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To reveal origins of resonance characteristics of multilayer interference structures, we developed an ab initio
spatial coupled-mode theory using the approximations of general electromagnetic theory of wave propagation in
stratified media. In contrast to the conventional coupled-mode theory, the coefficients of developed coupled-mode
models, which describe the Fano resonance behavior of interference field enhancement, are given by analytical
functions of structural and optical parameters of the resonance systems. The results of analytical modeling
of low- and high-loss resonator systems supporting waveguide, Fabry-Pérot, symmetric, and antisymmetric
plasmonic normal modes agree very well with electromagnetic numerical simulations. We demonstrate also
that the conventional spatial phenomenological coupled-mode theory is accurate only for low-loss structures.
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I. INTRODUCTION

Optical resonances attract significant attention in the fields
of sensing, optical filtering, spectroscopy, and laser optics.
Photonic resonators are widely used as basic elements in
many practical photonic devices [1–4]. The electromagnetic
(EM) modes supported by single units can couple each other
when the units are in close proximity. The coupled systems
support hybrid modes with behavior different from that of the
uncoupled modes. The various forms of resonance responses
can be generated by controlling the coupling strength [5,6].
Understanding the nature of the resonances generated in the
near and far fields of single and coupled optical resonance
systems is of fundamental importance.

The resonance effects in interference or diffractive systems
can be numerically simulated by a variety of solvers within
the rigorous EM theory. Analytical solutions can be easily
obtained in frequency domain for one-dimensional planar
structures by using 2 × 2 transfer matrix methods [7,8]. Sim-
ulations of complex two- and three-dimensional structures in
the vast majority of cases require implementation of different
time- and resource-consuming numerical methods based on
the rigorous EM theory, e.g., rigorous coupled-wave analysis
RCWA [9], finite difference methods [10], and finite element
methods [11,12]. These approaches allow us to obtain spatial
distributions of amplitudes of local fields or plane waves,
but they require repeating computations over a discrete set
of spectral parameters to obtain key spectral information.
Since analyses of coupled resonance structures within these
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approaches provide overall results, it is difficult to extract
directly the individual effects associated with the excitation
and coupling of modes in the structures. Therefore, the ap-
proaches are not suited for gaining insights into the nature of
resonance processes and formation of resonance line shapes
[4,13–17]. Besides that, the traditional numerical approaches
based on repeating computations demonstrate a low efficiency
in complex and nonlinear optical problems.

Among various resonance effects in resonance structures,
Fano resonances exhibiting asymmetric line shapes have at-
tracted much interest in recent years. Originally the Fano
resonance was explained in terms of a quantum interference
between a continuum and a discrete state [13,14]. To re-
veal the origins of the Fano resonance in optical resonance
structures, coupled-mode theory (CMT) [4,18–20] was de-
veloped by introducing the notions of EM modes supported
by the elements of complex structures and describing their
coupling mechanisms in the form of first-order differen-
tial equations. Coupled-mode (CM) models can describe the
fields exhibiting both resonance and nonresonance behaviors
of the amplitudes. The development of fast and resource-
effective CMT-based formalisms is especially important in
three-dimensional linear and nonlinear applications [4,21],
e.g., design and optimization of integrated photonic compo-
nents for optical computing, trapping, switching, enhanced
spectroscopies, etc. Conventional temporal CMT [18,21–28]
approaches were initially developed in the waveguide op-
tics for analyzing the power transfer between modes, as
well as power incoupling and outcoupling processes. A
conventional spatial CMT framework [29] was presented
to describe reflection, transmission, scattering, and absorp-
tion in the interference and diffraction optics. The coupling
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mechanisms between the fields in coupled optical systems
can be also qualitatively explained by the classical model of
coupled harmonic oscillators (COs) in the form of second-
order equations [30–32]. In our previous studies, we have
demonstrated that the Fano resonances in angular attenuated
total reflection (ATR) spectra of multilayer planar coupled
plasmonic-waveguide and waveguide-waveguide systems can
be well described by the CO model [33,34]. The coupling
coefficients in the CM and CO models are introduced inde-
pendently from the parameters of structures as constants to
be estimated a posteriori by fitting procedures [19,20,35–37].
Therefore, the phenomenological approaches based on the
CM and CO models do not allow one to obtain relationships
between the parameters of structures and characteristics of
their resonance effects. Moreover, these simplified represen-
tations can be efficient in high-quality-factor (Q) resonances,
while they are violated in low-Q coupled resonances, which
are strongly influenced by nonresonance contributions and
high losses. To overcome these limitations, several ab initio
methods, based on implementing Maxwell’s equations, the
Feshbach technique [38], and quasinormal modes (QNM)
expansion, were proposed in time domain to develop rigor-
ous temporal CMT [4,39] and temporal quasinormal coupled
mode theory (QCMT) formalisms [40,41]. In contrast to these
theories in time domain, those in the spatial domain are not
yet well developed. To perform rigorous design and analysis
of resonance coupled systems in spatial domain, it is highly
demanded to develop a spatial CMT from first principles to
provide an analytical description of coupling formalism.

Recently, we proposed an alternative approach for con-
structing a spatial CMT for planar two- and three-layer
structures supporting surface plasmon polaritons (SPPs) at
metal-dielectric interfaces [15,42], and for three- and five-
layer metal-insulator-insulator (MIM) structures supporting
Fabry-Pérot modes [43]. We obtained Fano approximations
for resonances in angular spectra by using Taylor series of
Fresnel coefficients. Based on these approximations, we con-
structed CM models and determined the coefficients of CM
equations for the resonance and nonresonance field compo-
nents expressed by analytical functions of geometrical and
optical parameters of the structure. Using the developed spa-
tial CM models we explored various resonance effects in the
multilayer systems. Namely, we demonstrated shifts of SPP
propagation constant from the intrinsic values caused by the
absorption and SPP self-coupling through the adjacent layers,
and a reversal of shift direction depending on the stacking or-
der of the layers [15]. Furthermore, we clarified the influence
of losses in structures on the shift of propagation constant of
Fabry-Pérot modes [43]. Although the general form of the
obtained CM models appears to be the same, the derived
analytical expressions for coupling coefficients differ from
case to case. In addition to the SPP and Fabry-Pérot modes
discussed in our previous papers [15,43], there exists a variety
of EM normal modes supported by three-layer structures,
i.e., waveguide (WG) modes excited by evanescent waves
[44], Fabry-Pérot modes excited by propagating waves [45],
symmetric and antisymmetric plasmonic modes generated in
metal-dielectric-metal or dielectric-metal-dielectric structures
originating from coupling of two SPPs and excited by p-
polarized light [46,47]. Even though the excitation of these

EM modes in multilayer interference systems by plane waves
were widely described in the literature, no systematic analysis
based on the spatial CMT was reported so far to describe reso-
nance and coupling effects related with the modes. Extensions
of our previous spatial CM models to more general cases are
highly required.

In this work, we develop a generalized and analytically
validated spatial CMT based on rigorous EM theory for mul-
tilayer interference resonance systems. We provide formal
definitions in Sec. II A and derive analytical approximations
for resonance and nonresonance components in the field am-
plitudes from rigorous EM expressions in Sec. II B. Fano
expressions for amplitudes of internal and external fields in
three-layer and four-layer resonator systems are obtained in
Sec. II B and Sec. II C, respectively. Based on these approx-
imate expressions we derive the principal equations of the
spatial CMT in Sec. III A and Sec. III B, respectively. In
Sec. IV we validate the spatial CM models by comparing
the CM-based predictions with rigorous EM simulations for
three-, four-, and six-layer interference structures supporting
different kinds of the interference modes and demonstrate the
accuracy of our spatial CMT for various loss levels. The CM
simulations with constant coupling coefficients demonstrate
the inherent inaccuracy of conventional CMT. In contrast to
the conventional CMT, our CM models treat all nonreso-
nance components generated in optical interference systems
that eliminate an assumption on weakly coupled high-Q res-
onances. The present framework of analytical CM analysis
developed for coupled interference resonators brings strong
consistency to CMT, provides powerful tools for analyzing
the resonance origins, and leads to physical insights into res-
onance effects.

II. APPROXIMATIONS WITHIN
ELECTROMAGNETIC THEORY

In this section, extending our analytical approach for de-
velopment of spatial CM models for multilayer structures
and using the 2 × 2 transfer matrix method, we obtain gen-
eralized approximations for the resonance field enhancement
associated with the excitation of the normal modes supported
by a central layer (core) with a finite thickness sandwiched
between two semi-infinite layers (clads). The mode field of
this three-layer structure is established as a result of the in-
terference of two plane waves propagating in forward and
backward directions in the middle layer and is accompanied
by outgoing plane waves in the clad layers. The modes of
this type will be further referred to as interference modes,
and the multilayer structures incorporating the systems, which
support the interference modes, will be further referred to as
multilayer interference resonators. To model the excitation in
ATR configurations, we also consider a four-layer geometry.

A. Interference modes of three-layer systems

In this subsection, we briefly outline the type of interfer-
ence modes, which can be supported by three-layer structures.
Consider a general case of field excitation in three-layer struc-
tures as schematically shown in Fig. 1. In the multilayer
system, the layer Ll sandwiched between two semi-infinite
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FIG. 1. Refraction and reflection of plane waves at the interfaces
in a planar multilayer stack. Each layer Lk is characterized by the
dielectric constant εk . The complex amplitude of the harmonic wave
in kth layer Lk incident on the interface Ik,k+1 is denoted as Hk,k+1

with the reflection rk,k+1 and transmission tk,k+1 coefficients and that
in the layer Lk+1 incident on the interface Ik,k+1 as Hk+1,k with the
reflection rk+1,k and transmission tk+1,k coefficients.

layers Ll–1 and Ll+1 has a thickness of dl . H denotes the
amplitude of magnetic or electric fields in the cases of p or
s polarizations, respectively.

The exciting wave h+
l−1(x, z, α) = Hl−1,l exp[ik0(αx +

βl−1(α)z)] translating the field excitations in positive direction
along the axis z in the layer Ll–1 with the amplitude Hl−1,l
generates an interference field hl inside the layer Ll due to
multiple reflections of the transmitted field between the inter-
faces Il–1,l and Il,l+1 that can be written as (details can be seen
in Appendix A)

hl (x, z, α) = Hl,l+1(α) exp(ik0αx)[rl,l+1 1]

×
[

exp[−ik0βl (z − dl )]

exp[ik0βl (z − dl )]

]
, (1)

where the x and z components of the propagation constant
are given by k0α and k0βl , respectively; k0 = 2π/λ0 is the
wave number of free space, λ0 is the wavelength in free
space; α and βl = √

εl−α2 will be referred to as normalized
propagation constants along the x and z axes, respectively. For
α2 > Re(εl ), βl has a nonzero imaginary part, which leads to
the exponential decay of the wave amplitude away from the
interface along the z axis. Such plane waves are referred to as
evanescent.

As we are interested in the extraction of resonance and
nonresonance patterns of amplitude from the field behavior,
we will focus on obtaining the approximations of the total
field amplitude Hl,l+1(α). The exact solutions for the exited
field in layered structures are obtained for a particular α by
using 2 × 2 transfer matrix approach [7]. The analytic deriva-
tions summarized in Appendix A suggest that the interference
field amplitude enhancement (FAE) can be represented as

hl/h+
l−1 = Hl,l+1(α)/Hl−1,l = χlνl tl−1,l , (2)

where νl = exp(ik0βl dl ) is the transfer coefficient that de-
scribes the correlation between the field amplitudes at the
interfaces Il–1,l and Il,l+1 in the layer Ll . A field genera-
tion coefficient χl is represented as χl (α) = σ−1

l (α), where a

phase-matching coefficient σl for the waves reflecting within
the middle layer is given by

σl (α) = 1 − ν2
l rl,l−1rl,l+1. (3)

The expression of σl allows us to predict the existence of
EM modes supported by the three-layer structure. For σl →
0, χl → ∞, and the field amplitude hl in the middle layer
exhibits a resonance behavior according to Eq. (2). Suppose
that σl → 0 holds for α → γ . The mode excitation condition

σl (γ ) = 0 (4)

is fulfilled at a certain value of the effective refractive index of
the mode γ = γ ′ + iγ ′′.

In the case 0 < γ ′2 < Re(εl−1), Re(εl ), Re(εl+1), the dis-
persion relation (4) describes the excitation of radiative
Fabry-Pérot modes [45]. For Re(εl−1), Re(εl+1) < γ ′2 <

Re(εl ), Eq. (4) reduces to the well-known relation for the
planar WG mode excitation [44,48,49]. In the cases of MIM
and insulator-metal-insulator structures, it is reduced to the
dispersion relations for symmetric and antisymmetric coupled
SPP modes [50], as demonstrated in Appendix A. The com-
plex effective refractive index of modes can be determined by
various methods, e.g., the stable iterative procedure proposed
in [51], and further, γ is considered to be known.

