
PHYSICAL REVIEW A 106, 023504 (2022)

Influence of phonon harmonicity on spectrally pure resonant Stokes fields
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Due to their highly coherent emission, tunability, and compactness, integrated single-frequency diamond
Raman lasers are interesting tools for applications in integrated quantum technology, high-resolution spec-
troscopy, or coherent optical communications. While the fundamental emission linewidth of these lasers can
be Fourier limited, their thermo-optic characteristics lead to drifts in their carrier frequency, posing important
challenges for applications requiring ultrastable emission. We propose here a method for measuring accurately
the temperature-dependent index of refraction of diamond by employing standing Stokes waves produced in a
monolithic Fabry-Pérot diamond Raman resonator. Our approach takes into account the influence of temperature
on the first-order phonon line and the average lattice phonon frequency under intense stimulated Raman
scattering conditions. We further utilize this model to calculate the value of the average phonon frequency
and then the temperature-dependent thermo-optic coefficient. The theory is accompanied by the demonstration
of tunable Fourier-limited Stokes nanosecond pulses with a stabilized center frequency deviation of less than
4 MHz.
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I. INTRODUCTION

Spectrally pure, tunable, and ultrastable light sources have
become one of the main tools for advancing scientific and
technological quantum applications. These include the devel-
opment of atomic clocks, LIDAR, or quantum ion computers
to name a few [1,2]. The interest in building and integrating
such light sources indicates the need for scalable architectures
to cool, trap, and manipulate multiple ions simultaneously [3].
The main challenge here is in the complexity of producing
widely tunable, high-performance narrow-band lasers (in tens
of MHz and below) at a range of wavelengths from the UV to
the near-IR.

In this regard, the field of diamond Raman lasers has
experienced a renaissance since they can provide directly
single-frequency light at nearly any optical wavelength [4–7].
Stimulated Raman scattering (SRS) has specific advantages
that make it interesting for this task. For instance, the non-
linear process is mediated by propagating pump photons
rather than via energy storage in localized ions, so there is
no spatial hole burning or axial mode competition [7]. The
phase-matching condition between pump and Stokes beams
is automatically satisfied, and therefore the energy transfer
relationship between waves depends on the shape and overlap
of their temporal envelopes instead of their spectral distri-
bution or phase characteristics. In certain cases, the Stokes
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spectrum can be driven to duplicate that of the pump spectrum
in the so-called high-gain regime [8,9], which underpins the
production of single-frequency nanosecond pulses when using
spectrally broad pump lasers [10].

In addition, optical devices such as cavities, resonators,
and optomechanical components realized in single-crystal
diamond are poised to benefit from its extraordinary ma-
terial properties. The interest in diamond is further pro-
pelled by its wide use for quantum applications [11],
including quantum computing, generation of single pho-
tons [12], quantum sensing [13], and quantum memo-
ries [14]. Moreover, the production of tunable narrow-
linewidth output from a Fabry-Pérot (FP) integrated diamond
resonator was recently demonstrated, without the need of
external mechanical feedback loops to control the cavity
length [15].

Within this framework, knowledge of the thermo-optic
coefficient is of paramount importance for integrated pho-
tonic devices based on diamond, and the present research
was conducted with the purpose of gaining insight into ac-
curate prediction of tuning the Stokes resonant frequency
in integrated diamond resonators. Unfortunately, the existing
approximations for the index of refraction render them insuffi-
cient for the level of accuracy required in the aforementioned
applications.

When it comes to the refractive index of diamond, there
have been many works relative to the optical and Raman
properties of diamond, but there is a scarcity of information
regarding the index of refraction under strong vibrational
fields and at different temperatures. The work of Ruf et al. [16]
provided valuable information for estimating the thermo-optic
coefficient; however, it did not take into account the overall
contribution of the different temperature-dependent vibra-
tional modes that can be produced in diamond, and thus it
needs to be expanded upon.
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We propose here an alternative methodology for measuring
and calculating the thermo-optic coefficient. Our methodol-
ogy includes the use of a monolithic single-frequency FP
diamond Raman resonator operating at visible wavelengths.
Here the accurate measurement of the output Stokes fre-
quency as a function of temperature allows us to retrieve
the temperature-dependent index of refraction that produced
a frequency shift in the Stokes field output. For this method to
be efficient, the use of diamond Raman monolithic resonators
is important because they provide an ultrastable environ-
ment that depends exclusively on the resonator thermo-optic
properties and not the pumping laser characteristics or the
environment.

