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Analyzing quantum synchronization through Bohmian trajectories
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We analyze quantum effects involved in continuous variable synchronization between two self-sustaining res-
onators in the framework of Bohmian mechanics. Bohmian trajectories provide visual descriptions of significant
nonclassical dynamics, which allow us to characterize the level of quantum synchronization more intuitively
compared with only utilizing some designed synchronization measures. It is found that in the quantum limit,
the Bohmian trajectories will deviate from their corresponding semiclassical limit cycle behavior after they are
distorted by the quantum potential. We explore the roles of zero-point fluctuation, superposition, and nonlocal
correlation in synchronization dynamics, corresponding to the oscillators in a coherent state, superposition state,
and entanglement state, respectively. We also explore the influence of squeezed Hamiltonian on spontaneous
synchronization.
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I. INTRODUCTION

The driven or spontaneous synchronization behavior [1,2]
in microcosmic regime, namely quantum synchronization
phenomenon, has recently attracted much attention in the field
of quantum optics and quantum control. In the last decade,
people have predicted and explored the possibility of syn-
chronizing various quantum models, including spin subatomic
particles and ensemble [3–10], Bose-Einstein condensation
[11], quantum mechanical resonators [12–34], and cavity and
circuit quantum electrodynamics system [4,7,35,36]. Among
them, some representative schemes have been verified by ex-
perimental observations, most of which focus on continuous
variable synchronization in cavity optomechanical systems
(OMS) [37–39]. Concepts related to quantum synchronization
are also active in the research of fundamental quantum the-
ory, for example, cooperative synchronization is considered
to be related to other quantum correlations [4,14–16,18,20],
and provides explanations for the deep mechanisms of some
quantum phenomena, such as phase transition [40,41] and
spontaneous breaking of time translational symmetry in quan-
tum many-body physics [19,42]. In the area of quantum
information processing, quantum synchronization also shows
its potential for the preparation of quantum entanglement re-
sources [9] and the establishment of quantum networks [25].

Diverse microcosmic synchronization phenomena have
inspired people to phenomenologically propose quantum
synchronization definitions and measures from different per-
spectives, while these different versions are not compatible
with each other [3,4,16,18,28,34,43]. Unlike concepts that are
unique to quantum mechanics (e.g., entanglement), a con-
vincing definition or description of quantum synchronization
needs to respect the classical synchronization theory and be
consistent with it in the classical limit. Previous research
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has attempted to use mean-field theory to analyze quantum-
classical synchronization crossover, where the expectation
value with respect to the observable operator of the quan-
tum system is considered as the classical dynamics, and the
quantum properties are reflected by the fluctuations around
the classical orbit [12–14,18,21,23,25,32]. Intuitively, this un-
derstanding presupposes that the quantum state corresponds
to a single-peaked symmetric wave function in coordinate
space such that the expectation value always has approxi-
mately the maximum probability of occurrence, so that its
trajectories can be considered as the principal part of the dy-
namics. Conversely, this interpretation is no longer valid when
the quantum state is of non-Gaussian or nonclassical proper-
ties [17,36,44,45]. Another idea for connecting classical and
quantum synchronization is treating the results of quantum
measurement with respect to quantum state as classical vari-
ables, which can be characterized by classical synchronization
theory [18,46]. The controversial aspect of this treatment is
that one has to face measurement-induced decoherence or col-
lapse, and it levels regret that the synchronization theory relies
on the measurement basis rather than on a purely dynamical
analysis. This defect will become critical in the analysis of
discrete variables synchronization as one has to consider var-
ious forms of positive operator-valued measurement (POVM)
[47–50] instead of only homodyne or heterodyne measure-
ment in continuous variable cases [51–53].

Moreover, a rigorous synchronization analysis requires ex-
amining the dynamic process of the system instead of only
discussing certain states, even though the selected states are
represented, such as the corresponding steady states [54].
In the classical regime, dynamical processes of a system
are generally analyzed by deriving its effective potential
[12,13,20,31,55], or by considering some non-Markovian fac-
tors, i.e., the synchronization measure of a certain moment
t does not depend entirely on the state corresponding to
that moment but requires the consideration of a segment of
continuous trajectory in the time domain, such as the Pear-
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son’s correlation coefficient [14–16,31,33,46]. Therefore, it
is urgent to define a c-number potential and trajectory of a
quantum system if one expects that the synchronization theory
can be extended to the quantum regime.

For these purposes, we attempt to look for new perspectives
on quantum synchronization and among them, synchroniza-
tion analysis based on Bohmian mechanics may emerge as a
potential alternative. Differing from the standard Copenhagen
interpretation, Bohm proposed a quantum theory in 1952 that
interprets a quantum system as an ensemble that is influ-
enced by a quantum potential excited by its wave function,
which is renamed a guided wave [56,57]. Here, we will not
comment on the contribution of Bohm’s interpretation to the
fundamental concepts of quantum mechanics, however, it is
undeniable that it offers a broad viewpoint on microscopic
or mesoscopic properties and allows for intuitive visualiza-
tion of quantum phenomena in terms of Bohmian trajectories
[58–61]. For example, in the perspective of Bohm’s interpre-
tation, the quantum tunneling mechanism can be intuitively
understood as the quantum potential filling the classical po-
tential well, leading to a fraction of particles with higher
initial energy being sufficient to cross the classical obstacle
[62]. Subsequent research characterized further nonclassical
phenomena, such as entanglement [63,64] and uncertainty
principle [65,66], in the framework of Bohmian mechanics.
In Bohm’s interpretation, a quantum system is allowed to have
explicit trajectories and c-number potential energy (although
one degree of freedom is treated as a hidden variable), as
well as an explicit classical counterpart model by neglecting
the quantum potential, so it fits the challenges for analyzing
quantum synchronization mentioned above.