The spectral region α2 > Re(εl−1) will be referred to as
the evanescent region, where the complex amplitude of the
evanescent wave generated in the layer Ll–1 by the interference
field in the layer Ll is defined by the reflection coefficient
rl–1,l . As the energy is not transferred in the z direction by
evanescent waves, generation and translation of the field oscil-
lations are described in optics as an evanescent-field coupling,
where the coupling degree is characterized by the reflection
and transmission coefficients, and transfer coefficients de-
termine the field decay strength. In the evanescent region,
|rl−1,l |2 may be regarded as the coefficient of near-field en-
hancement and can take very large values under resonance
conditions. In the resonance structures, it is limited by the
absorption or mode leakage in the structure as will be proven
by the following analytical results. This behavior of the near-
field enhancement was also discovered for SPP excitation at
metal-dielectric interfaces in our previous work [15].

B. Resonant field in three-layer systems

The excitation of interference eigenmodes is associated
with resonance behavior of the interference field hl in the
resonance vicinity α → γ ′ as follows from the dispersion
relation (4). In this subsection, to analyze the behavior of the
interference and outcoupled fields in the three-layer structure
we obtain approximate expressions for FAE of hl , which is
proportional to χl (α) as defined by Eq. (2).

It is well known that the interference of a nonresonance
and resonance components lead to asymmetric resonance line
shapes in spectra of oscillating systems, which can be approx-
imated by the Fano formula [13,14]. In general, a complex
field amplitude H (α) can be represented as a sum H (α) =
HnonRes + HRes(α) of a nonresonance component HnonRes

and a resonance component HRes(α) = HnonResq/(α − γpole ),
where q represents the complex amplitude of the resonance
component normalized to the nonresonance component,
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γpole = γ ′
pole + iγ ′′

pole is the pole parameter. By the zero param-
eter γzero = γ ′

zero + iγ ′′
zero and representing q as

q = γpole − γzero, (5)

H (α) can be written as H (α) = HnonRes(α − γzero)/
(α − γpole ). The intensity spectra |H (α)|2 can be expressed
in the form of the Fano formula

|H (α)|2 = |HnonRes|2[(α − γ ′
zero)2 + γ ′′2

zero

]/
× [

(α − γ ′
pole )2 + γ ′′2

pole

]
. (6)

Analytical expressions for several important resonance
properties can be derived using the Fano formula (6).
For γ ′′

pole � |γ ′
zero − γ ′

pole|, the full-width at half-maximum
(FWHM) of the Fano line shape is obtained as

� = 2γ ′′
pole. (7)

Furthermore, the resonance dip position is located at α =
γ ′

zero, maximum achievable intensity of H (α) is estimated as
|H (γ ′

pole )|2, and a rough estimation for the depth of reso-
nance dip can be found as |HnonRes|2 − |H (γ ′

zero)|2. Indeed,
establishment of a direct relationship between the structural
parameters and the resonance response opens prospects to the
predictions and interpretation of resonances [52]. The imma-
nent characteristics of resonances and resonance line shapes in
spectra can be directly obtained from the CMT-based approxi-
mations eliminating the need in postprocessing of the spectra.
The derivation of analytical expressions for these characteris-
tics, e.g., resonance width, height, slope, and maximum field
enhancement (FE), is enabled by using analytical expressions
for the CM parameters [52,53]. Analytical estimations for
these resonance properties are effective for fast estimation of
the performance of optical structures for sensing, filtration,
processing, etc. Characterization of the optical and geometri-
cal parameters of structure can be performed using the zero
and pole parameters extracted by fitting the experimentally
registered data with Eq. (6).

Analysis of q can give us a basic idea on the reso-
nance line shape of the Fano formula (6). Assuming q =
q′ + iq′′, and with the aid of the normalized frequency s =
(α − γ ′

pole )/γ ′′
pole, normalized distance between the positions

of pole and zero parameters q̄ = q′/γ ′′
pole, the damping param-

eter g = (q′′/γ ′′
pole − 1)2, and the intensity of nonresonance

component u = |HnonRes|2, the expression (6) reduces to the
generalized Fano function

|H (s)|2 = u[(s + q̄)2 + g]/(s2 + 1). (8)

The resonance tends to show a symmetric line shape under
the following conditions. First, when the normalized ampli-
tude of the resonance component is high as compared to the
resonance damping, |q| � γ ′′

pole that corresponds to |q̄| � 1 or
|g| � 1. Second, for the resonance components with a small
real part of the normalized amplitude as compared to the mode
damping γ ′′

pole, so that q′ � ||q′′ − γ ′′
pole| − γ ′′

pole| � γ ′′
pole. This

case corresponds to q̄ � g−1 and can be interpreted as the
condition on the phase of resonance response to approach
±π /2, i.e., |q′| � |q′′|. The expression (8) suggests that for
q̄ → 0 the maximum value can be estimated at s = 0 as
|H |2max = u[q̄2 + g].

Based on this brief introduction to the advantages of Fano
representation we need to implement the decomposition of
χl (α) into resonance and nonresonance components and in-
troduce a mode excitation coefficient, which characterizes the
resonance component of field. According to Eq. (3) χl (α) =
σ−1

l (α) is a function of the reflection and field transfer coeffi-
cients for waves in the layer Ll . An approximate expression of
χl (α) can be derived by applying the Taylor series decom-
position to these coefficients for α → γ . In fact, from the
Taylor decomposition of rl,k (α), we obtain an approximate
expression

r̃l,k (α) =
α→γ

rl,k (γ )

[
1 + 2γ (α − γ ) + (α − γ )2

βk (γ )βl (γ )
p̄2

l,k

]
, (9)

where polarization-dependent coefficient p̄l,k = 1 in the case
of s polarization and p̄l,k = γl,k (γ 2−γ 2

l,k )−1/2 in the case of
p polarization, γl,k is given by γl,k = [εlεk/(εl + εk )]1/2, k
stands for l−1 or l + 1. The interpretation of k0γl,k depends
on the materials of the adjacent media Ll and Lk , k = l − 1,
l + 1. In the case of metal-dielectric interface, k0γl,k is the
propagation constant of a SPP propagating along Il,k . In the
case of dielectric media, k0γl,k is the in-plane propagation
constant of a plane wave, which is incident at the Brewster
angle to the normal of Il,k . On the other hand, the round-trip
transfer coefficient ν2

l is approximately expressed as

ν̃2
l (α) =

α→γ
ν2

l (γ ){1 − 2ik0dlξl (α − γ )[1 + (α − γ )/γ ]

+ 2[ik0dlξl (α − γ )]2}, (10)

where ξl = tan θl = γ /βl (γ ) and θl represents the angle of
incidence of the forward and backward plane waves in the
middle layer as shown in Fig. 1.

The field generation coefficient χl (α) can be approxi-
mately represented as a sum χl (α) ≈ χnonRes

l + χRes
l (α) of

the nonresonance χnonRes
l and resonance χRes

l (α) components.
Two different solutions of χRes

l can be derived using the ap-
proximations (9)–(10). For the first solution in the vicinity
of the resonance α → γ ′, the resonance component χRes

l (α)
is associated with the excitation of the modes in both the
radiative and evanescent regions for |γ | � |α − γ | and can
be written as

χRes
l (α) = γ

α − γ
κ, (11)

where

κ = −i
βl (γ )

2γ 2

[
k0dl + i p̄2

l,l−1β
−1
l−1(γ ) + i p̄2

l,l+1β
−1
l+1(γ )

]−1

(12)

is the mode excitation coefficient. In the case of lossless
media, κ is purely imaginary and determine the rate of phase
change in the resonance vicinity and takes a simplified form,

κ = −i/[2(φl + φl,l−1 + φl,l+1)], (13)

where φl = k0γ s is the phase shift for plane waves prop-
agating a distance of s = dlξl in the middle layer between
the interfaces, and φl,l−1 = γ (γ 2 − εl−1)−1/2

p̄2
j, j−1ξl and
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φl,l+1 = γ (γ 2 − εl+1)−1/2
p̄2

j, j+1ξl are phase shifts caused by
reflection from the interfaces Il−1,l and Il,l+1, respectively. In
the case of a nonzero effective refractive index |γ | � |α − γ |,
the approximation (11) describes rapid changes in the ampli-
tude and phase of the mode near the resonance α → γ ′.

Another approximate solution of χRes
l is obtained for

|γ | � |α − γ |, i.e., γ /(α − γ ) → 0. In this case, χRes
l is de-

scribed by the second-order terms of the approximations of
Eqs. (9) and (10) and has the form

χRes
l (α) = γ 2

(α − γ )2 κ. (14)

This case corresponds to the modes with γ → 0 that exist
in the radiative region, e.g., Fabry-Pérot modes excited by
propagating waves incident on the interface at angles close
to the surface normal.

The background component χnonRes
l can be approximately

estimated as a lower limit of the field generation coefficient
χnonRes

l = minα |χl (α)|. In the evanescent region, for low-
absorption materials with small values of Im(εl−1), Im(εl−1),
and Im(εl+1), |ν2

l rl,l−1rl,l+1| → 1.0 that provides the max-
imum value of the phase matching coefficient of σl = 2.0
at out-of-resonance conditions. The global lower limit for a
nonresonant background is found using the maximum value
of σl as χnonRes

l = 0.5.
From the above decomposition of χl (α) into the sum of

χnonRes
l and χRes

l (α), the total field generated in the structure
can be represented as the Fano interference hl,l+1(x, z, α) =
hnonRes(x, z) + hRes(x, z, α) of a slowly changing continuum
component hnonRes and a resonance component hRes. Taking
into account Eq. (2), we define the resonant field hRes in the
middle layer Ll by a superposition of plane waves in the
following form:

hRes(x, z, α) = �(α) exp(ik0αx)[rl,l+1 1]

×
[

exp[−ik0βl (z − dl )]

exp[ik0βl (z − dl )]

]
, (15)

where �(α) is the amplitude of the resonance component.
�(α) exhibits the following resonance behavior associated
with the excitation of an interference mode:

�(α) = χRes
l (α)νl tl−1,l Hl−1,l . (16)

At the resonance α = γ , the field distribution hRes(x, z, γ )
determines the core field profile of the mode. Therefore, the
modes described by this formalism, the interference of the
forward and backward waves, can be regarded as two-wave
interference modes. In the same way, the nonresonant field
hnonRes can be characterized by the complex amplitude HnonRes

given by

HnonRes = χnonRes
l νl (γ

′)tl−1,l (γ
′)Hl−1,l . (17)

Further, the values of reflection, transmission, and trans-
fer coefficients are assumed to be taken at α → γ ′. Let us
consider here the case of a resonant mode with a nonzero
propagation constant. The amplitude of the interference field
Hl,l+1(α) generated in the structure can be represented as
the Fano interference of the symmetric Lorentzian reso-
nance of the complex amplitudes of the mode � and

background nonresonance component HnonRes as Hl,l+1(α) =
�(α) + HnonRes. Using Eqs. (16) and (17) we find

Hl,l+1(α) = χnonRes
l

α − γ
(
1 − κ/χnonRes

l

)
α − γ

νl tl−1,l Hl−1,l .

(18)

FE of the total field in the middle layer is given by
|Hl,l+1/Hl−1,l |2, and, in general, FE exhibits an asymmetric
Fano line shape in spectra. For low-loss structures, the total
FE spectra exhibit symmetric Lorentzian line shapes, since the
imaginary part of κ is higher than the real one. Substituting
α = γ ′ into Eq. (18), we can estimate the lower limit for the
maximum FE associated with the excitation of the interfer-
ence mode as

|�(γ ′)/Hl−1,l |2 = |γ κνl tl−1,l |2/γ ′′2. (19)

The analytical expressions for the amplitudes of outcou-
pled fields are obtained using the transfer matrix relations
summarized in Appendix A. The transmission and total re-
flection coefficients for the three-layer structure are found
as tl−1,l+1 = tl,l+1Hl,l+1/Hl−1,l and rl−1,l+1 = (rl−1,lHl−1,l +
tl,l−1Hl,l−1)/Hl−1,l , respectively. Substituting (18) into the an-
alytical expression for the transmission coefficient results in
the following approximation:

t̃l−1,l+1(α) = χnonRes
l

α − γ
(
1 − κ/χnonRes

l

)
α − γ

νl tl−1,l tl,l+1.

(20)

Using the relation Hl,l−1 = νl rl,l+1Hl,l+1 and Eq. (18), the
approximation of the total reflection coefficient can be written
as the interference of the nonresonant reflection rl−1,l from the
Il–1,l interface and the Fano component of the mode response

r̃l−1,l+1(α) = rnonRes
l−1,l+1

α − γ
[
1 − κ/rnonRes

l−1,l+1

]
α − γ

ν2
l tl,l−1tl−1,l rl,l+1,

(21)

where rnonRes
l−1,l+1 = (rl−1,l + χnonRes

l ) is the total nonresonance
component.

According to Eq. (21), the coefficients of Fano formula
approximating the reflection line shape in spectra of three-
layer structures supporting interference modes have similar
physical origins as those derived for SPP modes at sim-
ple metal-dielectric interfaces in our previous work [15].
However, the analytical expression for the SPP excitation
coefficient κSPP = 2γ 2

l,l+1/(εl − εl+1) (equal to κ2 in [15])
suggests that the amplitude of SPP component depends on the
permittivity values of both layers. In contrast to the SPP exci-
tation, the excitation coefficient κ of interference modes given
by Eq. (12) depends also on the resonator layer thickness.

