for the edge states as

H(eff ) =
(〈L|H|L〉 〈L|H|R〉

〈R|H|L〉 〈R|H|R〉
)

≡
(
EL C
C∗ ER

)
, (9)

where the diagonal elements represent the energies EL,R of the
edge-states |L, R〉 whereas the off-diagonal elements are their
coupling C. To evaluate the matrix elements of H(eff ), we first
calculate the action of H onto the states |L, R〉 of Eq. (7),

H |L〉 = vcL
1 (−u)(N/2−1) |N〉 ,

H |R〉 = vcR
N (−u)(N/2−1) |1〉 .

Since |L〉 and |R〉 have support only on the odd and even lattice
sites, respectively, we immediately obtain

EL = ER = 0, C = v
1 − u2

1 − uN
(−u)(N/2−1). (10)

For u < 1 and N � 1, the effective coupling between the two
edge states can be approximated by

|C| � C0 e−N/ξ , (11)

where C0 = w2−v2

w
and ξ = 2/ ln(w/v), which implies that

the coupling falls off exponentially with N with a charac-
teristic length ξ which coincides with the localization length
of the two edge states. This coupling is also responsible for
the hybridization of the two edge states in finite systems. The
hybridized states are the eigenstates of the effective Hamil-
tonian, H(eff ) |±〉 = E± |±〉, given by the symmetric and

EP

Analytical

Numerical
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w
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FIG. 2. (a) Schematic of a PT -symmetric SSH chain with the
nearest-neighbor couplings v < w and alternating gain and loss ±iγ
[cf. Hamiltonian (13)]. (b) Real [left, dark-green (gray)] and imag-
inary (right, black) part of the energy spectrum of the chain of
N = 12 sites with u = v/w = 2/3 vs the gain-loss contrast γ . The
energy E is in units of w. (c) Magnified view of (b) in the vicinity
of γcr  |v − w| where the edge-state eigenvalues collapse to an
exceptional point of Eq. (20).

antisymmetric superpositions of the two edge states,

|±〉 = 1√
2

(|L〉 ± |R〉), (12)

with the eigenenergies E± = ±|C| that tend to zero in the limit
of a long chain N � ξ .

III. PT -SYMMETRIC SSH MODEL

We now consider a PT -symmetric extension of the SSH
model governed by the non-Hermitian Hamiltonian,

HPT = H + iγ
N∑

n=1

(−1)(n−1) |n〉 〈n| , (13)

where γ > 0 is the alternating gain and loss rate on the suc-
cessive lattice sites as shown schematically in Fig. 2(a). The
gain-loss contrast γ determines whether the PT symmetry
is manifest in the real (Hermitian-like) spectrum or is sponta-
neously broken [21]. In contrast to the Hermitian Hamiltonian
H, the Hamiltonian (13) does not respect chiral symme-
try but possesses pseudo-anti-Hermiticity, {�zT ,HPT } = 0,
where T denotes complex conjugation that here coincides
with the time-reversal operator. By construction, HPT re-
spects parity-time symmetry [ ˆPT ,HPT ] = 0, where ˆPT is
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the PT -symmetry operator with P represented by the back-
ward identity (exchange) matrix. The combined effect of these
two symmetries leads to a spectrum symmetric with respect to
both the real and the imaginary axis E → E∗ and E → −E∗.

A. Bulk states

The bulk k-space Hamiltonian is now given by

HPT (k) =
(

iγ v + we−ik

v + weik −iγ

)
, (14)

with the dispersion relation,

E (k) = ±
√

v2 + w2 + 2vw cos k − γ 2, (15)

that leads to the PT classification for the bulk states of the
system based on whether all, some, or none of the eigenvalues
are real. The corresponding PT phases are

γ < |v − w|, unbroken,

|v − w| < γ < |v + w|, partially broken, (16)

γ > |v + w|, fully broken,

which holds in the thermodynamic limit N → ∞. Observe in
Fig. 2(b) that, for short lattices (N ∼ 10) with few eigenstates,
the partially and fully PT -broken phases of the bulk occur for
the values of gain-loss contrast |v − w| < γ < |v + w| [31].

It has been shown [23,24] that as long as a bulk band
gap exists, the topological properties of this system can be
deduced again by a winding number of the same form as in
the Hermitian case Eq. (4). Hence, the system is topologi-
cally nontrivial for w > v (such that W �= 0) and γ < |v − w|
(open gap) or, equivalently, for w > γ + v.