In this paper, we investigate quantum complete synchro-
nization and phase synchronization in the Bohmian picture
by considering mechanical resonators in optomechanical sys-
tems as a platform. By introducing classical reservoir-system
interaction into a quantum Hamilton-Jacobi equation, we
generalize the Newton-like equations with respect to the
Bohmian trajectories to a series of Bohmian-Langevin equa-
tions that can describe gain-dissipation balance mechanism
in a quantum self-sustaining system [17,55]. These Bohmian
trajectories correspond to wave function as the solution of a
stochastic Schrödinger equation [52], which is sufficient to
give a complete representation of quantum synchronization to
compared that obtained by a Lindblad master equation [33].
We obtain the classical synchronization phase diagram of this
model as a reference, subsequently, under the same classical
parameter conditions, we examine the influence of signifi-
cant nonclassical quantum effects, represented by zero-point
fluctuation, superposition, and nonlocal correlations, on the
synchronization, respectively, by analyzing the correspond-
ing Bohmian trajectories. In addition, we also explore the
influence of the squeezing Hamiltonian [28] on quantum syn-
chronization.

The paper is organized as follows: In Sec. II, we investigate
the self-sustaining oscillation behavior with respect to the
oscillators of OMS in the Bohmian picture. In Sec. III, we
analyze the synchronization phase diagram under the clas-
sical limit. Analysis of quantum synchronization based on
Bohmian trajectories is given in Sec. IV and we finally sum-
marize the results in Sec. V.

II. SYSTEM OPEN DYNAMICS AND BOHMIAN QUANTUM
TRAJECTORIES OF MULTIMODE OMS

The model we considered consists of two mechanical
resonators optomechanically coupled to a high finesse Fabry-
Pérot cavity driven by a pump laser beam, which will induce
self-sustained limit cycles under appropriate parameters
[13,31,55,67]. The two oscillators are also mutually interact-
ing with each other via a phonon-exchange interaction with
intensity μ [18,68–70]. Experimentally, the considered model
can also be implemented by a standard OMS coupled with
another free mechanical resonator by phonon interaction after
a parameter transformation [31,68]. In a rotating frame de-
fined by exp(−iωca†a), the system Hamiltonian in the second
quantization representation reads:

H/h̄ = �â†â + iE (â† − â) − μ(b̂†
1b̂2 + b̂†

2b̂1)

+
∑
j=1,2

ωm jb̂
†
j b̂ j − g jâ

†â(b̂†
j + b̂ j ). (1)

In this expression, â (b̂ j) is the annihilation operator of the
optical (the jth mechanical) field and ωc (ωm) is the cor-
responding eigenfrequency. gj is the single-photon coupling
coefficient of the radiation pressure interaction. The pump
laser is of intensity E and frequency ωd and � = ωc − ωd is
the detuning between the frequency of cavity and driving. By
using the transformation

â =
√

mc�

2h̄
x̂c + i

√
1

2h̄mc�
p̂c,

b̂ j =
√

mjω j

2h̄
x̂ j + i

√
1

2h̄m jω j
p̂ j, (2)

the Hamiltonian (1) can be rewritten in dimensional coordi-
nate representation:

H =
(

1 −
∑
j=1,2

g j

�Aj
x̂ j

)(
p̂2

c

2mj
+ 1

2
mc�

2x̂2
c

)

+ 2EAc

h̄
p̂c − μ

2

(
x̂1x̂2

A1A2
+ A1A2

h̄2 p̂1 p̂2

)

+
∑
j=1,2

p̂2
j

2mj
+ 1

2
mjω

2
j x̂

2
j , (3)

where mj and Aj = √
h̄/2mjω j are the effective mass and the

zero-point fluctuation amplitudes for the oscillators. Analo-
gous to the case of oscillators, we define the effective mass of
the cavity field as mc = h̄/2�A2

c , where Ac is the correspond-
ing zero-point fluctuation amplitudes. Note that the cavity
field will have a negative effective mass corresponding to the
blue detuning (� < 0) case [71,72].

The one-dimensional Schrödinger equation in coordinate
representation is defined by expressing momentum operators
as p̂ j = −ih̄∇ j = −ih̄∂x1 and p̂c = −ih̄∇c = −ih̄∂xc , which
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reads:

ih̄
∂ψ

∂t
=

[(
1 −

∑
j=1,2

g j

�Aj
x j

)(
− h̄2

2mj
∇2

c

)

− i2EAc∇c + μA1A2

2
∇1∇2

+
∑
j=1,2

(
− h̄2

2mj
∇2

c

)
+ V (xc, x j )

]
ψ, (4)

where V (xc, x j ) is the corresponding classical potential:

V (xc, x j ) =
(

1 −
∑
j=1,2

g j

�Aj
x j

)(
1

2
mc�

2x2
c

)

− μ

2

x1x2

A1A2
+

∑
j=1,2

1

2
mjω

2
j x

2
j . (5)

Now the wave function ψ is a complex function of di-
mensional coordinates (xc, x j) and time t , which can be
reexpressed as:

ψ (xc, x j, t ) = R(xc, x j, t ) exp

[
i
S(xc, x j, t )

h̄

]
, (6)

by introducing two real variables R and S. Substituting Eq. (7)
into the Schrödinger equation (5) and following the standard
procedure for deriving Bohm potential [56], we can obtain the
quantum Hamilton-Jacobi equation as:

∂S

∂t
+ T (xc, x j, t ) + V (xc, x j, t ) + U (xc, x j, t ) = 0. (7)

T and V now can be regarded as kinetic energy and poten-
tial corresponding to a classical ensemble, and they together
constitute a classical Hamiltonian:

Hc = T (xc, x j, t ) + V (xc, x j, t )

=
(

1 −
∑
j=1,2

g j

�Aj
x j

)
(∇cS)2

2mc

+ 2EAc

h̄
∇cS − μ

2

A1A2

h̄2 ∇1S∇2S

+
∑
j=1,2

(∇ jS)2

2mj
+ V (xc, x j, t ), (8)

and U (xc, x j, t ) is the quantum potential in Bohm’s interpre-
tation, which is expressed as:

U = −
(

1 −
∑
j=1,2

g j

�Aj
x j

)
h̄2

2mc

∇2
c R

R

+ μA1A2

2

∇1∇2R

R
−

∑
j=1,2

h̄2

2mj

∇2
j R

R
. (9)

We emphasize here that, because the Hamilton-Jacobi equa-
tion we have obtained is equivalent to Schrödinger equation,
all system’s quantum properties have already been contained
in the above quantum potential U , which will vanish in the
classical limit (h̄ → 0).