The registration of the spectra of reflectivity |r|2 and trans-
mission |t |2 of the propagation waves can be realized by
far-field detectors as functions of incidence angle. In the
evanescent region, direct measurements of the near-field en-
hancement spectra of evanescent waves are not possible. One
of the approaches for detecting evanescent fields is to realize
an optical structure, in which evanescent waves in a low-index
media couple to propagating waves in an adjacent high-index
media. Analysis of the influence of this adjacent high-index

023507-5



NESTERENKO, HAYASHI, AND SOIFER PHYSICAL REVIEW A 106, 023507 (2022)

media requires consideration of an additional layer in our
model.

C. Resonant field in four-layer systems

In this section, we extend our study to the case of excitation
of an interference mode in a three-layer structure separated
from a semi-infinite media by a single spacer layer that does
not support resonant modes. For example, this geometry can
cover the excitation of guided modes supported by a waveg-
uide in air, which is represented by a three-layer structure,
using a high-index prism placed in a close proximity of the
waveguide. Another example is a MIM structure in air com-
prising a thin metal film separated by a dielectric layer from a
semi-infinite metal layer. The geometry considered here can
be represented by the four-layer structure consisting of the
Ll–2, Ll–1, Ll , and Ll+1 layers, which can be regarded as a
combination of the resonance three-layer structure consisting
of the Ll–1 − Ll+1 layers and a semi-infinite Ll–2 layer; the

Ll layer is the interference layer separated from the semi-
infinite Ll–2 layer by a spacer layer Ll–1 of the thickness
dl–1.

To generalize our description to a planar structure con-
sisting of g layers, we introduce the following notation for
numbering the layers. On top of the three-layer system con-
sisting of the Ll–1 − Ll+1 layers, we add g layers. Then, the top
semi-infinite layer is assigned to the Ll–1–g layer and the mul-
tilayer system is excited by an incident wave in this layer. The
total reflection and transmission coefficients are introduced
as rl−g+2,l+1 ≡ h−

l−1−g/h+
l−1−g and tl−1−g,l+1 = h+

l+1/h+
l−1−g,

where h−
l−1−g and h+

l+1 are the reflected and transmitted fields,
respectively.

Using analytical expressions for the complex amplitude
Hl,l+1 in the four-layer system, coefficients Ak , Bk , Ck , and
Dk obtained by the 2 × 2 transfer matrix approach and reso-
nance behavior of D−1

l = (χRes
l + χnonRes

l )νl tl−1,l (details can
be seen in Appendix A), we can express the amplitude of
interference field as the Fano resonance

Hl,l+1(α) = PχnonRes
l νl tl−1,l b

−1 α − γ
(
1 − κ/χnonRes

l

)
α − γ (1 − κP)

Hl−2,l−1, (22)

where P = b/(Dl−1 + bχnonRes
l ) is the amplitude of the resonance modulation of the interference field, and b = νl tl−1,lCl−1Bl

is a transfer coefficient. An approximation for the transmission coefficient of the four-layer structure is found using (22) as
t̃l−2,l+1(α) = tl,l+1Hl,l+1(α)/Hl−2,l−1.

Substitution of the relation (22) into the expression for total reflection coefficient rl−2,l+1 = (rl−2,l−1Hl−2,l−1 +
tl−1,l−2Hl−1,l−2)/Hl−2,l−1 leads to an approximate expression of the total reflection coefficient for the four-layer structure written
as a Fano formula,

r̃l−2,l+1(α) = rnonRes
l−2,l+1

α − γ
[
1 − κP(rl−2,l−1 + tl−1,l−2Al−1/Cl−1)/rnonRes

l−2,l+1

]
α − γ (1 − κP)

, (23)

where rnonRes
l−2,l+1 = rl−2,l−1 + tl−1,l−2(Bl−1 + aχnonRes

l )P/b is an amplitude of the nonresonance component of the total reflection
coefficient, and a = νl tl−1,l Al−1Bl is a transfer coefficient.

Since the relation (23) is expressed in a generalized form and it can be extended to the system of an arbitrary number of
layers. In the case of four layers, Eq. (23) can be further simplified to

r̃l−2,l+1(α) = rnonRes
l−2,l+1

α − γ
[
1 − κP/

(
rl−2,l−1rnonRes

l−2,l+1

)]
α − γ (1 − κP)

. (24)

According to Eqs. (22) and (24), the reflection
|r̃l−2,l+1(α)|2 and transmission |t̃l−2,l+1(α)|2 spectra exhibit
asymmetric resonance line shapes. In the Fano formula
(24), the pole and zero parameters are γpole = γ (1 − κP)
and γzero = γ [1 − κP/(rl−2,l−1rnonRes

l−2,l+1)], respectively. The
position of a resonance dip determined by γ ′

zero is shifted from
that of the three-layer structure due to the influence of the
adjacent layers.

The form of Fano expression (24) corresponds to that for
SPP excitation in three-layer metal-dielectric structures in
[15]. Note that the SPP Fano expression in [15] was obtained
with neglecting the nonresonance component of SPP field.

III. COUPLED-MODE THEORY

A. Three-layer system

As demonstrated in the previous section, in the resonance
region α → γ ′, the total field generated in the three-layer

structure by an exciting plane wave hl–1,l with the ampli-
tude Hl−1,l is given by a superposition of the resonance
component hRes and the continuous component hnonRes char-
acterized by a nonresonance behavior of the amplitude. To
describe the resonance response of the interference mode
we apply the same formalism as that used for SPPs local-
ized at metal-dielectric interfaces [15,54]. The resonant field
associated with the excitation of the interference mode is
considered as a product hRes(α, x) = �(α)c(α, x) exp(ik0γ x)
of a fast exp(ik0γ x) dependence and a slowly varying enve-
lope function c(α, x). In the spirit of one-dimensional spatial
formulation of CMT, the dynamic equation for the resonant
field can be written by neglecting the first-order derivative
of c(α, x) as (ik0γ )−1(dhRes/dx) = hRes. Based on expres-
sions (16) and (17) for the mode resonance amplitude � and
the nonresonance amplitude HnonRes the following dynamics
equations for the excitation of the resonant and nonresonant
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ρl ρl

κ

rl-1,l
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z
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Ll+1

Ψ

σ

l

hl-1,l

hl-1
-

tl,l+1 tl,l+1

FIG. 2. Field in- and outcoupling of an intereference mode in the
three-layer system.

fields, hRes and hnonRes, in the interference resonator by the
wave hl–1,l can be written, respectively:

1

ik0γ

dhRes

dx
= hRes + κτl hl−1,l , (25)

hnonRes = χnonRes
l τl hl−1,l , (26)

where τl = νl tl−1,l is an incoupling coefficient for the oscil-
lations of the exciting wave hl–1,l at the interface Il–1,l to the
resonator field at the interface Il,l+1. Equations (25) and (26)
constitute a coupled-mode model of the three-layer interfer-
ence resonator. Excitation of the resonance oscillations by the
exciting wave is completely described by Eq. (25). For har-
monic oscillations of the exciting wave hl−1,l ∝ exp(ik0αx)
the secondary fields are also harmonic with a propagation
constant k0α along the x axis. The solution of Eq. (25) leads to
the representation of the complex amplitude �(α) in the form
of Eq. (16). In contrast to the conventional CMT formulations
[18], the correct form of Eq. (25) suggests the frequency-
dependent coefficient (ik0γ )−1 in the left-hand side.

The total field h−
l−1 outcoupled from the three-layer

structure in the backward direction can be obtained as a super-
position of a nonresonance component rl−1,l hl−1,l originated
from the reflection from the front interface Il–1,l and a compo-
nent of the resonator field outcoupled to the layer Ll–1 [using
Eq. (A6) in Appendix A], resulting in

h−
l−1 = rl−1,l hl−1,l + ρl (h

Res + hnonRes), (27)

where ρl = rl,l+1νl tl,l−1 is an outcoupling coefficient for the
field reflected from the interface Il,l+1 in the layer Ll into the
field in the layer Ll−1. The graphical representation of the field
coupling described by Eqs. (25)–(27) is schematically shown
in Fig. 2.

According to the obtained CM model (25)–(27), the ex-
citation of interference modes in three-layer structures can
be compared to the SPP excitation at single metal-dielectric
interfaces [15,42,54]. The nonresonance fields and the cou-
pling strength between external and SPP fields were omitted
in the SPP CM models. To improve the quality of physical
representation the expression for nonresonance fields was in-
cluded into the interference CM model. In the case of SPP
composed of two evanescent waves at the metal-dielectric
interface, incoming evanescent fields directly couple to a SPP,
and the coupling strength between external and SPP fields

equals to one. In contrast, the coupling strength τl between
external and interference fields in the resonator layer depends
on optical and geometrical properties of the resonator layer Ll .

From the CM model (25)–(27), we can derive solutions
for outcoupled fields. By substituting Eqs. (25) and (26) into
the expression (27), an approximation of the total reflection
coefficient rl−1,l+1 = h−

l−1/hl−1,l is found to be

r̃l−1,l+1(α) = rl−1,l + χnonRes
l

α − γ
(
1 − κ/χnonRes

l

)
α − γ

τlρl .

(28)

Note that the approximate expression given by Eq. (28)
coincides with Eq. (21). The amplitude of the resonance
component in Eq. (28) is modulated by the product of the
incoupling and outcoupling coefficients τlρl .

The product τlρl itself exhibit a resonance behavior that
interfere with that of the resonance component of the reflected
field and using Eq. (3) can be written as τlρl = (rl−1,l −
r−1

l−1,l )(1 − σl ). Analyzing σl we can demonstrate a resonance
behavior of τlρl . With the aid of Eq. (11) the approximation of
the phase matching coefficient σl (α) = χ−1

l (α) can be written
in the form

σ̃l (α) = 1

χnonRes
l

α − γ

α − γ
(
1 − κ/χnonRes

l

) . (29)

According to the expression (29), the behavior of σ̃l spec-
trum is also described by the Fano interference. In the vicinity
of the resonance α → γ ′, the in-phase resonance excitation
of the mode occurs at σ̃l → 0. The maximum value of σ̃l =
(χnonRes

l )−1 is achieved, when |α − γ | � |γ κ/χnonRes
l | holds,

i.e., out of the resonance. Therefore, the modulation of the
resonance component in Eq. (28) by in- and outcoupling
τlρl modifies the nonresonance and resonance components of
r̃l−1,l+1 in the form independent of the coupling coefficients

r̂l−1,l+1(α) = r̂nonRes
l−1,l+1

α − γ
(
1 − κ (rl−1,l − r−1

l−1,l )/r̂nonRes
l−1,l+1

)
α − γ

,

(30)

where r̂nonRes
l−1,l+1 = r−1

l−1,l + (rl−1,l − r−1
l−1,l )χ

nonRes
l is the total

nonresonance reflection from the three-layer structure. The
approximation (30) describes asymmetric resonance line
shapes in the spectral region far from the Brewster angle.
The pole and zero are γpole = γ and γzero = γ {1 − κ (rl−1,l −
r−1

l−1,l )/r̂nonRes
l−1,l+1}, respectively. Surprisingly, the coefficients of

the Fano expression (30) do not depend on the coupling coef-
ficients and cannot be obtained from the proposed CM model
with constant coefficients. In the case of low-absorption ma-
terials γ ′′ � γ ′, by substituting α = γ ′

pole into the analytical
expression for the reflectivity spectrum (30), we obtain an
analytical expression determining an approximate maximum
FE of the reflected wave given by

|r̂l−1,l+1(α)|2max

= |r̂l−1,l+1(γ ′
pole )|2 = |κ(

rl−1,l − r−1
l−1,l

)|2γ ′/γ ′′2. (31)

In conventional CM models, the coupling coefficients are
supposed to be constants. Following this common approach
and fixing values of the coupling coefficients τl and ρl , we
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can obtain the solution in the form (21). As we demonstrated
above, the resonance behavior of τlρl results in the modifi-
cation of the resonance response from (21) to (30). In the
approximate calculations of the resonance response by the
present CM models, the following two approaches can be
implemented. In the first case, which is further referred to
as the “Fano” case, all the coupling coefficients are consid-
ered as constants and estimated at α = γ ′. In the second
approach, the resonance behavior of τlρl can be introduced
by fixing τl and assuming the resonance behavior of ρl (α) =
(1 − σ̃l )(1 − r−1

l−1,l )ν
−1
l . This case is further referred to as the

“ubiquitous Fano” (“UFano”) case. Except that the letter “U”
also symbolize the first initial of Fano’s name. The “Fano” and
“UFano” approaches are, therefore, realized in the CM model
by using the constant and variable forms of the outcoupling
coefficient ρl , respectively, while other coefficients are fixed.

In this subsection, we succeeded in developing the CM
model (25)–(27) relying on the Fano approximations for the
field in three-layer structures. The CM equations and ana-
lytical expressions for the coefficients of the CM model are
obtained based on simple rigorous physical principles.