Additionally, we demonstrate that the production of tun-
able Fourier-limited Stokes few nanosecond pulses with a
stabilized center frequency deviation of less than < 4 MHz
is readily available, where the temperature stability of the
bulk crystal is a key parameter for enhanced performance. Our
theoretical model suggests that cooling the diamond resonator
below 200 K may have additional advantages due to the
reduced thermo-optic coefficient in that temperature range,
enhanced gain, and reduced Raman linewidth.

II. MEASUREMENT PRINCIPLE

In terms of using the diamond bulk as a Raman laser mate-
rial, its unique optical properties has enabled the development
of lasers operating over a wide spectrum due to its giant
Raman frequency shift (1332 cm−1), large Raman gain (>
40 cm/GW at 532 nm), and ultrawide transparency window
(from deep ultraviolet all the way to THz, except for a lossy
window from 2.6–6 μm due to multiphonon-induced absorp-
tion [8,17–21]). Furthermore, the excellent thermal properties
afforded by diamond (unsurpassed thermal conductivity of
1800 W/m/K at 300 K and low thermo-optic coefficient of the
order of 10−5 K−1) along with negligible birefringence [22]
make it an ideal material for high-power Raman lasing with
greatly reduced thermal lensing effects at the kW average
power level [23].

The generation of single longitudinal mode (SLM) or nar-
row linewidth light via SRS in diamond remained elusive
until relatively recently [5,7,24–26]. Such bulk cavity systems
also require precise alignment, elaborated feedback loops, and
maintenance of optical components for the laser to function
robustly. The further integration of SLM Raman lasers in
diamond was recently demonstrated [10], showing that by
embedding the laser resonator in the Raman media, it was pos-
sible to produce frequency stable output from a FP diamond
resonator without the need of external mechanical feedback
loops to control the cavity length. Moreover, these resonators
performed complex functions such as “linewidth squeezing”
when pumped by few GHz linewidth multimode lasers. Such
mechanism, supported by phonon-resonant Raman interac-
tions, directly enhanced the available power spectral density
of broadband nanosecond lasers by nearly two orders of mag-
nitude.

The frequency stabilization of these FP diamond resonators
was carried out by adjusting the temperature of the diamond
substrate, which simultaneously influenced the index of re-
fraction, size, and Raman shift of the Raman resonator [15].

FIG. 1. (a) Schematic depiction of main thermal effects influenc-
ing the resonant Stokes frequency in a monolithic Raman resonator,
and (b) depiction of the temperature effect on the photon and optical
phonon energies.

In this work we shine light into that complex interplay of
thermo-optical and Raman effects by studying their depen-
dency on temperature, allowing us to construct a theoretical
model capable of predicting with accuracy the resonating
Stokes frequency. Our model is accompanied by an experi-
mental demonstration showing excellent agreement with the
proposed theory.

We start by identifying the main factors affecting the
resonant Stokes frequency as well as their temperature depen-
dency. Those are depicted in Fig. 1, where we have separated
the temperature effects on the material optical properties and
size [Fig. 1(a)] and the effects on the Raman shift center
frequency ωR [Fig. 1(b)]. In terms of the Stokes resonating
frequency, the index of refraction depends simultaneously on
the temperature and the chromatic dispersion [n(T, λ)] due
to the shifted Stokes wavelength λ′

S = λS + �λ(T ). Note that
all wavelengths used in this work are in vacuum. The ther-
mal expansion process simultaneously affects the resonating
wavelength due to the variable boundary condition [the dia-
mond length L(T ) shifts to L(T + �T )]. Likewise, the Raman
shift center frequency ωR(T ) tuning with temperature does not
establish the resonating wavelength or the tuning slope as a
function of temperature, but it does affect the location of the
boundaries of the longitudinal mode hopping in frequency. We
describe all these effects in detail in the following sections,
followed by the experimental results.

III. SINGLE-FREQUENCY OPERATION OF MONOLITHIC
FABRY-PÉROT DIAMOND RAMAN RESONATORS

The production of single-frequency resonant Stokes fields
depends on many factors, but most importantly on the
characteristics of the pump laser intensity, wavelength, and
linewidth, resonator optical length, and temporal envelope of
the interplaying pump and Stokes pulses.