By defining the conjugate quantities as (xc, ∇cS) and
(x j,∇ jS), the Hamilton-Jacobi equation can be transformed
into a series of Newton-like equations including quantum
forces −∇cU and −∇ jU acting on the system, which can be
written as:

dt xc =
(

1 −
∑
j=1,2

g j

�Aj
x j

)
∇cS

mc
+ 2EAc

h̄
,

dt∇cS = −
(

1 −
∑
j=1,2

g j

�Aj
x j

)
mc�

2xc − ∇cU,

dt x j = ∇ jS

mj
− μ

2

A1A2

h̄2 ∇3− jS,

dt∇ jS = − mjω
2
j x j + μ

2

x3− j

A1A2
− ∇ jU

+
(

g j

�Aj

)(
(∇cS)2

2mc
+ 1

2
mc�

2x2
c

)
. (10)

In Bohm’s theory, the interpretation of generalized momen-
tum ∇cS and ∇ jS of each trajectory are regarded as hidden
variables but not observations of momentum measurements
of a quantum state, so that their corresponding accuracy is
not constrained by the uncertainty principle. They will be
consistent with momentum measurements corresponding to
the standard quantum mechanical description, such as the mo-
mentum errors considered in previous CV quantum complete
synchronization, by introducing a von Neumann measurement
process [56].

Through the similar transformation to those in Eq. (2):
α = √

mc�/2h̄xc + i
√

1/2h̄mc�∇cS = (qc + ipc)/
√

2 and
β = √

mjω j/2h̄xc + i
√

1/2h̄m jω j∇ jS = (q j + ip j )/
√

2, we
rewrite Eq. (11) into dimensionless equations for convenient:

α̇ = −i

[
� −

∑
j

g j
(
β j + β∗

j

)]
α + E − i∇̃cŨ ,

β̇ j = −iωm jβ j + i
∑

j

g j |α|2 + iμβ3− j − i∇̃ jŨ , (11)

with the dimensionless quantum potential:

Ũ = −
(

� −
∑
j=1,2

g j
(
β j + β∗

j

)) ∇̃2
c R

R

+ μ

2

∇̃1∇̃2R

R
−

∑
j=1,2

ω j

∇̃2
j R

R
, (12)

where the modified Laplace operators ∇̃ j = ∂q j and ∇̃c = ∂qc .
An isolated OMS can be completely characterized by

Bohmian trajectories obtained by Eq. (11) with correct ini-
tial conditions. However, the dissipation effect, including
the decay of the cavity and the influence of the Brown-
ian motion acting on the oscillators, can not be ignored
if we focus on the phenomenon dominated by the nonlin-
ear effect. Dissipation can also be analyzed in Bohmian
representation by considering all the freedom of reservoir
and reservoir-system interaction and the previous research
related to open quantum system theory show the correspond-
ing Hamiltonian are Hr = ∑

k (ωkâ†
k âk + ∑

j=1,2 ωkb̂†
j,k b̂ j,k )
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and Hrs = νc(ωk )â†
k â + ∑

j=1,2 ν j (ωk )b̂†
kb̂ j + H.c., respec-

tively [25,73,74]. Here we assume the reservoir is expected to
behave almost classically, in particular, the quantum potential
and force induced by Hr and Hrs are negligible [57]. Under
this hypothesis, reservoir and reservoir-system interaction will
be described by classical Hamiltonian obtained by replacing
the operators in Hr and Hrs with c numbers. After solving the
degrees of freedom of the reservoir and substituting the solu-
tions into Eq. (11), we can obtain a set of differential-integral
equations as:

α̇ = − i

[
� −

∑
j

g j
(
β j + β∗

j

)]
α + E − i∇̃cŨ ,

−
∑

k

νc(ωk )e−i(ωk−ωc )(t−t0 )ak (t0)

−
∑

k

∫ t

t0

dt ′e−i(ωk−ωc )(t−t ′ )α(t ′),

β̇ j = − iωm jβ j + i
∑

j

g j |α|2 + iμβ3− j − i∇̃ jŨ

−
∑

k

ν j (ω j,k )e−i(ωk−ωm, j )(t−t0 )b j,k (t0)

−
∑

k

∫ t

t0

dt ′e−i(ωk−ωm, j )(t−t ′ )β(t ′). (13)

By assuming that the coupling intensity of reservoir-system
interaction is a flat spectrum without frequency dependence,
the above differential-integral equations will degenerate back
to the following Langevin equation without any memory
effect:

α̇ =
[
−κ − i

(
� −

∑
j

g j
(
β j + β∗

j

))]
α

+ E − i∇̃cŨ +
√

2καin,

β̇ j = (−γ j − iωm j )β j + i
∑

j

g j |α|2

+ iμβ3− j − i∇̃ jŨ + √
2γ jβ j,in, (14)

where κ and γ j are amplitude decay rates of the cavity and
mechanical oscillator, respectively. αin and βin are the input
reservoir noise. Under Markovian approximation, they are as-
sumed to be white Gaussian noises obeying standard correla-
tion function: 〈αin(t )∗αin(t ′)〉 = δ j j′/2 and 〈βin(t )∗βin(t ′)〉 =
(n̄b + 1/2)δ j j′ , where n̄b = [exp(h̄ω j/kbT ) − 1]−1 is the
mean occupation number of the mechanical bath and it gauges
the temperature T of the system [75]. In the case of me-
chanical oscillators are of high-quality factors (ωm, j/γ j 	 1),
the dissipation terms −κα and −γ jβ j can well correspond
to a non-Hermitian Hamiltonian Heff/h̄ = (� − iκ )â†â +∑

j (ωm, j − iγ j )b̂
†
j b̂ j . Moreover, we can also reconstruct a

stochastic Hamiltonian according to the stochastic fluctua-
tion noise terms, so that Langevin equations of Bohmian
trajectories can well correspond to a stochastic Schrödinger

equation [52]:

ih̄dt |ψ̃〉 = Heff|ψ̃〉 + ih̄
∑

k

ξkLk|ψ̃〉, (15)

where the five Lindblad operators are L1 = √
2κ â, L2 =√

2γ1(n̄b + 1)b̂1, L3 = √
2γ1n̄bb̂†

1, L4 = √
2γ2(n̄b + 1)b̂2, and

L5 = √
2γ2n̄bb̂†

2, respectively, and ξk = dWk/dt is a white
noise and Wk corresponds to a Wiener stochastic increments.
In this expression, wave vector |ψ̃〉 is an unnormalized state
vector since up to now we only consider the Hamilton-Jacobi
equation part of Bohm’s interpretation. Considering that the
flow conservation equation will preserve the norm of quantum
state and respecting the fact that the classical environment
will not modify the flow equation under our assumption, we
finally map the Langevin equations to the normalized form of
Eq. (15) [33,52]:

idt |ψ〉 =
[

Heff

h̄
+ i

∑
k

〈Lk + L†
k 〉

2

(
Lk − 〈Lk + L†

k 〉
4

)]
|ψ〉

+ i
∑

k

ξk

(
Lk − 〈Lk + L†

k 〉
2

)
|ψ〉, (16)

and the above stochastic Schrödinger equation will reduce to
following standard Lindblad master equation:

ρ̇ = − i[H/h̄, ρ] + κL[â]ρ

+
∑
j=1,2

γ j (n̄b + 1)L[b̂ j]ρ + γ j (n̄b)L[b̂†
j]ρ, (17)

by taking the average over stochastic wave vector |ψ〉. Here
L[ô]ρ = 2ôρô† − ô†ôρ − ρô†ô is the standard form of the
Lindblad superoperator. Equations (15) and (16) can help
us simplify the calculation or save computational resources.
In particular, when the corresponding energy of the whole
system is in the order of several quanta (〈â†â〉 ∼ 〈b̂†

j b̂ j〉 ∼
[100, 101]), we can use a truncated Hilbert space to simulate
the stochastic Schrödinger equation instead of adopting the
drift-diffusion equation, and a convenient way of obtaining
Bohmian trajectories is to solving Eqs. (15) or (16) for the
wave function in Fock basis, and then to use the relations,

|m〉 → ψm(q) = 1√
2mm!

√
π

Hm(q)e(−q2/2), (18)

and

R2 = Re(ψ )2 + Im(ψ )2,
(19)

S = tan−1[Im(ψ )/Re(ψ )],

and substituting ∇̃cS and ∇̃q j S into Eq. (14) [56].
Now let us reexamine the above derivations; the only

approximation we adopted is regarding the reservoir as clas-
sical ensembles, which results in that there is no related
correction term induced by the dissipation in the expression
of the quantum potential. In contrast, other quantum effects
are completely contained in Langevin equations of Bohmian
trajectories, including quantum interference or quantum
entanglement among subsystems.
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FIG. 1. Schematic diagram of an OMS consists of two mem-
branes. Here one mechanical resonator coupled with the other
resonator by a beam-splitter interaction.

III. SYNCHRONIZATION CORRESPONDING
TO CLASSICAL LIMIT

Before analyzing synchronization in the quantum regime,
as a comparison, here we briefly introduce some correspond-
ing synchronization properties under the classical limit. In the
case the quantum potential can be ignored, the multimode
OMS we consider can be mapped to a classical ensemble, in
which each element will satisfy a set of stochastic Langevin
equations. In fact, those stochastic equations have provided
a semiclassical perspective for the analysis of quantum syn-
chronization in previous work [17,22,31,46]. Once classical
synchronization occurs, the noise terms have only negligible
disturbance to the synchronization effect in this model: they
only promote the diffusion of the total phase, by contrast,
the behavior of amplitude and phase difference are bound
around their corresponding mean value due to the dissipa-
tion and correlation [31]. This implies that noiseless dynamic
equations are sufficient to give the relevant information of
synchronization, which can be written as:

α̇ =
[
−κ − i

(
� −

∑
j

g j
(
β j + β∗

j

))]
α + E ,

β̇ j = (−γ j − iωm j )β j + i
∑

j

g j |α|2 + μβ3− j, (20)

where α and β j can also be regarded as mean values corre-
sponding to the optical field and oscillators of the classical
ensemble. Under the condition Egj/ωm j � 1, the general
solution of Eq. (20) can be described by the ansatz β j (t ) =
Bj + I jeiθ j [13,55], and one can approximately regard I j → 0
or Bj → 0 depending on whether each mechanical resonator
corresponding to an asymptotic stable or self-sustained limit
cycle dynamics. As it has been analyzed in Refs. [13,24,31]
that obvious phase synchronization can occur in this model
because the stable oscillator amplitudes (İ j ∼ 0) in the long-
time regime leading to the evolution of phase difference
θ− = θ1 − θ2 to satisfy a Kuramoto-type equation, in which
the coupling coefficient is related to the radio of two oscil-
lator amplitudes, which is sensitive to the intensity of the
radiation pressure g and phonon-exchange interaction μ. In

FIG. 2. (a), (b) Amplitude ratio [AR = log10(|β1|/|β2|)] and syn-
chronization phase diagrams in terms of P in the g-μ plane. The
black (dark) dashed line in each subfigure denote the boundary be-
tween asymptotic steady-state phase and limit cycle phase. The other
characteristic parameters of the OMS are ωm1 = 2π × 235 kHz and
ωm2 = 2π × 235.5 kHz, κ = 2π × 170 kHz, γ1 = γ2 = 20 Hz, and
E/ωm1 = 0.0184.