B. Four-layer system

To extend the three-layer model to the four-layer case
(g = 4), we first analyze the influence of the spacer layer
Ll–1 on the mode excitation. In Eqs. (25) and (26), τl hl−1,l
describes the mode exciting field at the interface Il,l+1 as a
result of transfer of hl−1,l oscillations through the layer Ll .
If the mode excitation is performed through an additional
layer Ll–1, the mode exciting field at the interface Il,l+1 is
represented as a sum of oscillations τl−1,l hl−2,l−1 transferred
consequently through the layers Ll–1 and Ll and the oscilla-
tions outcoupled from and incoupled back to the resonator
after multiple reflections in the layer Ll–1. Therefore, the mode
exciting field satisfies the following relation:

τl hl−1,l = τl−1,l hl−2,l−1 + ηl−1(hRes + hnonRes), (32)

where τl−1,l = τl−1τlσ
−1
l−1 is a coupling coefficient of the in-

coming wave to the resonant and background fields, ηl−1 =
ρlμl−1τlσ

−1
l−1 is a coefficient of self-coupling of the resonator

fields through the layer Ll–1, μl−1 = ν2
l−1rl−1,l−2 is a coeffi-

cient of back-reflection at the layer Ll–1, and σ−1
l−1 describes

the influence of multiple reflections in the layer Ll–1 between
the interfaces Il–2,l–1 and Il–1,l .

The excitation of the fields hRes and hnonRes in the resonator
layer Ll of four-layer structure by the incoming wave hl–2,l–1

with the amplitude Hl−2,l−1 can be formulated within the
framework of the coupled-mode formalism by substituting the
component τl hl−1,l determined by Eq. (32) into Eqs. (25) and
(26):

1

ik0γ

dhRes

dx
= hRes + κτl−1,l hl−2,l−1 + κηl−1hRes

+ κηl−1hnonRes, (33)

hnonRes = χnonRes
l τl−1,l hl−2,l−1 + χnonRes

l ηl−1hRes

+ χnonRes
l ηl−1hnonRes. (34)

l

ηl-1 ηl-1

ρl

hRes

Ll-1

Ll

z

xLl+1

Ψ

l-1,l

hl-1,l

tl,l+1 tl,l+1

Ll-2 ρl,l-1rl-1,lhl-2,l-1

hl-2
-

ρl,l-1

hnonRes

xlnonRes κ

FIG. 3. In- and outcoupling of resonant and nonresonant fields in
four-layer systems supporting intereference modes.

Since the field associated with the mode excitation in the
resonator is determined by the CM Eqs. (33) and (34), the
fields in each layer and the total field h−

l−2 reflected from the
structure can be consequently found by defining amplitude
transfer coefficients using the 2 × 2 transfer matrix formalism
(A9) described in Appendix A. We obtain the backward field
h−

l−2 at the interface Il–2,l–1 as

h−
l−2 =rl−2,l−1hl−2,l−1 + ρl,l−1(hRes + hnonRes) + ρl−1hl−1,l ,

(35)

where ρl,l−1 = ρlνl−1tl−1,l−2 is an outcoupling coefficient for
the field reflected from the interface Il,l+1 in the layer Ll

into the field in the layer Ll–2. The impacts of field coupling
coefficients introduced in Eqs. (32)–(35) are schematically
shown by arrows in Fig. 3.

Consider solutions of the derived CM model (32)–(35).
Substituting Eq. (34) into Eq. (33) provides a Lorentzian
expression for the resonance field,

hRes(α) = �
(4)
0

γ κ

α − γ (1 − κP)
hl−2,l−1, (36)

where P = −ηl−1(1 − ηl−1χ
nonRes
l )−1 is a coefficient

of the interference field back-coupling resulting from
multiple reflections in the four-layer system, and �

(4)
0 =

−τl−1,l P/ηl−1 = τl−1,l (1 − ηl−1χ
nonRes
l )−1 is an incoupling

coefficient for an exciting wave from Il–2,l–1 to Il,l+1 in the
four-layer case. The variation of nonresonant field originated
from the multiple reflections in the adjacent layer is obtained
as

hnonRes(α) = �
(4)
0 χnonRes

l

α − γ

α − γ (1 − κP)
hl−2,l−1. (37)

According to the expression (37), the nonresonant field
hnonRes is described by the Fano approximation due to the
mutual interaction of the nonresonant and resonant fields sup-
ported by the back reflection in the spacer layer Ll–1. The Fano
function (37) becomes zero at α = γ that implies minimiza-
tion of the nonresonant field at the resonance. The total field
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hl,l+1(α) = hRes(α) + hnonRes(α) in the resonator is thus found
as an interference of the resonant and nonresonant fields

hl,l+1(α) = �
(4)
0 χnonRes

l

α − γ (1 − κ/χnonRes
l )

α − γ (1 − κP)
hl−2,l−1.

(38)

Equation (38) determines the dependence of field in the
resonator on the coupling coefficients, and it is exactly the
same as Eq. (22). Based on Eq. (38) an analytical expres-
sion for the maximum FE in low-loss four-layer structures
FE(4)(α) = |hl,l+1/hl−2,l−1|2 can be obtained assuming γ ′ �
γ ′′ near the resonance α → γ ′ as

FE(4)(γ ′) = |τ |2∣∣ηl−1 − γ ′′(iγ κ + χnonRes
l γ ′′)−1∣∣−2

× ∣∣νl−1 + ν−1
l−1γ

′′(iγ κτlρl )
−1

∣∣−2
. (39)

For the mode damping much lower than the coupling
strength |ν2

l−1| � γ ′′ in low-loss structures, an approximate
expression for the maximum FE in the resonator is found as

FE(4)(γ ′) = |τl−1,l/ηl−1|2

= ∣∣τl−1ρ
−1
l μ−1

l−1

∣∣2|νl−1|−2, (40)

which describes the exponential growth of FE with the in-
creasing thickness dl–1 of the spacer layer Ll–1 in the ATR
geometry.

From the expression (38), we can write the condition for
the optimum coupling strength that provides a maximum

value of the resonator FE for a nonzero γ ′′ as

Im(γ κP) = γ ′′. (41)

The relation (41) defines the critical coupling conditions,
i.e., when the intrinsic damping of the mode is equal to the
recycled radiation gain; the radiation gain is determined by
the component which outcouples to the radiation field and
returns back to the resonator after multiple reflections. As-
suming σl−1 = 1 − μl−1rl−1,l , an analytical expression for an
approximate optimum thickness dcc

l−1, which gives a close-to-
maximum value of the mode FE for a nonzero value of γ ′′,
can be derived from Eq. (39) for γ ′ � γ ′′ as

dcc
l−1 = Re

{
1

4ik0βl−1

[
i2πm + ln

γ ′′

Im(γ κρlτl rl−1,l−2)

]}
, m ∈
(42)

The relation (42) suggests different behaviors of dcc
l−1 de-

pending on the excitation regime. In the case of guided modes
excited under ATR conditions, i.e., WG modes, dcc

l−1 decreases
logarithmically as γ ′′ increases. In the case of leaky modes,
i.e., Fabry-Pérot modes, dcc

l−1 takes multiple values corre-
sponding to the constructive interference in the structure.

It is worth mentioning that obtaining the analytical ex-
pressions for resonance properties, which characterize fields
inside the resonance interference structures, e.g., maximum
FE in the resonator and optimum thickness dcc

l−1 of the cou-
pling layer, became possible only by using the developed
spatial CMT.

Solving Eq. (35), we derive the following approximation
of the total reflection coefficient r̃l−2,l+1 in the same form as
Eq. (23) obtained by the EM theory:

r̃l−2,l+1(α) = rnonRes
l−2,l+1

α − γ
[
1 − κ

(
Prl−2,l−1 + ρl,l−1�

(4)
0

)/
rnonRes

l−2,l+1

]
α − γ (1 − κP)

, (43)

where rnonRes
l−2,l+1 = rl−2,l−1 + (ρl−1/τl + ρl,l−1χ

nonRes
l )� (4)

0 is
the amplitude of the nonresonance component as a function
of the transfer coefficients. Applying some algebra, we ar-
rive at the same expressions for the coefficients introduced
for the EM case and conclude that the coincidence of the
Fano expression (43) obtained by the CM model for the
four-layer system with the Fano expression (23) demonstrates
the correctness of the proposed CM model. In contrast to
the CM model developed for SPP, the CM model described
by Eqs. (32)–(35) takes into account the influence of the
nonresonance back-reflections in the layer Ll–1 to the nonreso-
nance component rnonRes

l−2,l+1 and to the changes in zero and pole
values.

In our CM model, ηl−1, ρl,l−1, P, �
(4)
0 , and W depend

on the outcoupling coefficient ρl and also exhibit reso-
nance behavior. The “UFano” and “Fano” approaches can
be again realized by considering ρl as a function of α and
as a constant, respectively, as it was done in the three-
layer case. In the EM theory, we can obtain modified Fano

expressions for the field amplitudes in four-layer systems
assuming the resonance behavior of the coefficients a(α) =
−(1 + r−1

l−1,l )[1 − σ̃l (α)]Al−1 and b(α) = −(1 + r−1
l−1,l )[1 −

σ̃l (α)]Cl−1 in Eqs. (22)–(24).
According to Eq. (43), for low-loss structures the shift in

the real part of zero parameter, which determines the reso-
nance position, is proportional to P, μl−1, ηl−1, and, therefore,
proportional to the squared transfer coefficient ν2

l−1. Under the
ATR conditions, the lower self-coupling strength ηl−1, which
is associated with thicker spacer layer Ll–1 and higher in-plane
mode propagation constants, results in lower resonance shifts.
In the case of the excitation of radiative modes, the resonance
position in spectra exhibits a sinusoidal dependence on dl–1.

In the four-layer case, based on the 2 × 2 transfer matrix
formalism and Fano approximations the coefficients of the
CM model (33)–(35) are expressed as simple functions of
transmission, reflection, and field transfer coefficients. We
again demonstrated that to describe the interference phenom-
ena in the resonator the CM coefficients should be considered
as nonconstant.
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C. System of coupled interference resonators

In this subsection, we further extend our CM model to the
case of coupled interference resonators. We consider a six-
layer system of Ll–2 − Ll+3 layers constructed by a four-layer
structure consisting of the Ll–2 − Ll+1 layers considered in
the previous subsection combined with a three-layer struc-
ture consisting of the Ll+1 − Ll+3 layers. The three-layer
Ll–1 − Ll+1 stack in the four-layer structure can be regarded
as the first resonator and the three-layer Ll+1 − Ll+3 stack as
the second resonator. These two interference resonators are
separated by the spacer layer Ll+1.

Suppose that the resonators support interference modes
with the mode excitation coefficients κ1 and κ2 and close
propagation constants γ1 and γ2, respectively. The coupling of
the modes is mediated by the exponentially decaying waves
in the spacer layer Ll+1. The total fields h1 and h2 in the
first and second resonators can be represented as superposi-
tions of the resonance and nonresonance components h1 =
hRes

1 + hnonRes
1 and h2 = hRes

2 + hnonRes
2 , respectively. Using the

CMT formulations for the four-layer system, the following
set of equations can be written for the resonance hRes

1 and
nonresonance hnonRes

1 fields in the first resonator:

1

ik0γ1

dhRes
1

dx
= hRes

1 + κ1τl−1,l hl−2,l−1 + κ1ηl−1
(
hRes

1 + hnonRes
1

) + κ1o21h−
l+1,

hnonRes
1 = χnonRes

l τl−1,l hl−2,l−1 + χnonRes
l ηl−1

(
hRes

1 + hnonRes
1

) + χnonRes
l o21h−

l+1, (44)

h+
l+1 = tl,l+1

(
hRes

1 + hnonRes
1

)
,

where h+
l+1 is the field of the first resonator outcoupled to the second resonator, o21 = (ξl + ςl )tl+1,lνl+1 is the total coupling

coefficient of the field h−
l+1 outcoupled from the second resonator at the interface Il+1,l+2 to that of the first resonator. The

coefficient o21 is represented as a sum of the transfer coefficients for two paths with ξl = ν2
l rl,l−1 for the waves reflected from

the interface Il–1,l to the interface Il,l+1 in the layer Ll and ςl = νl tl,l−1ν
2
l−1rl−1,l−2τlσ

−1
l−1 for the waves that pass the interface

Il–1,l , reflect from the interface Il–2,l–1 to the interface Il–1,l , undergo multiple reflections in the layer Ll–1, and pass to the interface
Il,l+1 in the layer Ll .