The temporal features of these laser fields, in both am-
plitude and phase on timescales shorter than the resonator
round-trip time, are caused by the interference of its spectral
longitudinal modes. These modes, however, generally vary
in amplitude and phase on the timescale of the round-trip
time or slower. Since the longitudinal modes vary slowly
(much slower than the phonon dephasing time, in diamond
T2 ≈ 6.8 ps), we can use steady-state Raman theory, even
if interference of the modes produces structures that would
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need transient Raman theory if modeled in the time domain.
This approach has been used widely used to analyze SRS
with broad-band lasers [27–33], and here we employ this
method to model the diamond Raman resonator since it is
computationally efficient for nanosecond pulses with GHz-
class linewidths.

To construct the frequency domain model we follow
the same strategy as in [10,27], but ultimately adapted to
single-frequency pump fields. Nevertheless, the mathematical
treatment is analogous, and here we include it for com-
pleteness. We start by writing the general equations for a
fundamental field (or “pump”) with 2m + 1 modes spaced in
frequency by �F , and a multimode Stokes field with 2m + 1
modes spaced in frequency by �F :

ẼF =
m∑

l=−m

Fl e
i(ωF (l )t−kF (l )z) + c.c., (1)

ẼS =
m∑

l=−m

Sle
i(ωS(l )t−kS(l )z) + c.c., (2)

in which c.c. represents the complex conjugate of the preced-
ing term, ωS(l ) = ωS(0) + �F l , and ωF (l ) = ωF (0) + �F l . In
these equations, Sl and Fl are complex amplitudes describing
the amplitude and phase of the modes traveling inside the di-
amond. The approximations for the mode wave vector kF (l ) ≈
kF (0) + �F l/uF accounts for the group velocity difference
between the fundamental wave packets, but neglect group
velocity dispersion within each wave packet. Analogously for
the Stokes field the mode wave vector kS(l ) ≈ kS(0) + �F l/uS .

In the following we assume that the central Stokes mode S0

is centered within the Raman gain linewidth so that it accesses
the highest or monochromatic Raman gain. Note that in our
model the following identity is always true:

ωF (l ) = ωS(l ) + ωR; (3)

here ωR is the frequency of the Raman shift at the line center.
This essentially is to say that the modes of fundamental and
Stokes fields are paired. In order to describe the coupling
between this set of modes, we rely on steady-state Raman
formalism and write it in a nondegenerate mode for four
generic modes Fl1 , Fl2 , Sl3 , and Sl4 :

1

uS

∂Sl4

∂t
± ∂Sl4

∂z
∝ Fl1

(
F ∗

l2 Sl3

)
. (4)

This was interpreted in [27] as two modes (F ∗
l2

Sl3 ) driving
a phonon field and a third mode Fl1 scattering off the phonon
field to drive a fourth mode Sl4 . For fundamental and Stokes
pulsed fields with many longitudinal modes or broadband
modes, in principle all types of interactions can drive a po-
larization at the frequency of a generic mode Sr2 , given that
they satisfy the equation

ωSr2
= ωFl1

− ωFl2
+ ωSr1

. (5)

Now Eq. (4) can be used as template to reformulate the
amplification of a generic Stokes mode Sl and the depletion

of the fundamental modes Fl as a function of the other three
interacting waves as follows:

1

uS

∂Sl

∂t
+ ∂Sl

∂z
= 2cnF ε0

g0

2

∑
r

∑
j

Fl−r (S jF
∗
j−r )

× �ωR

�ωR − ir�F
ei(l− j)μ±�F z, (6)

1

uF

∂Fl

∂t
+ ∂Fl

∂z
= −2cnSε0

g0

2η

∑
r

∑
j

Sl−r (FjS
∗
j−r )

× �ωR

�ωR + ir�F
ei( j−l )μ±�F z. (7)

The parameter μ± is the group delay difference per meter
between the fundamental and Stokes waves. The positive part
μ+ accounts for copropagating waves or forward SRS and the
negative μ− for the backward SRS:

μ± = 1

uF
∓ 1

uS
. (8)

Equations (6) and (7) account for all the combinations
between pump and Stokes modes. The resulting spectra for
the Stokes field are dependent on the relative amplitudes of
the resonant and nonresonant terms. The resonant terms (r
= 0) have the phonon driving term exactly resonant with the
phonon frequency and can access the highest gain, while other
nonresonant interactions have a detuning r�F that reduces
gain and causes a phase rotation. For our model, both resonant
and nonresonant interactions need to be taken into account
since �ωR > �F .