Fig. 2(a), we first show the amplitude ratio of the two oscil-
lators in the g-μ plane obtained from a long time numerical
solution of Eq. (20), and the corresponding synchroniza-
tion phase diagram, characterizing by a simple measure P =∫ T

0 cos[θ1(t ) − θ2(t )]dt/T , is plotted in Fig. 2(b). They show
that the contours of the two subfigures are well consistent with
each other. In the case of the phonon-exchange interaction
is weak, mode competition between two mechanical modes
occurs [76], and the corresponding amplitude ratio will first
reach |β1|/|β2| ∼ 20 and directly reverse to |β1|/|β2| ∼ 0.04,
accompanied by an in-phase or antiphase synchronization
transition. With the increase of μ, the gradually balanced
energy will inhibit the mode competition, so that the two
oscillators have close amplitudes while the phase is perfectly
locked, that is, they have achieved complete synchronization.

IV. QUANTUM SYNCHRONIZATION ANALYSIS BASED
ON BOHMIAN QUANTUM TRAJECTORIES

Now we explore the influence of quantum effects, mainly
coherence and nonlocality, on synchronization beyond classi-
cal dynamics by investigating the evolution of different initial
states under Hamiltonian (1). In the following discussion, we
will focus on the case of μ/ωm1 = 0.01 and g/ωm1 = 0.9629,
corresponding to the point A in the phase diagram Fig. 2 so
that we can study the case of phase synchronization and com-
plete synchronization simultaneously. In order to eliminate the
influence of classical dynamics on the system, the initial states
are prepared according to the following process: we first select
a class of quantum states whose mean values correspond to
the field operators â and b̂ j close to zero, and then through a
translation operation, we ensure that these states center at the
classical orbit corresponding to equation (20), that is:

|ψt0〉 = D(α)D(β1)D(β2)|φ〉, (21)

where D(α) = exp(αâ† − α∗â) and D(β j ) = exp(β j b̂
†
j −

β∗b̂ j ) are standard operation operators and we require that
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〈φ|b̂ j |φ〉 � |β j |. So the quantum properties of |ψt0〉 will de-
pend on the form of |φ〉 we selected.

The complete synchronization in the framework of
Bohmian mechanics is investigated by the coordinate errors
q j

1 − q j
2, where the superscript j denotes the jth Bohmian

trajectory of each oscillator. Considering that the quantum
potential may distort the single-mode oscillation behavior of
some trajectories, the phase synchronization is further deter-
mined by the Pearson’s correlation coefficient:

Cq j
1,q

j
2
(t,�t ) = δq j

1δq j
2√

δ
(
q j

1

)2 × δ
(
q j

2

)2
, (22)

where o = �t−1
∫ t+�t

t o(τ )dτ and δo = o − o. Based on the
Pearson’s coefficient, we define logarithmic Pearson’s corre-
lation coefficient C’ as:

C ′
q j

1,q
j
2
(t,�t ) = log2

[
1 − Cq j

1,q
j
2
(t,�t )

]
. (23)

The Pearson’s coefficient yield C = 1, 0, and −1 when the
system is zero-phase synchronized, unsynchronized, and π -
phase synchronized, so that the range of logarithmic Pearson’s
correlation coefficient C ′ is −∞ to 1, corresponding to the
system is zero-phase synchronized and π -phase synchronized,
respectively.

A. Quantum synchronization behavior induced
by zero-point fluctuation

We first discuss the effect of zero-point fluctuation on
quantum synchronization by setting |φ〉 = |0〉c|0〉m1|0〉m2, that
is, both the oscillators and the cavity field correspond to
vacuum states, in which case |ψt0〉 will become a coherent
state |φ〉 = |α〉c|β1〉m1|β2〉m2. The complete characterization
of a quantum system requires a series of Bohmian trajectories
with different initial conditions. In the following discussion,
for convenience, we only analyze those trajectories whose
initial condition of cavity field is qc = √

2〈ψt0 |ĉ|ψt0〉 and
the initial positions of each oscillator are set as nine differ-
ent values, which, respectively, are: qj (0) − √

2〈ψt0 |b̂ j |ψt0〉 =
0,±0.1,±0.2,±0.3,±0.4. We consider all possible combi-
nations of these initial positions, that is, a total of 81 Bohmian
trajectories are calculated to describe the quantum synchro-
nization behavior of the resonators. The values of these initial
positions are plotted in Fig. 3(a), where we classify identical
initial positions corresponding to oscillator 1 into one set
and mark them with the same color. In Fig. 3(b), we plot
the probability amplitude R(qc, q1, q2) of |ψt0〉 and the corre-
sponding quantum potential Ũ (qc, q1, q2) in coordinate space.
The contour lines show that a Gaussian wave packet with a
single peak corresponds to a monotonic repulsive potential,
which resists the amplitude noise suppression induced by
nonlinear dynamics, resulting in the Bohmian trajectories with
less bunching in phase space compared with semiclassical
trajectories. Dynamics behaviors of Bohmian trajectories are
shown in Figs. 3(c) and 3(d) corresponding to mechanical
resonator 1 and 2, respectively. These oscillating trajectories
can be regarded as a series of identical trajectories, which
are translated to different positions by quantum potential
energy according to the corresponding initial position. This