The field in the second resonator with the semi-infinite layer Ll+3 is obtained using the three-layer CM model described by
Eqs. (25)–(27) as follows:

1

ik0γ2

dhRes
2

dx
= hRes

2 + κ2ηl+1
(
hRes

2 + hnonRes
2

) + κ2o12h+
l+1,

hnonRes
2 = χnonRes

l+2 ηl+1
(
hRes

2 + hnonRes
2

) + χnonRes
l+2 o12h+

l+1, (45)

h−
l+1 = rl+1,l+2νl+1h+

l+1 + ρl+2
(
hRes

2 + hnonRes
2

)
,

where o12 = τl+2νl+1 is the coefficient describing the coupling of field of the first resonator to that of the second resonator.
In what follows, we assume that the positions of the resonances of the first and second resonators are close, i.e., the resonances

are characterized by the propagation constants γ1 and γ2 with real parts close to each other (γ ′
1

∼= γ ′
2). In the vicinity of both

resonances α → γ ′
1, γ

′
2, the dependencies of the amplitudes of fields h1 = hRes

1 + hnonRes
1 and h2 = hRes

2 + hnonRes
2 in the first

and second resonators, respectively, on α are found as

h1

hl−2,l−1

= τl−1,l(
1−χnonRes

l ηl−1

)
(α−γ1 )−γ1κ1ηl−1

χnonRes
l (α−γ1 )+γ1κ1

−
[
χnonRes

l+2 (α−γ2 )+γ2κ2

]
ρl+2o12o21tl,l+1(

1−χnonRes
l+2 ηl+1

)
(α−γ2 )−γ2κ2ηl+1

− rl+1,l+2o21τl+1

,

h2

hl−2,l−1

=
χnonRes

l+2 (α−γ2 )+γ2κ2(
1−χnonRes

l+2 ηl+1

)
(α−γ2 )−γ2κ2ηl+1

τl+2τl+1τl−1,l

(
1−χnonRes

l ηl−1

)
(α−γ1 )−γ1κ1ηl−1

χnonRes
l (α−γ1 )+γ1κ1

−
[
χnonRes

l+2 (α−γ2 )+γ2κ2

]
ρl+2o12o21tl,l+1(

1−χnonRes
l+2 ηl+1

)
(α−γ2 )−γ2κ2ηl+1

− rl+1,l+2o21τl+1

. (46)

The expressions (46) describe the amplitude enhancements in the system of the two coupled optical resonators, when the
responses of the resonators include both the resonance and nonresonance components. The contribution of the nonresonance
component is determined by the coefficients χnonRes

l and χnonRes
l+2 . For small nonresonance components, χnonRes

l , χnonRes
l+2 → 0,

the total field is represented by the resonance component, and the following expressions can be obtained from the relations (46):

h1

hl−2,l−1

= [α − γ2(1 + κ2η3)]τl−1,lγ1κ1

{α − γ1[1 + κ1(η1 + rl+1,l+2o21τl+1)]}[α − γ2(1 + κ2η3)] − ρl+2o21o12tl,l+1γ1κ1γ2κ2
,

h2

hl−2,l−1

= τl+2τl+1τl−1,lγ1κ1γ2κ2

{α − γ1[1 + κ1(η1 + rl+1,l+2o21τl+1)]}[α − γ2(1 + κ2η3)] − ρl+2o12o21tl,l+1γ1κ1γ2κ2
. (47)

We note here that the Fano form of Eqs. (47) coincides with the form of equations derived for a system of two coupled
mechanical oscillators [30,31], which describe excitation of the resonance components only.
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TABLE I. Structural parameters of the samples.

3LWG 4LWG 4LMWG

Layer no. d (nm) n κ d (nm) n κ d (nm) n κ

0 – – – – 1.5 0 – 1.5 0
1 – 1.0 0 800 1.0 0 25 0.13231 6.9045
2 300 1.5 1 × 10–4 300 1.5 1 × 10–4 450 1.5 1 × 10–4

3 – 1.0 0 – 1.0 0 – 1.0 0

4LFP 6L2FP

Layer no. d (nm) n κ d (nm) n κ

0 – 1.0 0 – 1.0 0
1 10 0.13231 6.9045 13 0.13231 6.9045
2 3000 1.5 0 700 1.5 0.02
3 – 0.13231 6.9045 40 0.13231 6.9045
4 – – – 3000 1.5 0
5 – – – – 0.13231 6.9045

As in the case of the system of two coupled mechanical
oscillators, the response of the optical system (46) is charac-
terized by the same denominator. The propagation constants
of the normal modes of the coupled system are found from
the condition that the denominator is equal to zero. Based
on the coupling regime the coupled modes are characterized
by the symmetric and antisymmetric compositions of fields
of the uncoupled modes. The relation (46) suggests that the
coefficients of the nonresonance component excitation as well
as the self-coupling coefficients of the resonator fields affect
the position and the line shape of the resonances.

In the coupled system, the backward field h−
l−2 at the

interface Il–2,l–1 includes a component of the field directly
outcoupled from the second resonator in addition to that from
the first resonator

h−
l−2 = rl−2,l−1hl−2,l−1 + ρl,l−1

(
hRes

1 + hnonRes
1

)
+ ρl−1hl−1,l + δh−

l+1, (48)

where δ = νl+1tl+1,lνl tl,l−1νl−1tl−1,l−2 is an outcoupling co-
efficient. Substituting Eq. (32) and the expression for h−

l+1
obtained from Eqs. (44) and (45) to the expression (48) for
the backward field h−

l−2, the total reflection coefficient r̃l−2,l+3
of the five-layer structure is found as a superposition

r̃l−2,l+3 = rnonRes
l−2,l+3 + (ρl,l−1 + ηl−1ρl−1/τl

+ δrl+1,l+2τl+1)h1/hl−2,l−1 + δρl+2h2/hl−2,l−1,

(49)

where rnonRes
l−2,l+3 = rl−2,l−1 + ρl−1τl−1,l/τl is a nonresonance

component of the reflection coefficient. The expression (49)
demonstrates that the resonances in total reflectivity spectra
|r̃l−2,l+3(α)|2 of the coupled interference resonator systems
are characterized by asymmetric line shapes as a result of
Fano interference of the fields generated by both resonance
subsystems and the nonresonance reflections.

IV. VALIDATION OF NUMERICAL RESULTS

In the previous subsection, we developed CM models that
bring the same Fano expressions as those obtained by the ap-

proximations within the EM theory. In this section, to explore
the reliability of the proposed CM models we compare nu-
merical results obtained by the Fano approximations based on
constant and variable coefficients, i.e., “Fano” and “UFano”
approximations, with those of rigorous EM theory for several
different cases of resonant mode excitations in planar interfer-
ence resonators.

Let us consider five different multilayer structures de-
noted as 3LWG, 4LWG, 4LMWG, 4LFP, and 6L2FP. These
structures are chosen to cover different modes excited in
the multilayer structure. The three-layer low-loss dielectric
3LWG structure is a fundamental structure that supports a
WG mode with a small attenuation. The four-layer low-loss
dielectric 4LWG structure is the ATR configuration with the
3LWG structure. The 4LMWG structure is the ATR config-
uration like the 4LWG structure with high loss induced by a
thin metal spacer layer. The four-layer 4LFP structure is an
MIM structure supporting Fabry-Pérot modes. The six-layer
6L2FP structure is an MIMIM structure that supports two
Fabry-Pérot modes coupled to each other. The geometrical
and optical parameters (thickness d , refractive index n and
extinction coefficient κ of each layer) characterizing all struc-
tures are summarized in Table I.

Reflectivity spectra were calculated rigorously for each
sample. The exact reflectivity spectra were approximated by
“Fano” and “UFano” approaches. In the calculations, we as-
sumed the incidence of s- and p-polarized plane waves with
λ = 1000 nm on the multilayer sample from the layer L0. The
refractive index of metal layers corresponds to data of gold
taken from [59].

Appendix B describes the following parameters important
for the validation section. The parameters of the “Fano” and
“UFano” approximations with the resonance characteristics,
and the CM parameters are presented for the one-mode struc-
tures in Tables II and III, respectively.

A. An absorptive WG with semi-infinite dielectric claddings

To estimate the error of the Fano approximation and
the corresponding CM model for three-layer structures, we
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FIG. 4. Three-layer dielectric WG structure (3LWG structure). Comparison of the exact solution |r1,3|2 (red dashed line) with the “Fano”
|r̃1,3|2 [Eq. (21) or (28)] (black dashed line) and “UFano” |r̂1,3|2 [Eq. (30)] (blue solid curve) approaches for (a) p-polarized and (b) s-polarized
excitations. The relative error of the “Fano” (black dashed line) and “UFano” (blue solid line) approximations for (c) p-polarized and (d)
s-polarized excitations. The filled areas correspond to the evanescent region.

consider a 3LWG structure that consists of a low-loss high-
index waveguide layer with a thickness of 300 nm sandwiched
between two semi-infinite low-index clads with the refractive
index n = 1.0. The structure is schematically shown in Fig. 4.
We study the optical properties of the structure by varying the
normalized in-plane propagation constant α in a range from 0
to 1.5 refractive index units (RIU) at λ0 = 1000 nm.

The complex effective refractive indices γ of the WG
modes supported by the structure were obtained using the
approach described in Ref. [51]. As γ values are higher than
the refractive indices of clads, the WG modes can be excited
by evanescent plane waves. Positions of the resonances are
determined by the real parts of the pole parameter, which
equals to the mode effective index. The exact reflectivity spec-
tra |r (3)

1,3|2 were calculated based on the 2 × 2 transfer matrix
approach described in Appendix A for both the p and s polar-
izations. The reflectivity spectra as functions of α presented
in Figs. 4(a) and 4(b) exhibit very sharp asymmetric reso-
nances in the evanescent region near α = γ ′

pole = γ ′. These
resonances with the resonance peaks of 9.293985 × 106 and
2.979241 × 106 are associated with the excitation of TM0 and
TE0 WG modes for p and s polarizations, respectively.

To confirm the correctness of the approximate expres-
sions (21) and (30), we calculated reflectivity spectra |r̃1,3|2
(“Fano”) and |r̂ (3)

1,3|2 (“UFano”) in the evanescent region and
the results are shown in Figs. 4(a) and 4(b). The figures
demonstrate that the “Fano” result shows an overall good

agreement with the exact data in a narrow region of γ ′ ± 0.05
RIU, whereas the “UFano” approximation coincides with the
exact data in a much broader region.

Using the analytical expression (19), we estimated the
maximum FE in the middle layer of the order of 107 as
summarized in Table II. According to Eq. (19) the maximum
FE is mainly driven by the inverse proportionality to γ ′′2 that
provides a ∼4 times higher value in the case of p polarization
as compared to that of s polarization.

The maximum FE values of the reflected field |r̂1,3|2max
were estimated using Eq. (31). Furthermore, the approximate
values of the resonance FWHM were estimated using Eq. (7).
From the obtained values we found that the relative error of
the “UFano” approximation in the resonance vicinity is less
than 6 × 10–3%.

Based on the estimations of pole and zero parameters, we
determined the values of the normalized amplitude of reso-
nance component q by Eq. (5) and the asymmetry parameter
q̄ of the generalized Fano function (8). As shown in Table II,
for both polarizations |q′′| � |q′| and arg(q) is close to –π/2
that defines the resonance line shape as symmetric.

To quantitatively estimate the divergence of these approx-
imations from the exact solution in the evanescent region,
we calculated the relative errors for the “Fano” ||r1,3|2 −
|r̃1,3|2|/|r1,3|2 and “UFano” ||r1,3|2 − |r̂1,3|2|/|r1,3|2 approxi-
mations as functions of α. The results calculated for p and s
polarizations are shown in Figs. 4(c) and 4(d), respectively.
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FIG. 5. Four-layer dielectric WG structure in the ATR geometry (4LWG structure). Comparison of the exact solution |r0,3|2 (red bold dots)
with the approximated data |r̃0,3|2 using the “UFano” (blue solid line) approach for (a) p-polarized and (b) s-polarized excitations. The absolute
error of the “Fano” (black dashed line) and “UFano” (blue solid line) approximations for (c) p-polarized and (d) s-polarized excitations. The
filled areas correspond to the evanescent region.

As can be seen from the figures, in the resonance vicinity α =
γ ′

pole, the relative error is minimal for both the “Fano” and
“UFano” approximations. In the case of p polarization, the
relative error of less than 2% is achieved in the regions with
width of 0.14 RIU and 0.2 RIU for the “Fano” and “UFano”
approximations, respectively. In the case of s polarization, the
width of regions of the 2% margin is narrower: 0.02 RIU
and 0.04 RIU for the “Fano” and “UFano” approximations,
respectively. Moreover, the relative error of the “UFano” ap-
proximation is less than 10% in much wider widths of 0.32
and 0.1 RIU for p and s polarizations, respectively. Therefore,
the fact that the numerical results obtained by the CM model
are in excellent agreement with the exact data near and beyond
the resonance vicinity demonstrates the validity of our CM
models.

B. An absorptive WG with dielectric claddings
in the ATR configuration

In the next subsections, we focus on the error of the Fano
approximation and corresponding CM model for four-layer
structures and examine a 4LWG system that is constructed
by adding a dielectric layer (L0 layer) with a high refractive
index to the 3LWG structure considered above. The structure
is schematically shown in Fig. 5. This system can be regarded
as an ATR configuration, in which a high-index low-loss WG
layer is separated from a high-index prism by a low-index

dielectric spacer layer. Plane waves propagating in the high-
index layer L0 generate evanescent waves in the L1 layer that
excite the WG modes in the layer L2 under ATR conditions.
To choose the thickness d1 of the layer L1 we estimated the
thicknesses dcc

1 of the dielectric layer L1 providing the critical
coupling condition and maximum mode FE for the 4LWG
structure by Eq. (42) as 1139.9 nm and 768.0 nm for p and s
polarizations, respectively. Further, we fix the thickness d1 of
the layer L1 at 800 nm, which is close to dcc

1 for s polarization,
that generates symmetric line shapes in the calculation results
for both polarizations.

