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Five-dimensional Poincaré sphere system for representing azimuthally varying vector optical fields

Jia-Hao Zhao,1 Yue Pan ,1,* Xu-Zhen Gao,1 Rende Ma,1 Zhong-Xiao Man ,1

Zhi-Cheng Ren ,2 Chenghou Tu,3 Yongnan Li,3 and Hui-Tian Wang 2,4,†

1School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser
Polarization and Information Technology, Qufu Normal University, Qufu 273165, China

2National Laboratory of Solid State Microstructures, School of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

3School of Physics, Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

(Received 22 April 2022; accepted 21 July 2022; published 4 August 2022)

Vector optical fields (VOFs) with space-variant polarization on the wave front, have attracted considerable
attention and have been applied in many realms from focal engineering to light-matter interaction. Recently,
some upgraded Poincaré sphere (PS) models have been presented to describe VOFs, providing new insights in
studying and applying structured light. Here, we report a model of five-dimensional (5D) PS system consisting
of a series of three-dimensional (3D) spheres (Bloch spheres) located on a two-dimensional (2D) plane. In fact,
this model is geometrically similar to the solar system, and the 3D Bloch spheres and the 2D plane are analogous
to the “planets” and their orbital plane, respectively. This model is the most generalized model describing the
azimuthally varying VOFs we know so far. A reliable and flexible experimental scheme is exploited to generate
the VOFs represented by the 5D PS system. Furthermore, the 5D PS system is a complete tool to represent the
azimuthally varying VOFs with polarization changing along arbitrary circular path on any 3D PS, and can be
implemented for representing and designing the spin and orbital angular momenta. The 5D PS system graphically
simplifies the representation of complex structured light and provides a prominent toolkit to the design and
application of VOFs as well as the corresponding optical angular momentum.
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I. INTRODUCTION

As an intrinsic nature of light, polarization plays an im-
portant role in engineering optical fields and light-matter
interaction. Recently, vector optical fields (VOFs) with space-
variant polarization have attracted great attention due to
unexpected effects and a myriad of applications [1–3], such
as sharper focus beyond diffraction limit [4,5], light needle of
a longitudinally polarized field [6,7], quantum optics [8–10],
optical information [11–13], optical trapping [14,15], optical
imaging [16], nonlinear optics [17], and light-matter inter-
action [18–20]. With the increasing significance of studying
VOFs, it is urgent to propose a complete model for describing
the spatial configuration of VOFs, which is helpful in explor-
ing the physical mechanism, novel effects, and applications of
VOFs.

For any coherent scalar optical field with space-invariant
polarization, its polarization state can be described by a
one-to-one point on the traditional Poincaré sphere (PS)
model constructed by the Stokes parameters [21]. This ba-
sic geometric connection greatly simplifies the polarization
representation and becomes a useful tool in dealing with
transformation of the polarization state, for instance, such a
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traditional PS has been used to explore the geometric phase
problem of the optical field [22–24]. Despite its powerful
utility, the traditional PS is hard to directly describe the VOFs
with space-variant polarization states. In recent years, some
upgraded PS models have been presented to represent VOFs,
including the hybrid PS [25], higher-order PS [26], hybrid-
order PS [27], and generalized PS [28]. These upgraded PS
models provide better guidance for further investigation and
application of structured light [8,17,29–33]. In the above up-
graded PS models, a certain pair of orthogonal bases is used
to describe the spatially structured optical fields. In fact, the
polarization states of the orthogonal bases can be selected
arbitrarily, and this selectivity is an important manipulating
degree of freedom which is rarely considered. As a result, a
large number of VOFs cannot be represented by the existing
models, which limits the design, generation, and application
of the structured light. It is worth mentioning that there are
also other kinds of upgraded PS models [34–40] for repre-
senting different beams instead of VOFs.

Here we aim at constructing the model of five-dimensional
(5D) PS system, which is represented by a series of three-
dimensional (3D) spheres located on a two-dimensional (2D)
plane. In fact, this model is geometrically similar to the solar
system, the 3D spheres (Bloch spheres) and the 2D plane are
analogous to the “planets” and their orbital plane, respectively.
In the 5D PS system, the bases at the north and south poles in
each 3D Bloch sphere are the most general orthogonal states
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so far, which have arbitrary spin angular momentum (SAM)
and arbitrary orbital angular momentum (OAM). Therefore,
this model has more degrees of freedom, which becomes
the general model to describe most of the existing VOFs
and other new VOFs. A flexible scheme is further proposed
to experimentally generate the VOFs represented by the 5D
PS system. The 5D PS system can completely represent the
azimuthally varying VOFs, and it is introduced to describe
and design OAM and SAM. The 5D PS system provides a
useful geometric tool for studying VOFs and optical angular
momenta, which can be applied in many realms.