FIG. 3. (a) The initial positions corresponding to 81 Bohmian
trajectories we calculated. The corresponding trajectory of each
point is marked with the same color in the following subfigures.
(b) The z axis represents the normalized probability amplitude R̃ =
R(qc, q1, q2)/ max[R(qc, q1, q2)] with respect to the wave function
|ψt0 〉 and the contour lines corresponding to the dimensionless quan-
tum potential Ũ (qc, q1, q2). Here we fix the value of qc as qc =√

2Re(〈c〉). (c) and (d) The Bohmian trajectories corresponding to
the resonators 1 and 2, respectively. (e) Orbit of Bohmian trajectory
with respect of resonators 1 in the phase space span{q1, q̇1}. Here
the blue (lower) limit cycle corresponds to q1(0) = √

2〈ψt0 |b̂1|ψt0 〉,
q2(0) = √

2〈ψt0 |b̂2|ψt0 〉 (trajectory No. 41), and the purple (upper)
limit cycle corresponds to q1(0) = √

2〈ψt0 |b̂1|ψt0 〉 + 0.5, q2(0) =√
2〈ψt0 |b̂2|ψt0 〉 (trajectory No. 1). Here the evolution wave function

is numerically simulated in a (3 × 3)c ⊗ (40 × 40)m1 ⊗ (40 × 40)m2

Hilbert subspace with the Fock-state basis, and the other parameters
are the same as those of Fig. 1.

conclusion can also be reflected by parallel limit cycles in the
phase space span{q1, q̇1}, as shown in Fig. 3(e). Moreover,
the same colored trajectories in Fig. 3(c) almost coincide in
the subsequent evolution, which means that one resonator has
a weak effect on the evolution of the other one, that is, the
correlation between the two resonators is still weak, although
they are already synchronized in the classical regime.

Figure 4(a) illustrates that trajectories of coordinate differ-
ences are also almost parallel to each other. As a contrast, we
also plot the expected value of the coordinate error obtained
by simulating master equation Eq. (17) in this subfigure. It
can be also seen that the Bohmian trajectories do not provide
any more qualitative information except error fluctuation in
this case. These phenomena reveal that the repulsive effect of
the quantum potential only has negligible effect on quantum
synchronization in the framework of Bohmian mechanics.
Specifically, the zero-point fluctuation seems to be neither
enhanced nor disturbed by quantum synchronization, which
is different from the input Langevin noise induced by reser-
voir. This conclusion will be more obvious when investigating
phase synchronization, as shown in Fig. 4(b), the Pearson’s
coefficients corresponding to different trajectories are clus-
tered in a very small range. It is also worth noting that since
the considered Bohmain trajectories are determined by the
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FIG. 4. (a) The dashed blue lines are the 81 trajectories of coor-
dinate differences q j

1 − q j
2 obtained by Bohmian trajectories and the

solid green line denotes the corresponding expected value obtained
by simulating the master equation (17). (b) Logarithmic Pearson’s
correlation coefficients C correspond to the Bohmian trajectories.
Here the parameters are the same as those of Fig. 2.

stochastic Schrödinger equation (15), Fig. 4(a) actually re-
produces the conclusion in Ref. [33], that is, the stochastic
Schrödinger equation can provide consistent synchronization
analysis with that given by Lindblad master equation, at least
in the case of corresponding mixture of Gaussian state (limit
cycle state).

B. Synchronization between superposition or entangled states

In the case where |φ〉 is not a vacuum state, the considered
state |ψt0〉 will be a non-Gaussian state, which corresponds
to a Wigner function with a negative value and shows non-
negligible quantum properties. Here we mainly focus on the
relationship between entanglement and synchronization by
setting |φ〉 as a typical Bell-type entangled state:

|φ〉 = |0〉c ⊗ (g|00〉 + f eiθ |11〉)m1,m2, (24)

where |g|2 + | f |2 = 1. The translation operators D(α) and
D(β j ) corresponding to local unitary (LU) operations, so |φ〉
and |ψt0〉 are equivalent when only the properties of related
to entanglement are considered. In Fig. 5, we plot Bohmian
trajectories corresponding to the case of g = f , where |φ〉 has
the maximum degree of entanglement. Compared with the dy-
namic behavior shown in Figs. 3(c) and 3(d), Figs. 5(a)–5(d)
show that the two oscillators deviate from the semiclassical
cosine-type oscillation under the influence of the quantum
potential more obviously, and the shape of these trajectories
become sensitive to the initial position so that they are no
longer parallel to each other. Moreover, one oscillator signif-
icantly affects the dynamics behavior of the other oscillator
in this case, which is reflected in Figs. 5(a) and 5(b) that
the same-colored trajectories no longer coincide with each
other soon. It is worth noting that in Sec. IV A, we explained
that classical dynamics with zero-point fluctuation can cause
only weak correlation in the considered time regime. There-
fore, such apparent interaction between two oscillators can
be regarded as induced by quantum correlation. The analysis
of complete synchronization is shown in Figs. 5(e) and 5(f).
Even if the synchronized quantum states have the maximum
degree of entanglement, the dynamic behavior of their error is
not significantly different from the semiclassical case if only
the corresponding expected value is considered. The influ-
ence of quantum effect is manifested by errors of Bohmian
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FIG. 5. Characterization of quantum synchronization with re-
spect to entanglement state (24) by using Bohmian trajectories. The
left column (a), (c), (e), (g) corresponds to the case of g = f = 1/