Degenerate terms ( j = l) have no phase mismatch terms
(�k = 0) even in the presence of dispersion, and because
of the degeneracy these terms must always have the correct
phase to provide gain. Nondegenerate modes, however, can
be neglected in dispersive media where the phase mismatch is
�k ≈ (l − j)�F μ±, and so these terms will oscillate in and
out of phase with the waves they drive. Here we assume that
dispersion in diamond is large enough in the UV and visible
spectral ranges to neglect nondegenerate mixing modes with-
out loss of accuracy. With this approximation, we can rewrite
Eqs. (6) and (7) forcing j = l . Likewise, for the specific case
of single longitudinal mode pumping, the equations can be
further simplified to

1

uS

∂Sl

∂t
+ ∂Sl

∂z
= 2cnF ε0

g0

2
F0(SlF

∗
0 )

�ωR

�ωR + il�F
, (9)

1

uF

∂F0

∂t
+ ∂F0

∂z
= −2cnSε0

g0

2η

∑
r

Sr (F0S∗
r )

�ωR

�ωR + ir�F
.

(10)

The term �ωR/(�ωR − ir�F ) reduces the gain of off-
resonant terms by a Lorentzian factor 1 + (r�F /�ωR)2, and
therefore the most efficient interaction is always for doubly
degenerate resonant interactions.

Let’s assume now that the combination of pump intensity
and resonator losses is adequate so that the amplification is
highly preferential for the central mode S0 as in [10] and is
capable of depleting the fundamental field. This configuration
will produce the minimal linewidth for a given resonator
round-trip loss and can also occur when the FSR of the
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diamond resonator is larger than the effective Raman gain
linewidth. A way of calculating the resulting Stokes linewidth
is by further simplifying Eqs. (9) and (10) by implying {Sl =
0 ∀ l �= 0}:

1

uS

∂S0

∂t
+ ∂S0

∂z
= 2cnF ε0

g0

2
|F0|2S0, (11)

1

uF

∂F0

∂t
+ ∂F0

∂z
= −2cnSε0

g0

2η
|S0|2F0. (12)

We can now use Eqs. (11) and (12) to model the dynamic
interplay between fundamental and Stokes waves in the Ra-
man resonator when the fields are located at the Raman gain
line center. Intuitively, it is possible to see in Eq. (11) that
the temporal envelope of the Stokes field depends only on
the amplitude of the fundamental pumping pulse and not its
phase, whereas the resonating Stokes wavelength will depend
only on the resonator geometry and optical characteristics and
not the pump field. The resulting Stokes linewidth, however,
will be directly linked to the pump pulse temporal envelope
and dispersion characteristics of the resonator, the generation
of nearly Fourier-limited pulses when low-noise pump pulses
are used is relatively straightforward.

For the case of a temperature tuned Stokes frequency, the
mismatch between the Raman gain line center and the res-
onating Stokes field will produce a reduced gain by a factor
1 + (�ωS (T )/�ωR)2 due to the detuned Stokes mode. Here
�ωS (T ) is the frequency shift produced in the resonator due
to temperature. The calculation of this shift is described in the
next section.

IV. RELATIONSHIP BETWEEN THE STOKES CENTER
FREQUENCY AND THE REFRACTIVE INDEX

Knowledge of diamond’s optical and mechanical proper-
ties runs deep for most factors, with an exception being the
temperature dependence of the refractive index (also known
as thermo-optic coefficient), despite its importance for opti-
cal applications or integrated photonic devices in diamond.
In the literature it is usually found as a single value of
(1/n)∂n/∂T = 5 × 10−6 K−1 at 300 K for the low-frequency
limit [34] or in the far-infrared range for a temperature range
of up to 925 K [16]. Precise information regarding the thermo-
optic coefficient of diamond at visible wavelengths and at
extended temperature ranges remains relatively unknown.

A thorough theoretical description on the thermo-optic co-
efficient in diamond is a great challenge since it requires a
working model for the dielectric function and its renormal-
ization by the electron-phonon interaction and the thermal
expansion of the lattice [16]. There have been models using
empirical pseudopotentials for the thermo-optic coefficients
of different semiconductors, but since C has a large Debye
temperature 	D = 1880 K, knowledge of the thermo-optic
coefficient at 300 K does not provide meaningful information
for higher temperatures [35]. The inaccuracy is caused by the
fact that a linear approximation of the temperature-dependent
index of refraction n(T ) is permitted at temperatures much
larger than 	D where the material can be described by a single
oscillator frequency.