II. THEORY AND DESCRIPTION

As is well known, any polarization state can be represented
by the weighted superposition of two orthogonal basis states.
Thus, the optical field can be represented as

|ψ〉 = ψm
N

∣∣Nmθ
r

〉 + ψm
S

∣∣Smθ
r

〉
. (1)

The optical field carrying OAM can be expressed as the su-
perposition of the spiral harmonics exp( jmφ). For the VOF
described by the 5D PS system we propose here, |Nmθ

r 〉 and
|Smθ

r 〉 are two orthogonal bases carrying opposite SAMs and
OAMs as∣∣Nmθ

r

〉 = e− jmφ[cos(πr)êl − sin(πr)e− jθ êr],∣∣Smθ
r

〉 = e+ jmφ[sin(πr)e+ jθ êl + cos(πr)êr], (2)

where φ is the azimuthal coordinate and ±m are the topo-
logical charges of the vortices carried by the two bases. r
determines the ellipticities of the orthogonal bases, and the el-
lipticities change continuously within a range of [−1, 1] when
r ∈ [0.5, 1]. θ controls the orientations of the polarization
ellipses of the orthogonal bases within a range of θ ∈ [0, 2π ).
Specifically, the orientations of the two bases are θ/2 and θ/2
+ π/2 and change continuously within ranges of [0, π ) and
[π/2, 3π/2), respectively. ψm

N and ψm
S in Eq. (1) represent the

weights of the orthogonal bases |Nmθ
r 〉 and |Smθ

r 〉, which can
be expressed as

ψm
N = sin(α + π/4)e− jϕ,

ψm
S = cos(α + π/4)e+ jϕ, (3)

where α determines the relative intensity fraction and ϕ con-
trols the phase difference between the orthogonal bases. 2α

and 2ϕ vary within the ranges of [−π/2, π/2] and [0, 2π ),
respectively. Therefore, in this 5D PS system, the orthogonal
bases are the most general so far.

It can be seen that the optical fields in the model of the
5D PS system are represented by five parameters includ-
ing (m, θ ; r, 2α, 2ϕ). Referencing [21,26,28], the parameters
(r, 2α, 2ϕ) are used to construct the 3D Bloch sphere. Due
to the 3D limit of the Bloch space, the model of the 5D
PS system with five parameters cannot be represented by a
single Bloch sphere. We further construct a 2D polar coor-
dinate plane with the two parameters (m, θ ), where θ is the
azimuthal coordinate within a range of [0, 2π ), and m � 0
is the radial coordinate (but m is a discrete natural number
instead of all non-negative real number). Thus, the 5D PS sys-
tem is constructed by a series of planets (3D Bloch spheres)
located at different discrete “orbits” on the 2D plane. The

polar coordinates (m, θ ) on the 2D plane defines the orbit lo-
cation of a planet (3D Bloch sphere) with the three parameters
(r, 2α, 2ϕ), and accordingly, we label this Bloch sphere as an
mθ sphere. In this way, the model of 5D PS system has been
established mathematically as shown in Fig. 1.

Referencing the definition of the Stokes parameters
[21,26,28], we calculate the Stokes parameters of the mθ

sphere in the 5D PS system as

Gmθ
0 = (∣∣〈Nmθ

r

∣∣ψ 〉∣∣2 + ∣∣〈Smθ
r

∣∣ψ 〉∣∣2)
r = r,

Gmθ
1 = 2 Re

(〈
Nmθ

r

∣∣ψ 〉∗〈
Smθ

r

∣∣ψ 〉)
r = r cos 2α cos 2ϕ,

Gmθ
2 = 2 Im

(〈
Nmθ

r

∣∣ψ 〉∗〈
Smθ

r

∣∣ψ 〉)
r = r cos 2α sin 2ϕ,

Gmθ
3 = (∣∣〈Nmθ

r

∣∣ψ 〉∣∣2 − ∣∣〈Smθ
r

∣∣ψ 〉∣∣2)
r = r sin 2α. (4)