The exact ATR spectra |r0,3|2 were calculated by the 2 × 2
transfer matrix described in Appendix A for both the p and
s polarizations. The ATR spectra are shown in Figs. 5(a) and
5(b) as functions of the incidence angle θ (α) = arcsin(α/n0)
of the exciting wave. The resonance dips with the minimum
values Rmin seen in the figures at the resonance angles θres are
associated with the excitation of TM0 and TE0 WG modes
for p and s polarizations, respectively. The line shapes of the
resonances are symmetric for both polarizations.

The approximate ATR spectra |r̃0,3|2 were calculated by
Eq. (43) using “Fano” and “UFano” approaches. Since the
spectra resulting from two approximations are close to each
other, only the “UFano” results are compared with the exact
data in Figs. 5(a) and 5(b). The figures demonstrate excellent
agreement of the approximations to the exact data in the whole
ATR region.
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The maximum FE in the WG layer L2 are calculated by
Eq. (39) and presented in Table II. The excitation of the TE0

WG mode leads to a value (2350.7) higher than that achieved
by the excitation of the TM0 WG mode (272.5), by approx-
imately an order of magnitude. Besides that, the resonance
is narrower in the case of s polarization. The imaginary part
of the complex effective refractive index γ ′′ of the TE0 WG
mode is almost ∼2 times higher than that of the TM0 WG
mode (see Table II). Therefore, the behavior of the resonances
in the four-layer structures cannot be explained by the behav-
ior of γ ′′ values of the three-layer WG modes.

Due to the multiple reflections in the adjacent layers and
mode self-coupling, the resonances determined by the pole
parameters of the four-layer structures γpole are shifted from
the positions of the effective refractive indices of three-layer
modes. The maximum FE(4) can be estimated more exactly
using the general Fano formula (6) and Eq. (38) at α = γ ′

pole

as FE(4)(γ ′
pole ) = |� (4)

0 χnonRes
l |2[(γ ′

pole − γ ′
zero)2 + γ ′′2

zero]/γ ′′
pole.

As FE(4) is inversely proportional to γ ′′2
pole, the higher maxi-

mum FE in the TE0 case results from the lower imaginary
part of the TE0 pole (see Table II). Eq. (39) is helpful to
clarify the origins of the difference in FE values for TE0 and
TM0 cases. In fact, Eq. (39) suggests that for |νl−1| � γ ′′

the FE lower limit is inversely proportional to the squared
module of transfer coefficient νl−1. We can conclude that the
higher FE value is achieved in the s polarization case due to a
higher mode effective index and a lower transfer coefficient as
compared to those of the p polarization case. The resonance
FWHM is proportional to γ ′′

pole as suggested by Eq. (7), and
the ∼3 times wider FWHM in the p polarization case results
from the ∼3 times higher γ ′′

pole as compared to those of s
polarization case (see Table II).

The real parts of the zero and pole parameters take nearly
the same values for both the s and p polarizations (see
Table II). This fact leads to arg(q) values close to –π/2 that
classify the resonance spectra into symmetric line shapes as
can be seen in Figs. 5(a) and 5(b).

According to Eq. (24), the real part of γzero determines the
position of a resonance dip. In the case of p polarization, the
real part of γzero is higher than γ ′ by ∼1.1 × 10–4 RIU. The
difference for the s polarization case is lower and has an oppo-
site sign: –2.8 × 10–6 RIU. These differences are manifested
in the shifts of the resonance positions of the ATR spectra
of +0.0078◦ and –0.0002◦ from the resonance positions of
the TE0 and TM0 WG modes in the three-layer structure,
respectively. The higher resonance shift in the p polarization
case is originated from the higher back-coupling coefficient
P, which is proportional to the self-coupling coefficient η and
the coefficient of back-reflection ηl–1, which are proportional
to the squared transfer coefficient. The stronger self-coupling
and back-reflection in the p polarization case is a result of the
lower mode effective index as compared to that of the s polar-
ization. Therefore, a higher shift of the resonance position is
accompanied by a lower FE of the mode.

The absolute errors ||r0,3|2 − |r̃0,3|2| for the “Fano” and
“UFano” approximations were estimated as functions of θ

in the ATR region and shown in Figs. 5(c) and 5(d). The
absolute errors are close for both the “Fano” and “UFano”
approximations achieving the maximum values of ∼10–3 in

the resonance vicinity. In the region of θ (α) > θ (γ ′), the
“UFano” absolute error takes lower values as compared to that
of the “Fano” approximation. We conclude that the numerical
results obtained by the CM model in the four-layer case are
also in excellent agreement with the exact data, and the “Fano”
approximations is as accurate as the “UFano” approximation.

C. An absorptive WG with a metallic spacer layer
in the ATR configuration

Another planar structure considered here consists of a
high-index dielectric low-loss WG layer 450 nm in thickness
separated from a high-index prism by a thin gold film. This
is a four-layer system denoted as 4LMWG structure with the
parameters given in Table I. The WG modes in the structure
are also excited under the ATR conditions and characterized
by attenuation higher than that of the modes in the 4LWG
structure. According to Eq. (42) the values of critical coupling
thickness dcc

1 of the gold layer L1 in the 4LMWG structure are
45.2 nm and 33.5 nm for p and s polarizations, respectively.
The ATR spectra of the structure with dcc

1 show deep and
sharp resonances with nearly symmetric line shapes. In the
following, we consider the structure with a thickness d1 of
25 nm, which is smaller than dcc

1 and characterized by higher
mode self-coupling strength, to increase the shift of resonance
position from that of the three-layer WG mode. The exact
ATR spectra of the structure are given in Figs. 6(a) and 6(b).

In the absence of the WG layer, the resonance corre-
sponding to the excitation of SPP at the gold-air interface
is located at θ = 42.6◦. In the presence of the WG layer,
the SPP resonance shifts to higher angles as the WG layer
thickness increases due to the SPP mode self-coupling by back
reflections in the adjacent layers [15]. At the thickness of 450
nm the SPP mode is located at θ = 85.5◦ and does not appear
in the presented ATR spectra.

In the figures, we see asymmetric resonance dips associ-
ated with the excitation of the TM0 and TE0 WG modes. The
shifts of the resonance positions from those of the three-layer
metal-WG-insulator structure are higher as compared to the
shifts in the spectra of the previous structures (3LWG, 4LWG)
with lower losses found in Figs. 4 and 5. The numerical results
obtained from the “Fano” and “UFano” approximations are
shown in Figs. 6(a) and 6(b), respectively. We can see an
excellent agreement between the “UFano” approximation and
the exact calculation in a broad angular region and a good
agreement of the “Fano” approximation in a narrow region
near the resonance vicinity α → γ ′.

To characterize the resonance line shapes in the ATR spec-
tra, we calculated the values of zero and pole parameters of
the expression (24) for the p and s polarizations and listed
them in Table II. In both cases, |q| is close to 1.0 and arg(q)
of –0.40235π for the p polarization and –0.43926π for the
s polarization, are not close to ±π /2, making the resonance
line shapes more asymmetric as compared to those of the WG
structure with dielectric claddings. Note that as the real part
of q increases, arg(q) approaches zero, and the line shape
becomes asymmetric. According to Eq. (24), q = γpole − γzero

is proportional to the mode excitation coefficient κ determined
by Eq. (12). For the low-loss structures the module of the real
part of κ is smaller than the module of the imaginary part. The
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FIG. 6. Four-layer WG structure with a metallic cladding in the ATR geometry (4LMWG structure). Comparison of the exact solution
|r0,3|2 (red bold dots) with the “UFano” (blue solid line) and “Fano” (black dashed line) |r̃0,3|2 approximations for (a) p-polarized and
(b) s-polarized excitations. The absolute error of the approximations for (c) p-polarized and (d) s-polarized excitations. The filled areas
correspond to the evanescent region.

resonance component is, therefore, characterized by a phase
shift of ±π /2 relative to the nonresonance component that
results in the symmetric resonances. Losses imposed to the
structure increase the real part of κ and q moving the phase
shift towards to zero that leads to asymmetric resonances. An
absorption in the metal layer L1 in the 4LMWG structure thus
results in the real part of κ higher by an order of magnitude as
compared to that of the 4LWG structure with loss-less dielec-
tric layer L1 as found in Table II. The increased absorption in
the 4LMWG structure also leads to higher values of γ ′′

pole and
FWHM as compared to the 4LWG structure.

Due to thinner layer L1 in the 4LMWG structure, the coef-
ficients of self-coupling η1 and back-coupling P are higher by
an order of magnitude than those of the 4LWG structure as can
be seen from Tables B2 and B3. According to Eq. (43), this
implies larger shifts of the three-layer modes and lower FE of
the modes in the 4LMWG structure as found in the Table II.

The absolute errors for the “Fano” and “UFano” approxi-
mations are shown in Figs. 6(c) and 6(d) as functions of θ in
the ATR region. The “UFano” absolute error does not exceed
0.055 and 0.025 for p and s polarizations, respectively. The
“Fano” results exhibit much higher divergence and take low
error values in the narrow resonance region of θ (γ ′) ± 0.25◦.

D. An absorptive Fabry-Pérot MIM structure

In this subsection, we consider a four-layer structure, de-
noted as 4LFP structure, containing an MIM structure. The

MIM structure consists of a 3-μm-thick high-index loss-less
dielectric layer sandwiched between a semi-infinite gold sub-
strate and a thin gold film. This structure supports Fabry-Pérot
modes, and the modes can be excited by a plane wave incident
from air at the thin gold film side. The critical coupling thick-
nesses dcc

1 of the thin gold layer calculated by Eq. (42) are
35.1 nm and 27.5 nm for p and s polarizations, respectively.
To enhance the asymmetry of the Fabry-Pérot resonances, we
selected a thickness of 10 nm, which is smaller than dcc

1 and
provides higher self-coupling strength of the resonator field.

To generate the asymmetric resonances in angular spec-
tra of the MIM structure we selected eighth-order radiative
Fabry-Pérot modes with complex effective refractive indices
γ of 0.735539 + i8.79 × 10–4 RIU and 0.724375 + i6.56 ×
10–4 RIU for p and s polarizations, respectively. The exact
reflectivity spectra of the structure are compared with the
Fano approximations in Figs. 7(a) and 7(b). To focus on the
excitation of these Fabry-Pérot modes, the angle of incidence
θ is scanned in the radiative region only. The spectra exhibit
asymmetric resonance dips for both polarizations.

We see that the exact reflectivity spectra are very well
reproduced by the “UFano” approximation in a wide angular
region, whereas the “Fano” results just partly approxi-
mate the exact solutions in narrower regions near α =
γ ′. The estimates of maximum FE in the dielectric layer
take much lower values as compared to the 4LWG and
4LMWG structures due to higher absorption in the metal
layers.
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FIG. 7. Exact reflectivity spectra |r0,3|2 (red bold dots), and “UFano” (blue solid line) and “Fano” (black dashed line) approximations in
the four-layer MIM structure, which support excitation of radiative Fabry-Pérot modes for (a) p and (b) s polarizations (4LFP structure). The
absolute error of the approximations for (c) p and (d) s polarizations.

The values of the normalized amplitude of resonance
component q were estimated based on the zero and pole pa-
rameters. For both polarizations, |q| is close to 1.0 and arg(q)
is around –0.2π . Since these arg(q) values are not close to
±π /2, the asymmetric resonance line shapes are generated.
As the thickness of the L1 layer in the 4LFP structure is the
thinnest among the considered structures, the 4LFP structure
exhibits the strongest self-coupling (see Table III). As a result,
in the 4LFP structure, the resonance shift is the highest, and
the mode FE is the weakest.

The absolute errors of the “Fano” and “UFano” approxima-
tions are plotted in Figs. 7(c) and 7(d) as functions of θ . The
“UFano” absolute error does not exceed 0.02 and 0.056 in the
broad angular region of θ (γ ′) ± 10◦ for p and s polarizations,
respectively. The “Fano” results show low error values in a
much narrower range of θ (γ ′) ± 0.35◦.