In the following we present a methodology for the cal-
culation of the Stokes frequency and its tuning slope for a
generic monolithic Raman resonator longitudinal mode and
its relation to the temperature-dependent refractive index. We
start with the condition for resonance within the diamond FP
resonator:

νS (T0) = q
c

2Leff(T0, νS )
, (13)

where q is the mode number, c is the speed of light in vac-
uum, and Leff(T0, νS ) is the effective length of the resonator
at the Stokes resonating frequency νS and at temperature T0.
Leff can be calculated as Leff(T0, νS ) = L(T0)n(λS, T0), where
n(λS, T0) is the wavelength-temperature dependent index of
refraction, and L(T0) is the resonator physical length at tem-
perature T0. In [16] the temperature-dependent part of the
refractive index nT (T ) was separated from the wavelength-
dependent part nλ(λ). The two terms are added together to
give the total index of refraction as

n(λ, T ) = n0
λ(λ) + nT (T ). (14)

We note that n0
λ(λ) refers to the Sellmeier equation at 0 K,

and nT (T ) represents the change of index due to temperature
at a fixed wavelength. For small shifts in temperature (�T )
we can use a perturbation theory approach to estimate the
resulting wavelength shift of the Stokes by

λS (T0 + �T ) = 2

q

(
L(T0) + ∂L

∂T
�T

)

×
(

n(T0, λS ) + ∂n

∂T
�T + ∂n

∂λ
�λS

)
. (15)

Here the term ∂L/∂T can be expressed in terms of the
linear thermal expansion coefficient (α in the following) as
∂L/∂T = αL(T0). The shift in wavelength can be directly cal-
culated by �λS = λS (T0 + �T ) − λS (T0). The terms ∂n/∂T
and ∂n/∂λ correspond to the thermo-optic coefficient at T0

and the chromatic dispersion at λS , respectively. Here we
assume that dispersion terms do not change for small tem-
perature increments �T .

Reorganizing Eq. (15) and neglecting second-order differ-
ential terms, we can obtain the tuning slope of the center
Stokes wavelength as a function of temperature:

∂νS

∂T

∣∣∣
T0

= −c
1
n

∂nT
∂T + α(T )

λS
(
1 − λS

n
∂nλ

∂λ

) , (16)

where c is the speed of light in vacuum, n the index of refrac-
tion of diamond at the Stokes wavelength and at temperature
T0, and α(T ) the temperature-dependent thermal expansion
coefficient of CVD diamond. Jacobson et al. modeled α(T )
in [36] having the following form:

α(T ) =
n∑

i=1

Xi E

(
	i

T

)
, (17)

where E (x) corresponds to the function given by

E (x) = x2ex

(ex − 1)2 . (18)

Experimental values for Xi and 	i can be found in [36], and
those are the ones used here for the calculations.
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Continuing, 1
n

∂nT
∂T is the thermo-optic coefficient. Typical

values for this coefficient in the literature are approximately
5 × 10−6 K−1 [34]. The key part here is in the understanding
of the temperature-dependent term nT (T ), which requires one
to identify the effects that influence it. In general, the index
of refraction depends on the lattice energy, which here it
is assumed to be proportional to the internal energy of the
system [37]. For diamond, it is possible to use a Bose-Einstein
distribution to describe the unit cell infrared active vibra-
tion [38].

As a consequence, we can refer to the approximation of the
temperature-dependent index of refraction as nT (T ) described
in [16]:

nT (T ) = A

(
1

e
h̄ω0
kBT − 1

+ 1

2

)
(19)

with the first term being the Bose-Einstein distribution. Ruf
et al. [16] estimated the values of A and h̄ω0 based on fits
of the data to their experimental measurements. Their results
retrieved a value of A = 0.01902 and an average phonon
frequency of h̄ω0 = 711 cm−1, independent of temperature.
Even though the results in that work fit well their experiments,
the influence of the thermal expansion of the lattice to the vi-
brational eigenfrequencies and multiphonon coupling effects
(see, for example, [39]) were not taken into account, nor their
contribution to the line shift of the average phonon frequency
ω0.

When it comes to the wavelength-dependent part of the
index of refraction nλ(λ), we are basing our model in the most
recent single-term Sellmeier equation found for synthetic di-
amond [40]. The Sellmeier equation is usually calculated at
room temperature (300 K), but the separable equation for the
index of refraction in Eq. (14) requires the index at absolute
zero temperature. To that end, we approximated n0

λ(λ) as
follows:

n0
λ(λ) = nλ(λ) − nT (300). (20)

The factor nT (300) was calculated using Eq. (14) at 300 K. In
this way we also guarantee that the index of refraction is the
one commonly known at room temperature.