√
2

and θ = 0 and the right column (b), (d), (f), (h) corresponds to
the case of g = f = 1/

√
2 and θ = π/2. The Bohmian trajectories

corresponding to the resonators 1 and 2 are shown in (a), (b) and
(c), (d), respectively. In (e) and (f), the dashed blue lines are the
trajectories of coordinate differences q j

1 − q j
2 obtained by Bohmian

trajectories and the solid green line denotes the corresponding ex-
pected value obtained by simulating the master equation (17). (g) and
(h): Logarithmic Pearson’s correlation coefficients C ′ correspond to
the Bohmian trajectories. Here the parameters are the same as those
of Fig. 2.

trajectories, which are alternating between two states of
bunching and repelling others. Therefore, we can conclude
that the influence of entanglement on the synchronization in
the whole dynamics is not invariable but presents an effect
of alternately enhancing and disturbing synchronization. The
conclusion with respect to the phase synchronization is sim-
ilar, and the Pearson’s factor fluctuates in a larger range. In
Figs. 6(a) and 6(c) we show that the probability amplitude
and the corresponding quantum potential with respect to the
entangled initial state |ψt0〉 have a more complex shape, which
is the essence of entanglement inducing relevant dynamics.
The case corresponding to ωm1t = 250 is shown in Figs. 6(b)
and 6(d), which shows that the quantum state will degenerate
to a single-peak wave function without superposition under
the influence of noise. At this time, the quantum effect will
correspond to the negligible repulsive potential, similar to the
case of coherent states.

We then consider the second entangled state, which is
expressed as:

|ψt0〉 = N
(∣∣ψ1

t0

〉 + ∣∣ψ2
t0

〉)
= N (|α〉c|β1〉m1|β2〉m2 + eiθ |α′〉c|β ′

1〉m1|β ′
2〉m2), (25)

where N = (2 + e−iθ 〈α′β ′
1β

′
2|αβ1β2〉 + c.c.)−1/2 is the nor-

malization constant. The physical meaning of the entangled
state in this expression represents the coherent superposition
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FIG. 6. The z axis represents the normalized probability ampli-
tude R̃ = R(qc, q1, q2)/ max[R(qc, q1, q2)] with respect to the wave
function |ψ〉 at ωm1t = 0 (a), (c) and ωm1t = 250 (b), (d), respec-
tively. The contour lines corresponding to the dimensionless quantum
potential Ũ (qc, q1, q2). Here we set θ = 0 for (a) and (b) and θ =
π/2 for (c) and (d). Here the parameters are the same as those of
Fig. 5.

of two possible synchronization states, while in the above
discussion, we translate the entangled quantum state to a point
on the classical limit cycle, that is, a single synchronization
state with entanglement. Intuitively, synchronization will not
only reflect the respective properties of |ψ1〉 and |ψ2〉, but
also be affected by their interference. For each oscillator, we
consider three sets of initial positions, which are⎧⎪⎨

⎪⎩
√

2〈ψ1
t0 |b̂ j |ψ1

t0〉 + {0,±0.05,±0.1},√
2〈ψ2

t0 |b̂ j |ψ2
t0〉 + {0,±0.05,±0.1},√

2〈ψt0 |b̂ j |ψt0〉 + {0,±0.05,±0.1},

(26a)

(26b)

(26c)

and all possible combinations of each set are calculated,
that is, we use a total of 15 × 15 = 225 Bohmian trajecto-
ries to characterize the dynamics of the two oscillators. We
use different colors to distinguish trajectories whose initial
positions belong to different sets and plot their dynamic be-
havior in Fig. 7. Roughly speaking, the three sets of initial
positions will induce the trajectories to have three kinds of
phases. Nevertheless, the phase differences between the tra-
jectories corresponding to oscillator 1 and oscillator 2 are
still locked, as shown in Figs. 7(e) and 7(f). In Figs. 8(a)
and 8(b), we select and plot some representative trajecto-
ries, which are mainly concentrated near the expected value
qj (0) = √

2〈ψt0 |b̂ j |ψt0〉 and are more sensitive to the quantum
interference effect. Bohmian trajectories corresponding to the
solid lines with opposite phases represent, respectively, the in-
dependent properties of |ψ1〉 and |ψ2〉, while the dotted lines
show the alternating swing between these two phases caused
by coherent superposition. In order to explain the phase swing
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FIG. 7. Characterization of quantum synchronization with re-
spect to entanglement state (25) by using Bohmian trajectories. The
left column (a), (c), (e) corresponds to the case of θ = 0 and the right
column (b), (d), (f) corresponds to the case of and θ = π/2. The blue
[top in (a)], red [middle in (a)] and purple [bottom in (a)] lines denote
those trajectories whose initial positions of oscillator 1 corresponds
to Eqs. (26a), (26b), (26c), respectively. Here the parameters are the
same as those of Fig. 2.

more intuitively, we select the upper trajectories in Figs. 8(a)
and 8(b) as the benchmarks, we calculate the correlation co-
efficients between them and the other two trajectories, and
show the result in Figs. 8(c) and 8(d). It is worth noting
that one can also observe two kinds of phase evolution in an
ensemble in the case of mixed synchronization composed of
mixed superposition ρ ∝ (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|) [17,22,31],
however, such kind of swinging between the two phases
is a unique phenomenon caused by coherent superposition
|ψ〉 ∝ (|ψ1〉 + |ψ2〉). The probability amplitude and the cor-
responding quantum potential of |ψt0〉 are plotted in Figs. 8(e)
and 8(f). It can be seen that they correspond to a bimodal
structure, while each peak corresponds to repulsive potential
energy, and the part between the two peaks can induce a
relevant dynamic effect. An intuitive inference is that if the
peaks corresponding to a superposition state are far away in
the coordinate space, their interference effect will be weak,
while the Bohmian trajectories only represent the independent
properties of each peak, which is similar to the case of mixed
superposition.