E. Coupling of two Fabry-Pérot modes in a MIMIM structure

In this subsection, we consider a stack of two MIM struc-
tures denoted as 6L2FP structure. In the stack, the MIM
structures are separated by the middle spacer metal layer as
presented in Fig. 8. The composite reflective MIMIM struc-
ture consists of four finite-thickness layers: a stack of two
gold layers L1 and L3 and two dielectric layers L2 and L4

placed on a semi-infinite gold substrate L5. The semi-infinite
layer L0 represents a dielectric environment. Both of the di-
electric layers are sandwiched by the gold layers and they
form the cores of two MIM Fabry-Pérot resonators. Here-

after, we denote these MIM structures as MIM1 (L1 − L3)
and MIM2 (L3 − L5) resonators. The MIM2 resonator is the
same as the MIM structure considered in the previous sub-
section and supports the same Fabry-Pérot mode with the
propagation constant γ2 of 0.735539 + i8.79 × 10–4 RIU and
0.724375 + i6.56 × 10–4 RIU for p and s polarizations, re-
spectively. The MIM1 includes a lossy dielectric layer L2

with the refractive index of n2 = 1.5 + i0.02 and thickness
of d2 = 700 nm and supports excitation of second-order ra-
diative Fabry-Pérot mode with the propagation constant γ1 of
0.717942 + i0.051733 RIU and 0.6720551 + i0.047555 RIU
for p and s polarizations, respectively. The modes of MIM1
are directly excited by an external light field. High intrinsic
losses in the MIM1 resonator bring low-Q broad resonances,
while MIM2 resonator provides sharp high-Q resonances.

The MIM1 and MIM2 structures are separated from each
other by the gold spacer layer L3. When the layer L3 is thin
enough the modes can couple each other through the expo-
nentially decaying waves propagating in the gold layer L3.
The thicker layer L3 results in the weaker mode coupling.
To demonstrate the mode intercoupling that leads to the ap-
pearance of highly asymmetric resonance line shapes in the
reflectivity spectra in a weak coupling regime, we fixed the
thickness of the gold layer L3 at d3 = 40 nm.

The “Fano” and “UFano” approximations of the reflec-
tivity spectra for the 6L2FP structure were obtained using
Eq. (49) for constant and variable values of ρ2, ρ4, and o21,
respectively. The resonance behavior of o21 is assumed as
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FIG. 8. Exact reflectivity spectra |r0,5|2 (red bold dots), and “UFano” (blue solid line) and “Fano” (black dashed line) approximations in
the six-layer MIMIM structure, which support excitation of radiative Fabry-Pérot modes for (a) p and (b) s polarizations (6L2FP structure).
The absolute error of the approximations for (c) p and (d) s polarizations.

o21(α) = (ξl + ςl )νl+1[1 − (1 − σ̃l )ν−2
l r−1

l,l−1] in the “UFano”
case. The approximations are compared with exact calcula-
tions in Fig. 8. The Fabry-Pérot modes are excited for both
polarizations. As can be clearly seen in the figure, the interfer-
ence between the broad MIM1 and narrow MIM2 Fabry-Pérot
modes results in the appearance of Fano line shapes in the
reflectivity spectra. As the polarization state affects the mutual
position of the resonances, the asymmetry of the resonance
features differs for p and s polarizations. In the p polariza-
tion case, the positions of the MIM1 and MIM2 Fabry-Pérot
modes are detuned that leads to the asymmetric Fano line.
In the s polarization case, inside a broad reflection dip a
narrow reflectivity peak appears near α = γ ′

2; this line shape
corresponds to the symmetric electromagnetically induced
transparency (EIT) or plasmon-induced transparency (PIT)
[55].

As can be seen in Fig. 8, the “UFano” approximation
reproduces very well the exact data in a wide angular region.
The error in the “Fano” approximation falls in the same level
as that of the “UFano” approximation in the narrower region
of γ ′

2 ± 0.02 RIU.
In the “UFano” approach, the Fano behavior of the

outcoupling coefficient ρ2 and ρ4 results in the partial trans-
formation of resonance components into nonresonance ones
and nonresonance components into resonance ones. Analyz-
ing the difference in the “Fano” and “UFano” approaches,
we conclude that the outcoupling mechanism for the field in
interference resonators plays an important role in formation of
the nonresonance background in the total response.

The absolute errors of the approximations are demon-
strated in Figs. 8(c) and 8(d) as functions of θ . The “UFano”
absolute error does not exceed 0.046 and 0.023 in the broad
angular region of 18.0°–72.0° and 18.0°–46.2° for p and s po-
larizations, respectively. The “Fano” approximation shows the
same error values in much narrower regions of 46.0°–50.7°
and 46.3°–45.2°, respectively.

V. CONCLUSIONS

In the present work, approximate expressions of the field
amplitudes around the resonances in multilayer interference
resonance structures were obtained by using the 2 × 2 transfer
matrix approach. Based on the expressions the spatial CM
models were developed for three-, four-, and six-layer struc-
tures that support a variety of single and coupled interference
modes.

Our CM formalism confirms that the fields excited in
the resonators are characterized by both the resonance and
nonresonance components; this feature becomes particularly
important in lossy or low-Q structures. From the analysis of
the resonance effects associated with the excitation of inter-
ference modes, it was found that coupling of the external
fields with the fields of interference modes is affected by
the interference, and the coupling coefficients are expressed
in terms of the Fano functions. The resonance behavior of
incoupling and outcoupling of total fields from interference
resonators modifies dramatically the ratio of the outcoupled
resonant and nonresonant fields in the out-of-resonance con-
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ditions. This is in severe contrast to the conventional CMT, in
which the coupling coefficients are assumed to be constants,
resulting in large discrepancies with exact solutions in low-Q
interference systems. Our finding is extremely important to
implement appropriately the spatial CMT to the interference
resonators.

To examine the validity of the approximate expressions
and corresponding CM models in simulation of low-Q and
high-Q interference structures, the approximate expressions of
the rigorous solutions of the EM theory are represented in two
forms, i.e., general Fano formulas with constant coefficients
(“Fano” case) and composite Fano formulas, in which the
outcoupling coefficients themselves take the form of the Fano
functions (“UFano” case). Numerical results obtained by both
the “Fano” and “UFano” approaches are compared with rig-
orous numerical calculations for planar multilayer structures
that support excitation of WG and Fabry-Pérot modes, as
well as the coupling of two Fabry-Pérot modes in a MIMIM
structure. To produce both the symmetric and asymmetric line
shapes, various loss levels were introduced to the structures
by appropriately choosing the optical constants. The results
of error analysis revealed that the “UFano” approximation
brings about the line shapes in excellent agreement with those
obtained by the rigorous calculations. The “Fano” approxima-
tion with the constant coefficients exhibits a good accuracy
in substantially narrower regions in the resonance vicinity
as compared to those of the “UFano” approximation. The
applicability of the “Fano” approach and, to some extent,
of the conventional CMT was found to be limited by the
following main factors that affect the approximation quality
in the resonance vicinity: the mode density, which increases
with increasing the thickness of the interference layer, and the
resonance width, which is mainly determined by the absorp-
tion in layers. To achieve the best approximation results, the
detuning of neighboring modes should be much larger than
the resonance width. Alternatively, the neighboring modes
should be also appropriately described in the CM model.
Although the applicability of this approach is demonstrated
in the single- and double-mode cases, the CM models can be
further extended to structures supporting an arbitrary number
of modes for both the spatial and time domain.

Several intrinsic features of the multilayer interference res-
onators were revealed from our CM analysis. The resonance
behavior of far-field enhancement spectra in the interference
resonators does not reflect directly the behavior of local to-
tal FE inside the resonators. Our theoretical findings can
be confirmed experimentally using, e.g., fluorescence spec-
troscopy [34,56,57]. Inspired by the physical interpretation
within the spatial CM models developed in the present work,
the condition of critical coupling was correctly formulated
and the phenomenon of the resonance shift due to the mode
self-coupling was explained. The Fano coefficients explicitly
given by the geometrical and optical parameters of the mul-
tilayer interference structures allow one to derive analytical
expressions for main resonance properties, i.e., the position
and width of resonance, maximum FE, resonance slope, sensi-
tivity to the changes in optical characteristics of environment,
etc. The analytical expressions for the pole and zero parame-
ters suggest that the self-coupling of the resonator fields due
to multiple reflections in the adjacent layers is the main factor,

which leads to the resonance shifts from the intrinsic positions
and to the changes in the resonance line shapes.

Indeed, the far-field spectra can still be fitted by general
Fano formulas and, therefore, approximated by the conven-
tional phenomenological CO and CM models dealing with
resonance components only and constant coupling coeffi-
cients. However, in contrast to the spatial CMT developed
in this work, conventional CO and CM models are not able
to catch underlying physical effects. Therefore, our rigorous
CM formulations are helpful to gain physical insights into
the effects of coupling between the local electric fields inside
the interference resonators and can be used to further develop
a general CM formulation for complex coupled resonance
systems.
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APPENDIX A: ELECTROMAGNETIC THEORY
FOR LAYERED MEDIA

In this appendix we provide a detailed formulation of the
2 × 2 transfer matrix approach used for derivation of analyti-
cal expressions approximating the field amplitudes.

1. Single interface

The light propagation in real structures is influenced by
surface and material inhomogeneities, which can cause ab-
sorption, scattering, and attenuation [58]. In the present
derivations, we assume that multilayer structures are com-
posed of ideal thin films, without the inhomogeneities, and
implement approaches of the rigorous EM theory of wave
propagation in layered media [8].

Let us consider a general case of a p- or s-polarized plane
wave incident on an interface Il,l+1 between two semi-infinite
homogeneous layers Ll and Ll+1 through the layer Ll as shown
in Fig. 9.

z
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εl

θ
kllayer Ll

Il,l+1

hl,l+1 kx

kz
(l) h -

layer Ll+1 h+

εl+1

kx

-kz
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tl,l+1
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FIG. 9. Refraction and reflection of plane waves at the interface
between two media.
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Suppose that the x and y axes are parallel and perpendicu-
lar, respectively, to the plane of incidence. In such a coordinate
system, the harmonic field in the structure can be written
as Hl = (0, hl , 0) exp(−iωt ), where the subscript l denotes
the layer number, ω is the angular frequency. The layer Ll

is characterized by the refractive index nl and the dielectric
constant εl = n2

l . Assume that EM waves propagate in the x-z
plane, so the total field is uniform along the y axis. In the case
of a source-free media, the steady-state wave equation for the
field hl is represented by the scalar Helmholtz equation

∂2hl

∂x2
+ ∂2hl

∂z2
+ k2

0εl (z)hl = 0. (A1)

The equation for a plane wave hl,l+1(x, z) in Ll translating
the field excitations on Il,l+1 can be written as

hl,l+1(x, z) = Hl,l+1 exp [ik0(αx + βl z)]. (A2)

For a propagating wave, which is incident at an angle θ

to the normal of Il,l+1 in Ll , the x and z components of the
propagation constant are given as kx = k0α = k0

√
εl sin θ and

kz = k0βl = k0
√

εl cos θ , respectively.
The plane wave hl,l+1 generates two outcoupling plane

waves in both layers. For a given α, the total field hl in the
considered structure is found as a solution of Eq. (A1):

hl (x, z) =
{

hl,l+1(x, z) + h−(x, z), z ∈ Ll ,

h+(x, z), z ∈ Ll+1.
(A3)

The fields of the reflected h− and transmitted h+ waves are
expressed as h−(x, z) = rl,l+1(α)Hl,l+1 exp[ik0(αx − βl z)]
and h+(x, z) = tl,l+1(α)Hl,l+1 exp[ik0(αx + βl+1z)] with
complex reflection rl,l+1 and transmission tl,l+1 coefficients,
respectively. The polarization-dependent reflection
coefficients rl,l+1 can be easily determined by the transfer
matrix approach [7] in the case of p and s polarizations,
respectively, as

rp
l,l+1 = βl/εl − βl+1/εl+1

βl/εl + βl+1/εl+1
and rs

l,l+1 = βl − βl+1

βl + βl+1

. (A4)

The relations rl+1,l = −rl,l+1, tl,l+1 = 1 + rl,l+1 and
tl+1,l = 1 + rl+1,l are fulfilled regardless of the polarization
state of the incident wave.

2. Three-layer system

According to Fig. 1, the total field hl in Ll can be repre-
sented as the interference of backward h−

l and forward h+
l

waves, hl = h−
l + h+

l , where

h−
l = (rl,l+1Hl,l+1 + tl+1,l Hl+1,l ) exp{ik0[αx − βl (z − dl )]},

h+
l = (tl−1,l Hl−1,l + rl,l−1Hl,l−1) exp[ik0(αx + βl z)]. (A5)

The complex amplitudes H−
l and H+

l of the h−
l and

h+
l waves, respectively, are derived by the following

expressions:

H−
l = rl,l+1Hl,l+1 + tl+1,l Hl+1,l = Hl,l−1/νl ,

H+
l = tl−1,l Hl−1,l + rl,l−1Hl,l−1 = Hl,l+1/νl . (A6)

Based on the relations (A6), the following relations be-
tween the complex field amplitudes of the waves at Il–1,l and
Il,l+1 can be written in a vector form, respectively:

Hl,l−1 = νl [tl+1,l rl,l+1]

[
Hl+1,l

Hl,l+1

]
, (A7)

Hl,l+1 = νl [tl−1,l rl,l−1]

[
Hl−1,l

Hl,l−1

]
. (A8)

The change in the amplitude of a wave in Ll for a round-trip
distance 2dl is characterized by the squared transfer coeffi-
cient ν2

l . The relations between the complex amplitudes of the
forward and backward incident plane waves at Il–1,l and Il,l+1

can be written in the 2 × 2 transfer matrix form as

[
Hl,l−1

Hl−1,l

]
=

[
Al Bl

Cl Dl

][
Hl+1,l

Hl,l+1

]
, (A9)

where the coefficients of the transfer matrix are given by

Al = νl tl+1,l , Cl = −νl rl,l−1tl+1,l

tl−1,l
,

Bl = νl rl,l+1, Dl = 1 − ν2
l rl,l−1rl,l+1

νl tl−1,l
. (A10)

The coefficients Al , Bl , Cl , Dl in Eq. (A10) take the same
forms for both polarizations. The expressions for s and p
polarizations can be obtained only by using r and t coef-
ficients appropriate for the polarization state. Therefore, the
polarization-dependent boundary conditions for the total field
and its normal derivatives at the interfaces depending on the
polarization state of the incident wave are automatically satis-
fied.