Obviously, the expressions of parameters Gmθ
1 , Gmθ

2 , and Gmθ
3

agree with the Cartesian coordinates of the sphere with a
radius of Gmθ

0 . Hence, we use Gmθ
1 , Gmθ

2 , and Gmθ
3 to describe

the mθ sphere, and (r, 2α, 2ϕ) are the corresponding spherical
coordinates, which can be given by

r = Gmθ
0 ,

sin 2α = Gmθ
3 /Gmθ

0 ,

tan 2ϕ = Gmθ
2 /Gmθ

1 , (5)

where r, 2α, and 2ϕ represent the radius, latitude, and lon-
gitude of each mθ sphere. The orbit location of each mθ

sphere is determined by the coordinates (m, θ ). The five coor-
dinates (m, θ ; r, 2α, 2ϕ) can define the maximum amount of
azimuthally varying VOFs so far. Especially, the points on the
Gmθ

3 axis of each mθ sphere represent a series of scalar vortex
fields with continuously varying SAM. Of course, the scalar
field with spatially invariant polarization can be regarded as a
special case of the VOF.

The schematic of the 5D PS system is shown in Fig. 1
where three white circles show the orbits with topological
charges of m = 1–3, respectively. Figures 1(a)–1(d) show
the mθ spheres with coordinates (m, θ ) = (1, π/2), (1, 0),
(2, 3π/2), and (2, 7π/4), respectively. It can be seen from
Fig. 1 that the coordinate m represents the number of the
polarization changing periods along azimuthal direction on
the wave front of the VOF, and the case for θ is more compli-
cated. When m is fixed and θ is changeable, the polarization
states of the VOFs on the outer spherical shell with r = 1
do not change as shown in the mθ sphere with (r, 2α, 2ϕ)
= (1, 0, π/2) in Figs. 1(a)–1(d). This originates from the
fact that θ has no influence when r = 1, which can be easily
understood from Eqs. (1) and (2). For the inner spherical shell
with r = 0.5, the orientation of the polarization state of the
VOF rotates counterclockwise by θ , compared with the VOF
in the mθ sphere when θ = 0 as shown in Figs. 1(a) and
1(b). When r ∈ (0.5, 1), different values of θ mean different
kinds of orthogonal bases, leading to the VOFs with different
polarization distributions. As a result, the 5D PS system can
describe more kinds of azimuthally varying VOFs. Now we
discuss the relation between the 5D PS system and the for-
mer created PS models. The mθ sphere degenerates into the
traditional generalized PS [28] when θ = 3π/2, and the 5D
PS system with θ = 3π/2 is a series of generalized PSs with
different topological charges m. When r = 0.5 and 1, the mθ
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FIG. 1. The schematic of the 5D PS system. The plane is with polar coordinates (m, θ ), and each point on the plane represents an mθ

sphere. The white circles represent the orbits with m = 1–3, respectively. (a)–(d) show the mθ spheres with coordinates of (m, θ ) = (1, π/2),
(1, 0), (2, 3π/2), and (2, 7π/4). The polarization sates of several VOFs in these mθ spheres are shown with the parameters (r, 2α, 2ϕ).

sphere further degenerates into the outer sphere surfaces of
the higher-order PS [26] and hybrid PS [25] with a geometric
rotation of the sphere. Thus, the 5D PS system contains all
the cases of the fully polarized VOFs in these two models.
When m = 0 and r = 0.5, the mθ sphere in the center of the
(m, θ ) plane degenerates into the outer sphere surface of the
traditional PS [21], which can characterize the scalar optical
fields with different polarizations. We should point out that
although we have designed the 5D PS system with discrete
orbits, the radius m in this model can be any values including
nonintegers for different needs. For the case of noninteger m,
the bases in Eq. (2) cannot be considered as the eigenstates
of OAM. Even so, the optical field can still be described by
Eqs. (1)–(3) and by the 5D PS system.

III. EXPERIMENTAL SETUP AND RESULTS

Figure 2 depicts the experimental setup we propose for
generating the VOFs represented in the 5D PS system, and
the main configuration is a 4 f system composed of a pair of

identical lenses (L1 and L2). The input horizontally polarized
optical field is incident on a cosine grating displayed on a
SLM, and the transmission function of the grating is t (x, y) =
0.5 + 0.5 cos(2π f0x + δ), where f0 is the spatial frequency.