In terms of the temperature dependence of the Raman shift,
it defines the spectral range where the monolithic resonator
will lase, although not the specific frequency of the Stokes
standing waves. Having this in mind, we present here for com-
pleteness the dependency of the first-order phonon frequency
(or Raman shift) on temperature. The Klemens anharmonic
approximation assumes that the zone-center phonon decay
into two acoustical phonons of opposite momentum is appro-
priate to describe the effects in the diamond lattice [41,42]. In
that model the relaxation time τ is

τ 	 1 + 2

e
h̄

kBT
ωR
2 − 1

, (21)

where ωR is the Raman shift. The relaxation time τ is
proportional to the Raman linewidth �ωR and that later is
linearly connected to the Raman shift [43]. The temperature-

FIG. 2. Schematic layout of the experimental setup: A mono-
lithic diamond resonator is pumped by a frequency-doubled Q-
switched Nd:YAG laser. The output Stokes nanosecond pulse was
characterized temporally and spectrally with a set of four high-
resolution Fizeau interferometers, and a photodiode (PD) connected
to a large bandwidth 16 GHz oscilloscope. HWP1, HWP2: half-wave
plates; PBS: polarizing beam splitter; FL: focusing lens; PM: power
meter.

dependent Raman shift is then given by

ωR(T ) = 1332.7 − AR

(
2

e
h̄ωR

2kBT − 1

)
107

c
[cm−1], (22)

where AR depends on the dispersion lines of diamond [43]. A
fit to the experimental data shown in [44] resulted in AR =
2.6 × 103 GHz. We are now ready to experimentally measure
∂νS/∂T and fit it to our model, allowing us to extract the
thermo-optical coefficient of diamond.

V. EXPERIMENT

In order to confirm our method, we have set up an experi-
ment to analyze the Stokes resonant frequency in the resonator
as a function of temperature with high accuracy. From these
data we can then relate the constants and tuning slope-related
physical parameters.

A temperature-adjustable monolithic FP diamond res-
onator was used in our experiments as the tool for measuring

FIG. 3. Active temperature stabilization of the Stokes resonant
frequency over more than 16 h. The RMS fluctuation of the Stokes
frequency is less than 4 MHz. Inset: Measured Stokes field spectrum.
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(a)

(c)(b)

FIG. 4. (a) Stokes center frequency (νS) detuning as a function of
measured diamond temperature. Dashed blue line represents the tun-
ing range (FSR) of the Stokes frequency as a function of temperature.
(b) Measured tuning slope for each FSR as a function of temperature.
(c) Calculated average phonon frequencies by solving Eq. (16).

the optical properties of diamond under stimulated Raman
scattering conditions. The Raman medium was a synthetic
diamond cuboid crystal with dimensions 7 × 2 × 2 mm3 (FSR
at 573 nm ≈ 8 GHz), plane cut for beam propagation along the
110 axis, and end faces repolished with a parallelism better
than 0.5 μm/mm. The experimental setup can be appreciated
in Fig. 2.

Due to the high Raman gain of diamond at 532 nm, the
Fresnel reflectivity of the uncoated surfaces (R1, R2 ≈ 18%)
was sufficient to ensure highly efficient Raman operation. The
diamond crystal was placed on a copper mount inside a high-
precision oven (Covesion Ltd), with a temperature standard
deviation of less than < 10 mK. Note that the relatively small
thermal expansion coefficient of diamond [36,45] and disper-
sion [46] provided the necessary stability and robustness to
perform our measurements accurately.

The pump is a frequency-doubled Nd:YAG 532 nm laser
generating 10 ns pulses at a repetition rate of 100 Hz with an
energy of 50 μJ. The pulses passed through a power control
system consisting of a half-wave plate (HWP1) and polariz-
ing beam splitter (PBS). The polarization was controlled by
means of another half-wave plate (HPW2); note that the SRS
process efficiency depends on polarization and is maximized

1×10−6

FIG. 5. Calculated thermo-optic coefficient of diamond as a
function of temperature between 300 and 370 K using the solutions
of Eq. (16).

when the pump polarization angle is parallel to the 111 crys-
tallographic axis. The pump then arrives at the resonator and
goes through the SRS process.