When the wave hl+1,l is absent (Hl+1,l = 0), the field at the
interface Il,l+1 is given by

Hl,l+1 = D−1
l Hl−1,l = χlνl tl−1,l Hl−1,l , (A11)

and the amplitude of the backward wave at Il−1,l is given by

Hl,l−1 = BlHl,l+1 = χlν
2
l tl−1,l rl,l+1Hl−1,l , (A12)

where χl (α) = (1 − ν2
l rl,l−1rl,l+1)−1 is the complex coeffi-

cient describing the field generation in the layer Ll by the
exciting wave of amplitude Hl−1,l as a result of multiple
reflections inside the layer Ll between Il–1,l and Il,l+1.

The total field hl in the middle layer Ll is repre-
sented as the interference of two plane waves with the
complex amplitudes Hl,l+1 = χlνl tl−1,l Hl−1,l and Hl,l−1 =
χlν

2
l tl−1,l rl,l+1Hl−1,l that propagate in opposite directions
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along the z axis and can be written as

hl (x, z, α) = Hl,l+1(α) exp(ik0αx){rl,l+1 exp[−ik0βl (z − dl )]

+ exp[ik0βl (z − dl )]}. (A13)

The total transmission and reflection coefficients for the
three-layer structure are found as tl−1,l+1 = h+

l+1/h+
l−1 and

rl−1,l+1 = h−
l−1/h+

l−1, respectively, and can be estimated using
Eq. (A6).

The enhancement of interference field amplitude,
Hl,l+1/Hl−1,l , according to Eq. (A11), is proportional to
χl (α) = σ−1

l . From the definition, it follows 0 � |σl | � 2.
The dispersion relation (4) can be written in the following
form by introducing polarization-dependent and polarization-
independent coefficients:

k0βl (γ )dl = πm + i ln
βl (γ )w̄l,l−1 − βl−1(γ )w̄l−1,l

(εl − εl−1)1/2 p̄l,l−1

+ i ln
βl (γ )w̄l,l+1− βl+1(γ )w̄l+1,l

(εl − εl+1)1/2 p̄l,l+1, m ∈ Z

(A14)

where polarization-dependent coefficient w̄l,k is obtained
from the relation (3) as w̄l,k = 1 in the case of s polarization
and w̄l,k = (εk/εl )1/2 in the case of p polarization.

Depending on the effective refractive index γ of a resonant
mode supported by the structure, where γ satisfies Eq. (4), the
dispersion relation (4) can be represented in the well-known
forms. For example, in the case Re(εl−1), Re(εl+1) < γ ′2 <

Re(εl ), Eq. (A14) reduces to the planar WG mode excitation

condition [44,48,49]

k0βl (γ )dl = πm + φl,l−1 + φl,l+1, (A15)

where the phase shifts of the waves by reflection from inter-
faces are found as φl,k = − arccos βl (γ )w̄l,k p̄l,k (εl − εk )−1/2.

The dispersion relation (4) can be also rewritten in an
alternative form as two dispersion relations:

ik0βl (γ )dl + iπm = 1

2
ln

1 + gl,l+1

1 − gl,l+1

1 + gl,l−1

1 − gl,l−1
,

ik0βl (γ )dl + iπm = 1

2
ln

gl,l+1 + 1

gl,l+1 − 1

gl,l−1 + 1

gl,l−1 − 1
,

(A16)

where gl,k = βk/(w̄2
l,kβl ), m ∈ Z. Based on the definitions of

the principal values of the inverse hyperbolic tangent and
cotangent, the relations (A16) can then be reduced to the
dispersion relations for symmetric and antisymmetric cou-
pled modes generated by the coupling between the interface
SPPs in metal-insulator-insulator (MIM) and insulator-metal-
insulator structures [50], respectively:

artanh(gl,l+1) + artanh(gl,l−1) − ik0βl (γ )dl = 0,

arcoth(gl,l+1) + arcoth(gl,l−1) − ik0βl (γ )dl = 0. (A17)

3. Four-layer system

The approximation approach can be extended to combina-
tions of multilayer structures, which support resonant modes.
In the 2 × 2 transfer matrix formalism, any multilayer system
can be reduced to a three-layer system with an effective mid-
dle layer. The relations for the transfer of amplitudes of field

oscillations in four-layer structures can be expressed in the matrix form as[
Hl−1,l−2

Hl−2,l−1

]
=

[
Al−1Al − Bl−1Cl Al−1Bl + Bl−1Dl

Cl−1Al + Dl−1Cl Cl−1Bl + Dl−1Dl

][
Hl+1,l

Hl,l+1

]
. (A18)

In the case of absence of the wave hl+1,l (Hl+1,l = 0) incoming in the outer most layer, the complex amplitude Hl,l+1 of the
interference field is expressed as the Fano resonance

Hl,l+1 = (Cl−1Bl + Dl−1Dl )
−1Hl−2,l−1, (A18)

and the complex amplitude Hl−1,l−2 of the field outcoupled from the structure is given by

Hl−1,l−2 = (Al−1Bl + Bl−1Dl )Hl,l+1. (A19)

The total transmission and reflection coefficients for the four-layer structure are found as tl−2,l+1 = h+
l+1/h+

l−2 and rl−2,l+1 =
h−

l−2/h+
l−2. The coefficients can be expressed using Eq. (A6) as tl−2,l+1 = tl,l+1Hl,l+1/Hl−2,l−1 and rl−2,l+1 = (rl−2,l−1Hl−2,l−1 +

tl−1,l−2Hl−1,l−2)/Hl−2,l−1, respectively.

APPENDIX B: SUMMARY OF CALCULATION PARAMETERS

1. Parameters of Fano approximations
and resonance characteristics

The parameters of the Fano function in Eqs. (36) and (42) calculated using analytical expressions and some resonance
characteristics of the reflectivity spectra are listed in Table II.

2. Parameters of the CM models

The coefficients of CM models obtained using analytical expressions are listed in Table III.
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TABLE II. Fano coefficients and some resonance characteristics of the samples.

3LWG (p polar.) 3LWG (s polar.) 4LWG (p polar.) 4LWG (s polar.)

γ (RIU) 1.1450140 + i4.6 × 10–5 1.2633274 + i8.3 × 10–5 1.1450140 + i4.6 × 10–5 1.263327352 + i8.3 × 10–5

γzero (RIU) 1.1449804 + i0.143548 1.2633123 + i0.143111 1.1451444–i4.5 × 10–4 1.263324533 + i2.1 × 10–5

γpole (RIU) 1.1450140 + i4.6 × 10–5 1.2633274 + i8.3 × 10–5 1.1451406 + i5.3 × 10–4 1.263324531 + i1.4 × 10–4

κ 1.2 × 10–5–i0.062664 2 × 10–6–i0.056608 1.2 × 10–5–i0.062664 2 × 10–6–i0.056608
r1,2 0.252924 + i0.967458 –0.046396 + i0.998694 0.252924 + i0.967458 –0.046396 + i0.998694
r0,1 – – –0.252931–i0.967484 0.046406–i0.998923
W – – –0.247783–i0.954711 0.046288–i0.997229
P – – 0.006830–i0.001766 0.000848 + i3.9 × 10–5

Mode FE 2.48569 × 107 5.68531 × 106 272.5 2350.7
FWHM 9.1 × 10–5 RIU 1.66 × 10–4 RIU 0.06356º (0.000717 RIU) 0.02035º (0.000191 RIU)
θres – – 49.76754º (1.145145 RIU) 57.37492º (1.263324 RIU)
Rmin – – 0.68978 0.02342
q 3.4 × 10–5–i0.143502 1.5 × 10–5–i0.143028 –3.8 × 10–6 + i9.8 × 10–4 –2 × 10–9–i1.19 × 10–4

q̄ 0.7 0.2 0.0 0.0
g 1.0 × 107 3.0 × 106 0.7 3.4

4LMWG (p polar.) 4LMWG (s polar.) 4LFP (p polar.) 4LFP (s polar.)

γ (RIU) 1.0101614 + i3.62 × 10–4 1.273461 + i4.03 × 10–4 0.735539 + i8.79 × 10–4 0.724375 + i6.56 × 10–4

γzero (RIU) 1.014226–i1.532 × 10–3 1.277488–i1.42 × 10–4 0.769432 + i1.183 × 10–3 0.747256 + i5.741 × 10–3

γpole (RIU) 1.012773 + i3.055 × 10–3 1.277115 + i1.789 × 10–3 0.745827 + i1.6714 × 10–2 0.737867 + i1.2697 × 10–2

κ 5.14 × 10–4–i0.031342 –9.2 × 10–5–i0.057665 –1.558 × 10–4–i0.065391 –1.551 × 10–4–i0.065401
r12 –0.829073–i0.539906 0.970776 + i0.221950 –0.873801–i0.467291 0.924505 + i0.362686
r01 0.829079 + i0.539909 –0.970827–i0.221963 0.904473 + i0.407593 –0.976836–i0.1958687
W 0.668086 + i0.518163 –0.930130–i0.261813 0.475136 + i0.299395 –0.736995–i0.237730
P 0.083656–i0.083881 0.019056–i0.049731 0.329490–i0.213515 0.254572–i0.284414
Mode FE 9.2 9.2 2.5 0.7
FWHM 0.3923º (0.00756 RIU) 0.234037º(0.003211 RIU) 3.47844º (0.03892 RIU) 1.418º (0.016427 RIU)
θres 42.54844º (1.014320 RIU) 58.38612º (1.277400 RIU) 49.70989º (0.762780 RIU) 48.29671º (0.746600 RIU)
Rmin 0.39327 0.04257 0.65898 0.38955
q –1.453 × 10–3 + i4.587 × 10–3 –3.73 × 10–4 + i1.931 × 10–3 –0.023605 + i0.015531 –9.389 × 10–3 + i6.956 × 10–3

q̄ –0.5 –0.2 –1.4 –0.7
g 0.3 0.8 5.0 × 10–3 0.2

TABLE III. CM coefficients.

3LWG (p polar.) 3LWG (s polar.) 4LWG (p polar.) 4LWG (s polar.)

γ (RIU) 1.1450140 + i4.6 × 10–5 1.2633274 + i8.3 × 10–5 γ (RIU) 1.1450140 + i4.6 × 10–5 1.263327352 + i8.3 × 10–5

κ 1.2 × 10–5–i0.062664 2 × 10–6–i0.056608 κ 1.2 × 10–5–i0.062664 2 × 10–6–i0.056608
r1,2 0.252924 + i0.967458 —0.046396 + i0.998694 r0,1 –0.252931–i0.967484 0.046406–i0.998923
τ2 1.574152 + i0.115153 –0.953031 + i0.998573 τ1,2 –0.000208 + i0.116852 0.6 × 10–5 + i0.041199
ρ2 –1.198467 + i0.221379 1.045791–i0.998116 ρ1 –0.037519 + i0.088288 –0.021504 + i0.018700

η1 –0.006852 + i0.001778 –0.000849–i3.9 × 10–5

ρ2,1 0.113413–i0.029648 0.041162 + i0.001917

4LMWG (p polar.) 4LMWG (s polar.) 4LFP (p polar.) 4LFP (s polar.)

γ (RIU) 1.0101614 + i3.62 × 10–4 1.273461 + i4.03 × 10–4 γ (RIU) 0.735539 + i8.79 × 10–4 0.724375 + i6.56 × 10–4

κ 5.14 × 10–4–i0.031342 –9.2 × 10–5–i0.057665 κ –1.558 × 10–4–i0.065391 –1.551 × 10–4–i0.065401
r0,1 0.829079 + i0.539909 –0.970827–i0.221963 r0,1 0.904473 + i0.407593 –0.976836–i0.1958687
τ1,2 –0.244576 + i0.282601 0.089222 + i0.136103 τ1,2 0.290527–i0.680546 0.097534–i0.345819
ρ1 –0.147177 + i0.115744 0.614141 + i0.229315 ρ1 –0.178742 + i0.199905 1.130752 + i0.589948
η1 –0.083317 + i0.091190 –0.017968 + i0.050660 η1 –0.355990 + i0.301129 –0.232426 + i0.363769
ρ2,1 –0.015621 + i0.360440 0.118846–i0.086951 ρ2,1 0.240462–i0.458659 –0.145145 + i0.449637
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