FIG. 2. Schematic of the experimental setup. SLM: spatial light
modulator; L1 and L2: pair of lenses; SF: spatial filter; IC: intensity
controller; PC: polarization controller; QWP: quarter-wave plate;
HWP: half-wave plate; PBS: polarizing beam splitter; R-Grating:
Ronchi phase grating. The coordinates (m, 2ϕ), 2α, and (r, θ ) in the
5D PS system are modulated by the SLM, IC, and PC, respectively.
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FIG. 3. Experimentally measured VOFs in the mθ spheres
with (m, θ ) = (2, π/3) in the 5D PS system. The spherical
coordinates of the eight VOFs are (r, 2α, 2ϕ) = (1, 2π/5, 0),
(1, 2π/5, π/2), (0.67, 2π/5, π/2), (0.75, 0, π/2), (0.5, 0, π/2),
(0.67, 0, π/3), (0.5, 0, 0), and (0.67, 2π/5, 0), respectively. For
each VOF, the four pictures show the total intensity and polarization
distributions, Stokes parameters S1, S2, and S3, respectively.

When we set δ = mφ + ϕ, the input field is split into ±1
orders carrying opposite phase distributions of ±(mφ + ϕ),
corresponding to Eqs. (2) and (3). The two orders are allowed
to pass through a SF, and the relative intensity of the two
orders is controlled by the IC composed of two HWPs and two
PBSs. The modulation of the intensities of the two orders is
equivalent to adjust the parameter α in Eq. (3). Then the two
orders are converted into two orthogonally polarized beams
by the PC, which is composed of two QWPs and two HWPs.
The PC with four wave plates can guarantee that the two
orders are orthogonally polarized with arbitrary polarizations,
corresponding to the modulation of the parameters (r, θ ) in
Eq. (2). The two orthogonally polarized orders with con-
trollable intensity distribution are recombined by the Ronchi
phase grating placed in the output plane of the 4 f system.
The experimentally generated VOF is detected by a camera on
the image plane of the SLM. It should be pointed out that the
experimental setup with SLM and the 4 f system is commonly
used in generating VOFs [14,41], but the method we introduce
here is more flexible with IC and PC inserted as more degrees
of freedom can be manipulated in the experiment. In this way,
the setup can generate all the VOFs in the 5D PS system
completely, and all five coordinates are modulated indepen-
dently, leading to the possibility of flexible transformation of
the VOFs in the 5D PS system in the experiment.

Figure 3 shows the experimentally generated VOFs
in the mθ sphere with coordinates (m, θ )= (2, π/3) in
the 5D PS system. The spherical coordinates of the eight

VOFs are (r, 2α, 2ϕ)= (1, 2π/5, 0), (1, 2π/5, π/2),
(0.67, 2π/5, π/2), (0.75, 0, π/2), (0.5, 0, π/2),
(0.67, 0, π/3), (0.5, 0, 0), and (0.67, 2π/5, 0), respectively.
With the coordinates of (r, 2α, 2ϕ) = (0.5, 0, 0) and
(0.5, 0, π/2), the two points are located on the equatorial
plane of the inner spherical shell of r = 0.5, and the
corresponding VOFs are common local linearly polarized
VOFs [41], which can be proved by the zero Stokes parameter
S3 shown in Fig. 3. When (r, 2α, 2ϕ) = (1, 2π/5, 0) and
(1, 2π/5, π/2), the two points are located on the outer
spherical shell of r = 1. The corresponding VOF is a
left-handed elliptically polarized VOF, which has the
space-invariant ellipticity but the space-variant orientations.
Thus, the Stokes parameters S1 and S2 are space variant,
and S3 is uniform on the wave front. Obviously, when
r = 0.5 and 1, the two bases in Eq. (2) are circularly
polarized, and the ellipticities of the polarizations on the
wave front of the VOFs are space invariant. If r ∈ (0.5, 1),
the ellipticities of the polarizations will be space variant. For
the points with coordinates of (r, 2α, 2ϕ) = (0.67, 2π/5, 0)
and (0.67, 2π/5, π/2), the polarizations on the wave front
are purely right handed with space-variant ellipticities,
so the Stokes parameter S3 is space variant with positive
values. For the VOFs with (r, 2α, 2ϕ) = (0.75, 0, π/2) and
(0.67, 0, π/3), right- and left-handed elliptic polarizations
can be found on the wave front, so the Stokes parameter S3

is space variant with both positive and negative values. The
experimental results in Fig. 3 are in good agreement with the
simulated polarization distributions.