B. Edge states

We now discuss the properties of the edge states in finite
lattices with the topologically nontrivial configuration. Note
that for any finite system with nontrivial topology the edge-
state eigenvalues collapse to an exceptional point at a small
critical value of γcr  |v − w| as seen in Fig. 2(c). Our main
goal is to determine the value of γcr at which the edge states
attain an exceptional point with zero energy and then ac-
quire imaginary energy eigenvalues. To construct an effective
two-state Hamiltonian H(eff )

PT , we use the same wave-function
ansatz of Eqs. (7) for the edge-states |L, R〉 and find that

HPT |L, R〉 = H |L, R〉 ± iγ |L, R〉 . (17)

Since H |L, R〉 = 0 for N → ∞, the above relation reveals
that the two states are also eigenstates of HPT in the
thermodynamic limit but with the corresponding imaginary
eigenvalues ±iγ . This suggests that the ansatz (7) is indeed
suitable for the non-Hermitian case as well. It is then easy
to see that the diagonal elements (imaginary potential) in

FIG. 3. Spatial profile of the eigenstates |�±〉 (absolute values of
the amplitudes at lattice sites n) for γ smaller (upper panel) and larger
(lower panel) than γcr . Bars correspond to the analytical Eq. (22) with
|L, R〉 of Eqs. (7) and the filled circles connected by dotted lines show
the exact numerical results.

Eq. (13) will translate to diagonal elements EL,R = ±iγ of
the effective Hamiltonian but will not affect the off-diagonal
elements of H(eff )

PT . Hence, the effective Hamiltonian is

H(eff )
PT =

(
iγ C
C −iγ

)
, (18)

with C given in Eq. (10). The eigenvalues of H(eff )
PT are given

by

E± = ±
√

C2 − γ 2, (19)

and the critical value of the gain-loss contrast γcr at which the
eigenvalues of the hybridized edge states are expected to turn
from real to imaginary is

γcr = |C| = v
1 − u2

1 − uN
u(N/2−1). (20)

In Fig. 2(c) we show the magnified spectrum of the system
in the vicinity of γcr obtained from exact diagonalization of
the full Hamiltonian (13) and compare it with the analytical
prediction of Eq. (19), revealing an excellent agreement.

The eigenstates of the effective Hamiltonian (18) corre-
sponding to the eigenvalues E± are again given by linear
superpositions of the edge-state |L, R〉,

|�+〉 = 1√
N

(cos θ |L〉 + sin θ |R〉),

|�−〉 = 1√
N

(sin θ |L〉 − cos θ |R〉), (21)

where θ ≡ 1
2 tan−1 ( C

iγ ) = − i
4 ln γ+C

γ−C is the complex mixing
angle and N is a normalization constant. In Fig. 3 we show the
wave-functions |�±〉 for two values of γ below and above the
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N

FIG. 4. Critical values of the gain-loss contrast γcr (in units of
w) vs the lattice length M for three different values of u = v/w =
5/6, 2/3, 1/2. Main panel shows the comparison between the ana-
lytical expression (20) (solid yellow, dashed orange, and dashed-dot
red lines) and the exact numerical values (circles, squares, and dia-
monds). The inset shows the relative error in γcr of Eq. (20) vs M
and u with the horizontal lines corresponding to the three values of u
used in the main panel.

PT -symmetry breaking point γcr = |C|. Note that below or at
the exceptional point γ � |C|, the eigenstates of H(eff )

PT have
equal contributions from both edge-states | 〈L, R|�±〉 | =
1/

√
2, similar to the Hermitian case of Eq. (12); whereas

above the exceptional point, γ > |C|, states |�±〉 have in-
creasingly larger contributions from |L, R〉, respectively, as
expected. In the limit of γ � |C|, the edge states completely
decouple and the eigenstates of the effective Hamiltonian (18)
reduce to the edge states |�±〉 → |L, R〉 with purely imagi-
nary energy eigenvalues E± → ±iγ , respectively.

In Fig. 4 we compare the analytical prediction of Eq. (20)
with the values of γcr obtained by exact diagonalization of
the full Hamiltonian (13) for different N and u = v/w and
extraction of the exceptional points. We find nearly perfect
agreement between the analytical and numerical results for
sufficiently small u � 2/3 and only small discrepancy for
larger u and small N . Note, finally, that, according to Eq. (20),
γcr decreases exponentially with increasing the system size N
and, hence, for sufficient large N the exceptional point for the
edge state eigenvalues occurs already in the close vicinity of
γ = 0.

IV. PT -SYMMETRIC SSH MODEL WITH ARBITRARY
GAIN AND LOSS

With minor modifications, the effective description of the
edge states presented above can be applied to a larger variety
of systems with arbitrary gain and loss rates with the only
restrictions being that they must respect the global PT sym-
metry whereas retaining the bulk energy gap. We, therefore,
consider once again an SSH chain with alternating gain and
loss rates γn on the successive sites, as described by the

Hamiltonian,

H̃PT = H + i
N∑

n=1

(−1)(n−1)γn |n〉 〈n| , (22)

where H is the Hamiltonian of Eq. (1), whereas the global PT
symmetry requires that

γn = γN−n+1. (23)

We again construct an effective two-state Hamiltonian
for the edge states |L, R〉 of Eqs. (7). As before, the off-
diagonal elements of the effective Hamiltonian remain the
same 〈L|H̃PT |R〉 = 〈R|H̃PT |L〉∗ = C, whereas for the diag-
onal elements and we have

EL ≡ 〈L|H̃PT |L〉 = i
N∑

n=1

(−1)(n−1)γn

∣∣cL
n

∣∣2

= iγ̄ , (24a)

ER ≡ 〈R|H̃PT |R〉 = i
N∑

n=1

(−1)(n−1)γn

∣∣cR
n

∣∣2

= −iγ̄ , (24b)

where

γ̄ ≡
∑N/2

n=1 γ2n−1u2(n−1)∑N/2
n=1 u2(n−1)

(25)

is the effective gain and loss rate for states |L〉 and |R〉, respec-
tively. Hence, the effective Hamiltonian is

H̃(eff)
PT =

(
iγ̄ C
C −iγ̄

)
, (26)

with the eigenvalues (19) and eigenvectors (22) with the re-
placement γ → γ̄ . The critical value of γ̄ at which the edge
states attain an exceptional point are γ̄cr = |C|.