The pump was focused into the diamond crystal by a
150 mm focal length lens (FL), producing a waist of 50 ±
5 μm in diameter and a resulting intensity of 0.1 GW/cm2.
After the generation of the first and second Stokes we used
dichroics to filter the undesired Stokes orders. The resulting
573 nm beam was then guided to the wavemeter, calibrated
power meter (PM), photodiode (PD), and beam profiler. The
linewidth (FWHM) of the 573 nm Stokes light was mea-
sured with a wavelength meter LM-007 wavemeter and was
100 ± 20 MHz averaged over ∼1000 shots (shown inset in
Fig. 3), whereas the center frequency deviation (δνS) had an
root-mean-square value < 4 MHz over more than 16 h when
actively stabilized using temperature as shown in Fig. 3.

The results of the measurement of the resonating Stokes
wavelength with temperature are shown in Fig. 4(a). The
tests were carried out by adjusting the temperature setting of
the oven in increments of 10 mK. The average frequency-
temperature tuning slope within a FSR of the resonator was
approximately ∂νS/∂T ≈ −2.3 GHz/K, whereas the temper-
ature dependence of the first-order Raman phonon line was
about ∂νR/∂T ≈ +0.23 GHz/K. This agrees reasonably with
calculations resulting from the Klemens model (≈ +0.2 to
0.25 GHz/K between 300 and 400 K).

Figure 4(b) shows the measured slope in each FSR as a
function of temperature. It can be appreciated that the over-
all tuning slope increases in absolute value as a function
of temperature due to the temperature dependency of the
thermo-optic coefficient. The slope in the tuning curves varies
significantly from −1.8 GHz/K to −2.8 GHz/K in about
70 K. The error bars represent the 99% confidence interval.
The noticeable correlation between temperature and error can
lead to the misconception that error is systemic. In reality
the reason is that fewer measurements were taken at higher
temperatures due to the nonlinear speed of the temperature
scan.
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We used the values of the slope to calculate then the aver-
age phonon frequency h̄ω(T ) of each FSR by solving Eq. (16).
Figure 4(c) shows the computed values for the phonon fre-
quency h̄ω(T ) for each FSR.

We can now proceed to estimate the thermo-optic coeffi-
cient directly by deriving Eq. (19) with the values measured
for the temperature-dependent average phonon frequency
h̄ω(T ). The result of this is shown in Fig. 5. It is important to
note that the apparent similarity between Figs. 4 and 5 is due
to the weak temperature dependence of the factors of Eq. (16);
however, the relationship between them is not linear. Inter-
estingly, the range where the temperature-dependent index of
refraction is nonlinear is most severe for temperatures in the
range from 200 to 400 K. Below 200 K, (1/n)∂n/∂T is nearly
zero, whereas for values above 400 K it asymptotically tends
to a constant value, and from our extrapolations tending to
approximately 8×10-6 K−1 at high temperatures above 500 K.

VI. CONCLUSIONS

In this work we studied the relationship between the reso-
nant Stokes wavelength inside a monolithic diamond Raman
resonator and temperature. We found that existing models

for the temperature dependency of diamond’s refractive in-
dex correspond only approximately to observed experimental
processes; however, the accuracy in their predictions is poorer
in the 300–400 K range, and hence here we experimentally
measured it. Since ∂νS/∂T depends directly on the thermo-
optic coefficient, we propose to scan the temperature while
measuring the resonant Stokes wavelength to recalculate the
thermal dependency of diamond’s index of refraction in the
visible spectral range.

Regarding the flexibility of the proposed method, the com-
bination of very narrow spectral bandwidth and resulting high
spectral density from the resonator, alongside the large trans-
parency range of diamond, makes it very versatile and useful
at a large range of wavelengths and temperatures. In fact,
the constructed Raman laser is characterized by its modest
requirements in terms of resonator quality factors, which read-
ily allow for stable and portable operation usable in scientific
applications.

Furthermore, we propose a model for estimating the aver-
age lattice phonon frequency of diamond under strong SRS
conditions. We expect that the presented method and mea-
sured diamond thermo-optical parameters will be useful for
research related to the development of temperature-sensitive
integrated photonic devices in diamond.
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chip electro-optic frequency shifters and beam splitters, Nature
(London) 599, 587 (2021).

[3] K. K. Mehta, C. Zhang, M. Malinowski, T.-L. Nguyen, M.
Stadler, and J. P. Home, Integrated optical multi-ion quantum
logic, Nature (London) 586, 533 (2020).