IV. REPRESENTATION OF THE AZIMUTHALLY
VARYING VOFS

As introduced above, VOFs have attracted extensive at-
tention [1–3] due to the unique space-variant polarization,
intriguing features, and extensive applications. Among vari-
ous VOFs reported in literature, the most common and widely
applied ones are the azimuthally varying VOFs, such as the
radially polarized VOF [4–7,12,13,18,41], azimuthally polar-
ized VOF [5,13,41], hybridly polarized VOF [12], and VOFs
in the hybrid PS, higher-order PS, hybrid-order PS, and gener-
alized PS [8,17,25–33]. All the VOFs mentioned above have
a common feature that the azimuthally varying polarization
changes along the circular paths on the traditional PS, and
most of the paths correspond to the longitude or latitude on the
sphere. The hybrid PS, higher-order PS, hybrid-order PS, and
generalized PS can describe these azimuthally varying VOFs.
However, there is no model to describe the azimuthally vary-
ing VOFs with polarization changing along arbitrary circular
paths on the PS. The 5D PS system we propose can represent
all these VOFs completely, which also provides one represen-
tative application for this model. The detailed derivation will
be presented below.

As we know, the polarization of a scalar optical field can
be represented by a point (2α1, 2ϕ1) on the PS as shown in
Figs. 4(a1) and 4(a2), and the expression of the optical field is

E1 =
[

Ae− jϕ1 + Bejϕ1

jAe− jϕ1 − jBe jϕ1

]
, (6)
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FIG. 4. The schematic of deducing the azimuthally varying VOF
whose polarization corresponds to arbitrary circular path on the PS.
(a1) and (a2) A point with coordinates (2α1, 2ϕ1) on the PS and the
polarization state of the corresponding scalar optical field. (b1) and
(b2) The latitude circle on the PS and the corresponding VOF after
inserting a vortex retarder with the Jones matrix of J1. (c1) and (c2)
The arbitrary circular path on the PS and the corresponding VOF
after inserting a phase compensator with Jones matrix of J2.

with

A = 1√
2

sin (α1 + π/4), B = 1√
2

cos (α1 + π/4), (7)

where α1 and ϕ1 vary in the ranges of [−π/4, π/4] and (0, π ],
respectively.

We assume that the scalar optical field passes through a
vortex retarder [42], which is designed by analogy to a 1/2
wave plate with the continuously changing angle of m1φ/2
between the fast axis and the horizontal direction. The Jones
matrix of the vortex retarder is

J1 =
[

cos(m1φ) sin(m1φ)

− sin(m1φ) cos(m1φ)

]
, (8)

where φ is the azimuthal coordinate and m1 is the topological
charge varying in range of [0,+∞). Therefore, the optical
field passing through the vortex retarder can be expressed as

E2 = J1E1 =
[

Ae− j(ϕ1−m1φ) + Bej(ϕ1−m1φ)

jAe− j(ϕ1−m1φ) − jBe j(ϕ1−m1φ)

]
. (9)

Compared with Eq. (6), the polarization state of the optical
field E2 can be represented by the points (2α1, 2ϕ1 − 2m1φ)
on the PS surface, and the variable φ is the azimuthal coordi-
nate on the wave front of E2. This means that the polarization
state on the wave front of the optical field E2 is changeable
along the arbitrary latitude circle on the PS as shown in
Fig. 4(b1), and the optical field E2 is a VOF with space-variant
polarization as shown in Fig. 4(b2). Thus, the ellipticity of the
polarization state of the optical field E2 is space invariant, but
the orientation of polarization rotates clockwise from ϕ1 to
ϕ1 − m1φ. The position of the starting point (corresponding
to the position of φ = 0 on the wave front) of the circular
path is determined by (2α1, 2ϕ1). The topological charge m1

determines the number of the polarization changing periods,
which also indicates the number of turns that the polarization
changes around the circular path on the PS.