To verify our analytical predictions for the general model
in Eq. (22), we consider three different spatial distributions of
the complex potential γn ∈ [0,U ] for n = 1, 2, . . . , N/2,

γn = U
N/2 − n

N/2 − 1
, (27a)

γn = U
n − 1

N/2 − 1
, (27b)

γn = Urn, (27c)

which satisfy Eq. (23) for n = N/2 + 1, N/2 + 2, . . . , N .
Here case (a) corresponds to γn linearly decreasing from the
edges to the center of the chain; case (b) corresponds to γn lin-
early increasing from edge to center; and case (c) corresponds
to arbitrary γn with rn ∈ [0, 1] being uniformly distributed
random numbers as we illustrate in the top panels of Fig. 5.
In the middle panels of Fig. 5 we plot the critical values of γ̄cr

at which the edge-state eigenvalues collapse to an exceptional
point as predicted analytically γ̄cr = |C| and obtained numeri-
cally via exact diagonalization of the full Hamiltonian (22) for
different N’s and u = v/w’s. In all cases, we find good agree-
ment between the analytical and the numerical calculations.
The largest deviation between the analytical and the numerical
values of γ̄cr are obtained for u � 2/3 and small N � 10
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(a) (b) (c)

N N N

FIG. 5. PT -symmetry breaking in SSH chains with arbitrary gain and loss. Top panels illustrate the three different imaginary potentials for
the Hamiltonian (22) given by Eqs. (27a)–(27c), respectively. Middle panels show the critical values of γ̄cr (in units of w) vs the chain length N
for u = w/v = 5/6, 2/3, 1/2 (same line and symbol styles and color code as in Fig. 4) obtained numerically (symbols) and analytically (lines).
Bottom panels shown the critical values of the potential amplitudes U (in units of w) in Eqs. (27) that correspond to γ̄cr in the middle-panel
plots.

especially for case (b) with the maximum of the potential
in the middle of the chain γN/2 = U . In the bottom panels
of Fig. 5 we show the values of U = Ucr corresponding to
the exceptional points (γ̄ = γ̄cr) obtained from the numerical
simulations. Ucr is largest for case (b) since the wave functions
of the edge states that decay away from the boundaries are less
affected by the stronger imaginary potential in the middle of
the chain. Now the potential in the vicinity of n = N/2 can
take large values γn ∼ |w − v|, comparable to the bulk gap.
But the strong potential in the middle of the chain significantly
affects the spectrum of the bulk which, in turn, can perturb
the zero-energy edge states. This explains the largest deviation
between the analytically predicted and numerically calculated
values of γ̄cr for case (b) with large u and small N for which
the edge-state wave functions have relatively large amplitudes
at the middle of the chain.

V. CONCLUSIONS

To summarize, we have studied the single-particle non-
Hermitian, PT SSH model in the topologically nontrivial
configuration and derived an effective analytical model for the
edge states in finite lattices. Our effective model accounts for

the evanescent coupling between the edge states, accurately
describes their properties, and gives physically transparent
interpretation for the PT -symmetry breaking for the edge
states, which we verified by exact numerical calculations.

Our effective model neglects the interaction between the
edge and the bulk states. It is, therefore, valid when the cou-
pling C between the edge states is sufficiently smaller than the
gap separating them from the bulk states |C|  |v − w| since
otherwise the hybridized edge levels will approach the bulk
levels and their interactions cannot be neglected. Since the
bulk gap is closing when u = v/w → 1, whereas the coupling
between the edge states, and thereby their splitting |C| ∝ uN/2

is stronger for shorter lattice length N , our approach yields
accurate results for sufficiently small u < 1 and large N >

10. For larger u and/or smaller N , inclusion of perturbative
corrections due to the interaction of the edge states with
the bulk states will become necessary for obtaining accurate
results.

The studied model is experimentally relevant as the ordered
and disordered non-Hermitian Hamiltonians (13) and (22)
can be physically implemented by the addition of alternating
optical gain and loss in a lattice of coupled optical elements,
such as waveguides or cavities that have been realized in a
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number of recent experiments [25,27]. As an extension of the
present ppaper, it would be interesting to consider topologi-
cally nontrivial interfaces between finite SSH sublattices and
explore the resulting localized zero-energy modes and their
effective couplings for robust quantum information storage
and transfer purposes. Another interesting research direction

could be to develop effective models for higher-order edge
states in multidimensional topological systems [47].
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