C. Impact of squeezing on synchronization

Another issue worth exploring in quantum synchronization
is the effect of squeezing on synchronization. Reference [28]
has investigated a single self-sustaining quantum oscillator
driving by a squeezing Hamiltonian. The U(1) symmetry
in this model is destroyed by even small values of squeez-
ing while the oscillator has a nonclassical steady state,
which deviates significantly from the limit cycle state [34].
For the concept of spontaneous mutual synchronization,
recently, how it will be affected by some indirect squeez-
ing effect, such as the oscillators coupled with a squeezed
optical field in an OMS, is also discussed by Ref. [27].
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FIG. 8. (a) and (b) Representative trajectories selected from
Figs. 7(a) and 7(b), respectively. (c) and (d) The solid lines de-
note Pearson’s correlation coefficients between the top and the
middle trajectories in (a) and (b) and the dash lines are the
same factor between the top and the bottom trajectories. (e) and
(f) show the corresponding normalized probability amplitude R̃ =
R(qc, q1, q2)/ max[R(qc, q1, q2)] and the contour lines of the dimen-
sionless quantum potential Ũ (qc, q1, q2).

These previous works have obtained an intuitive conclu-
sion that squeezing interaction or squeeze state can optimize
quantum synchronization. From the perspective of Bohm’s
interpretation, we will reexamine this issue in this sec-
tion by adding squeezing-driven Hamiltonian to our model,
that is,

Hs/h̄ =
∑

j

iη j b̂
2e−i� + H.c., (27)

where η j is the squeezing parameter and � determines
the squeezing direction. In Figs. 9(a), 9(b), and 9(c), we
respectively show the dynamic behavior of the oscillator
coordinates, the coordinate error, and the phase correlation be-
tween oscillators. Compared with the case without squeezing
(η j = 0), the squeezing-driven case has a quantitative impact
on the shape and distribution of the Bohmian trajectories.
In Fig. 9(d), we plot the corresponding limit cycle orbits in
phase space. It can be seen that the limit cycle is extruded
into an ellipse. On the other hand, the limit cycles at different
positions are stretched to different degrees, resulting in those
Bohmian trajectories no longer being parallel to each other.
However, these effects are not enough to change the qual-
itative properties of quantum synchronization. As shown in
Fig. 9(e), the quantum potential induced by squeezing-driven
Hamiltonian still corresponds to a repulsive potential, so that
the synchronization exhibits properties similar to the case
without squeezing.

FIG. 9. Characterization of quantum synchronization with
squeezing-driven Hamiltonian by using Bohmian trajectories.
(a) The Bohmian trajectories corresponding to the resonators 1.
(b) 81 trajectories of coordinate differences q j

1 − q j
2 obtained by

Bohmian trajectories. (c) Logarithmic Pearson’s correlation coef-
ficients C ′ correspond to the Bohmian trajectories. (d) Orbit of
Bohmian trajectory with respect of resonators 1 in the phase
space span {q1, q̇1}. Here the blue (bottom) limit cycle corresponds
to q1(0) = √

2〈ψt0 |b̂1|ψt0 〉, q2(0) = √
2〈ψt0 |b̂2|ψt0 〉 (trajectory No.

41), and the green (top) limit cycle corresponds to q1(0) =√
2〈ψt0 |b̂1|ψt0 〉 + 0.5, q2(0) = √

2〈ψt0 |b̂2|ψt0 〉 (trajectory No. 1).
The purple (middle) limit cycle denotes the case of η = 0 as a
comparison. (e): The z-axis represents the normalized probability
amplitude R̃ = R(qc, q1, q2)/ max[R(qc, q1, q2)] with respect to the
wave function and the contour lines corresponding to the dimen-
sionless quantum potential Ũ (qc, q1, q2). Here the parameters are the
same as those of Fig. 2.

V. CONCLUSION

In summary, we have investigated the influence of quantum
effects on the continuous variable synchronization between
two self-sustaining resonators in the framework of Bohmian
mechanics. We have reexpressed the stochastic Schrödinger
equations in the Bohmian picture, so that the self-sustaining
limit cycle behavior induced by nonlinear and dissipation
mechanisms in an OMS can be characterized by a series of
Langevin equations with quantum potential. We have shown
that the corresponding Bohmian trajectories can provide
visual descriptions of quantum synchronization dynamics.
As examples, we have explored the roles of zero-point
fluctuation, superposition and, nonlocal correlation in syn-
chronization dynamics. We find that the zero fluctuation
corresponds to negligible repulsive potential, resulting in the
behavior of Bohmian trajectories similar to semiclassical
stochastic Langevin trajectories but with a more dispersed
distribution. In contrast, the non-Gaussian states correspond to
potential energy with complex shapes and the twisted trajec-
tories will deviate from the single-mode oscillation according
to different initial positions. Especially when we consider
the Schrödinger cat state composed of two different coherent
states on the limit cycle, the coherent superposition will in-
duce some trajectories swinging between the two states, which
can not be observed in the case of mixed synchronization.
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Finally, we discussed the influence of the squeezing Hamil-
tonian on quantum synchronization. Different from the case
of driven synchronization, the uncorrelated squeezed-driven
case does not induce obvious disturbance or enhancement on
spontaneous synchronization.

The self-sustaining dynamics of continuous-variable sys-
tems have been derived in the Bohmian picture, therefore, the
synchronization analysis based on Bohmian trajectories could
be extended to other forms of continuous-variable systems,
such as the synchronization phenomenon between two van
der Pol oscillators. On the other hand, the more significant

advantage of Bohmian mechanics is that it can give an in-
tuitive definition and analysis for discrete variable quantum
synchronization. The related discussion would be an interest-
ing subject for future investigations.
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