Then, the optical field E2 passes through a phase compen-
sator with a phase delay of 2β and an angle of γ /2 between
the fast axis and the horizontal axis, and β and γ vary in
the ranges of [0, π/2] and [0, 2π ), respectively. According
to Ref. [43], the circular path in Fig. 4(b1) will rotate af-
ter inserting the phase compensator. The central axis of the
rotated circular path has the spherical coordinates (2β, γ +
π/2) when γ ∈ [0, 3π/2) and (2β, γ − 3π/2) when γ ∈
[3π/2, 2π ) as shown in Fig. 4(c1). The Jones matrix of the
phase compensator can be written as [43]

J2 =
[

cos β + j sin β cos γ j sin β sin γ

j sin β sin γ cos β − j sin β cos γ

]
. (10)

Therefore, the optical field can be expressed as

E3 = J2E2

=
[

(C + D) cos β + j(Ce+ jγ + De− jγ ) sin β

j(C − D) cos β + (Ce+ jγ − De− jγ ) sin β

]
, (11)

with

C = Ae− j(ϕ1−m1φ), D = Be+ j(ϕ1−m1φ). (12)

Affected by the phase compensator, the polarization state
of the VOF is along arbitrary circular path on the PS as shown
in Figs. 4(c1) and 4(c2). As a result, Eq. (11) can describe the
azimuthally varying VOFs whose polarization corresponds to
an arbitrary circular path on the PS.

Now we need to prove that the VOF in the 5D PS system
is the same as the optical field E3 in Eq. (11). Comparing
Eqs. (1)–(3) and (11), we can find that expressions of the two
optical fields are the same if we set m1 = m, α1 = −α, ϕ1 =
−ϕ + π , β = π − πr, γ = θ + π/2 when θ ∈ [0, 3π/2) and
γ = θ − 3π/2 when θ ∈ [3π/2, 2π ). Thus, the 5D PS system
with the five coordinates (m, θ ; r, 2α, 2ϕ) can describe the
azimuthally varying VOFs with polarization changing along
arbitrary circular path on the PS. (2α, 2ϕ) determine the start-
ing point of the circular path on the PS, and (θ, r) determine
the rotation of the circular path. The value of the topological
charge m determines the number of turns that the polarizations
change around the circular path on the PS. In this way, the
5D PS system can completely represent all the azimuthally
varying VOFs with polarization changing along arbitrary cir-
cular paths on the PS. This means that the 5D PS system can
describe most of the existing VOFs and other new VOFs.

V. DISCUSSION OF OAM AND SAM

The OAM and SAM are two important inherent features
of light, which have attracted great attention in recent years
[2,3,44–52]. The intrinsic OAM is related to the vortex phase
of structured light which can make particles orbit around the
beam axis, whereas the SAM is associated with the circular
polarization which has two possible quantized values of ±h̄.
The SAM for the scalar optical field can be described simply
by the traditional PS [21], whereas the OAM can be repre-
sented by a so-called orbital PS [53]. Recently, the optical
angular momenta of VOFs have been studied by the upgraded
PS models [25–33], opening new avenues for studying and
applying optical angular momentum. Compared with the for-
mer upgraded PS models, the 5D PS system we developed can
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FIG. 5. The OAM and average SAM per photon for the VOFs in the 5D PS system. (a) and (b) show the dependences of the OAM on m
and α, (c) and (d) show the dependences of the average SAM per photon on r and α when m is a nonzero integer, respectively.

represent more kinds of OAM and SAM for the VOF, which
may be used in many realms.

Based on Eqs. (1)–(3), the OAM per photon for the VOF
in the 5D PS system is represented as [14,54]

Jo = h̄ Im(E∗
x ∂Ex/∂φ + E∗

y ∂Ey/∂φ)

= −mh̄ sin(2α), (13)

where Ex and Ey are the x and y components of the electric
field of the VOF. We can see that m and α determine the OAM,
and the OAM per photon can be arbitrarily manipulated within
a range of [−mh̄, mh̄] by adjusting the value of α.

The average SAM per photon for the VOF is calculated by
[55]

Js = h̄ωMs
zz/F , (14)

where ω is angular frequency of the optical field and Ms
zz

and F are the average SAM flow and the energy flow of the
VOF, respectively. Combined with Eqs. (1)–(3) and (14), the
average SAM per photon for the VOF in the 5D PS system is

Js = −h̄{sin(2α) cos(2πr) + cos(2α) sin(2πr)

× [sin(4mπ + 2ϕ + θ ) − sin(2ϕ + θ )]/4πm}. (15)

When m is a nonzero integer, Eq. (15) can be simplified as

Js = −h̄ sin(2α) cos(2πr). (16)

In this way, the average SAM for the VOF in the 5D PS system
is only related to r and α.

Figure 5 shows the OAM and the average SAM for the
VOFs in the 5D PS system. Figures 5(a) and 5(b) show the
dependences of the OAM on m and α, respectively. When
m = 0 or α = 0, the OAM for the VOF is zero according to
Eq. (13). The corresponding optical field is a scalar optical
field with the space-invariant phase when m = 0, whereas the
VOF is superposed by the orthogonal bases with the opposite
OAMs and equal intensity when α = 0. The OAM is a linear
function of m and a sine function of α as shown in Fig. 5 and
Eq. (13). Figures 5(c) and 5(d) show the dependences of the
average SAM per photon on r and α, respectively. The SAM
is a cosine function of r and a sine function of α as shown in
Eq. (16) where the SAM will be zero when r = 0.75 or α =
0. We can see from Fig. 5 that the VOFs described by the 5D
PS system can carry the OAM or average SAM with arbitrary
value. It should be pointed out that for the case when m is a
noninteger, the OAM and average SAM can also be calculated
by Eqs. (13) and (15).

Obviously, the 5D PS system can be used to design optical
fields with the arbitrary combination of OAM and SAM, and
the corresponding design procedure is described by the flow
chart in Fig. 6. First, we should input the initial values of
the OAM Jo and the average SAM per photon Js. Then the
condition |Js|/h̄ � |Jo|/�|Jo|� is used to judge whether the
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FIG. 6. Flow chart of design procedure of the VOF with arbitrary
combination of OAM and SAM.

value of m is an integer or not, where �·� is a ceiling function
with �x� = min{n ∈ Z: x � n}. If the inequation is satisfied,
the value of m can be an integer according to Eqs. (13)
and (15). Otherwise, the value of m cannot be an integer.
If m can be an integer, the value of m is determined by
m ∈ [�|Jo|�/h̄, 	|Jo|/|Js|
], where 	·
 is a floor function with
	x
 = max{n ∈ Z: n � x}. According to the values of Jo and
m, the value of α is calculated by α = arcsin(−Jo/mh̄)/2.
The value of r is obtained by r = arccos[−Js/h̄ sin(2α)]/2π

based on the values of Js and α. In addition, the values of
θ and ϕ can be derived by the specific demand of the SAM
density distribution. If m cannot be an integer, the values of the
five parameters (m, θ ; r, 2α, 2ϕ) are calculated by Eqs. (13)

and (15) based on Jo and Js. At last, the VOFs in the 5D
PS system with the arbitrary combination of OAM and SAM
can be achieved according to the five calculated parameters
(m, θ ; r, 2α, 2ϕ).

VI. CONCLUSION

In conclusion, we have presented a model of 5D PS sys-
tem as a geometric representation of the azimuthally varying
VOFs. The 5D PS system is constructed by the orthogonal
bases with the continuously changeable orientation of the
polarization ellipse, continuously changeable ellipticity (cor-
responding to arbitrary SAM), and high-dimensional OAM. In
this way, the 5D PS system is designed with five dimensions,
represented by a series of 3D Bloch spheres located on a 2D
plane, similar to the solar system with the 3D planets and
their 2D orbital plane. Hence, as far as we know, the 5D PS
system constructed in a 5D space is the most general model to
describe the azimuthally varying VOFs. In addition, an alter-
native experimental method is proposed to generate the VOFs
in the 5D PS system, and all the five parameters in the model
can be flexibly changed or selected in the experiment. It is also
proved that the 5D PS system can completely represent the
azimuthally varying VOFs with polarization changing along
the arbitrary circular paths on the traditional PS. This not only
means that most of the VOFs in the previous researches can
be represented by this model, but also indicates that the 5D
PS system provides the scheme to design new VOFs, which
greatly enriches the family of VOFs. Furthermore, the 5D PS
system is introduced to represent and design OAM and SAM,
opening new avenues for studying and applying optical angu-
lar momentum. The theoretical and experimental methods in
this paper can be used to describe, design, generate, and apply
VOFs in many realms.
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