[4] X. Yang, Z. Bai, D. Chen, W. Chen, Y. Feng, and R. P. Mildren,
Widely-tunable single-frequency diamond Raman laser, Opt.
Express 29, 29449 (2021).

[5] S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J.
Spence, and R. P. Mildren, Single-longitudinal-mode diamond
laser stabilization using polarization-dependent Raman gain,
OSA Continuum 2, 1028 (2019).

[6] X. Yang, O. Kitzler, D. J. Spence, R. J. Williams, Z. Bai, S.
Sarang, L. Zhang, Y. Feng, and R. P. Mildren, Single-frequency
620 nm diamond laser at high power, stabilized via harmonic
self-suppression and spatial-hole-burning-free gain, Opt. Lett.
44, 839 (2019).

[7] O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren,
Single longitudinal mode diamond Raman laser in the eye-safe
spectral region for water vapor detection, Opt. Express 24,
27812 (2016).

[8] D. T. Echarri, K. Chrysalidis, V. N. Fedosseev, B. A. Marsh,
R. P. Mildren, S. M. Olaizola, D. J. Spence, S. G. Wilkins, and
E. Granados, Broadly tunable linewidth-invariant Raman stokes
comb for selective resonance photoionization, Opt. Express 28,
8589 (2020).

[9] K. Chrysalidis, V. N. Fedosseev, B. A. Marsh, R. P. Mildren,
D. J. Spence, K. D. A. Wendt, S. G. Wilkins, and E. Granados,
Continuously tunable diamond Raman laser for resonance laser
ionization, Opt. Lett. 44, 3924 (2019).

[10] E. Granados, C. Granados, R. Ahmed, K. Chrysalidis, V. N.
Fedosseev, B. A. Marsh, S. G. Wilkins, R. P. Mildren, and D. J.
Spence, Spectral synthesis of multimode lasers to the Fourier
limit in integrated Fabry–Pérot diamond resonators, Optica 9,
317 (2022).

[11] T. Teraji, Ultrapure homoepitaxial diamond films grown by
chemical vapor deposition for quantum device application, in
Diamond for Quantum Applications Part 1, Semiconductors and
Semimetals, Vol. 103, edited by C. E. Nebel, I. Aharonovich, N.
Mizuochi, and M. Hatano (Elsevier, Cambridge, MA, 2020), pp.
37–55.

[12] E. Neu and C. Becher, Diamond-based single-photon sources
and their application in quantum key distribution, in Quantum
Information Processing with Diamond, edited by S. Prawer and
I. Aharonovich (Woodhead Publishing, 2014), pp. 127–159

[13] M. Markham, A. Edmonds, A. Bennett, P.-O. Colard, W.
Hillman, and M. Jaszczykowski, CVD diamond for quan-
tum applications, in Symposium Latsis 2019 on Diamond
Photonics—Physics, Technologies and Applications (Optical
Society of America, 2019), p. 135.

[14] D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar,
R. E. Evans, F. Jelezko, and M. D. Lukin, Silicon-Vacancy
Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms
with Single-Shot State Readout, Phys. Rev. Lett. 119, 223602
(2017).

[15] E. Granados, G. Stoikos, D. T. Echarri, K. Chrysalidis, V. N.
Fedosseev, C. Granados, V. Leask, B. A. Marsh, and R. P.
Mildren, Tunable spectral squeezers based on monolithically

023504-7

https://doi.org/10.1038/s41467-021-24926-8
https://doi.org/10.1038/s41586-021-03999-x
https://doi.org/10.1038/s41586-020-2823-6
https://doi.org/10.1364/OE.435023
https://doi.org/10.1364/OSAC.2.001028
https://doi.org/10.1364/OL.44.000839
https://doi.org/10.1364/OE.24.027812
https://doi.org/10.1364/OE.384630
https://doi.org/10.1364/OL.44.003924
https://doi.org/10.1364/OPTICA.447380
https://doi.org/10.1103/PhysRevLett.119.223602


GEORGIOS STOIKOS AND EDUARDO GRANADOS PHYSICAL REVIEW A 106, 023504 (2022)

integrated diamond Raman resonators, Appl. Phys. Lett. 120,
151101 (2022).

[16] T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, Tem-
perature dependence of the refractive index of diamond up to
925K, Phys. Rev. B 62, 16578 (2000).

[17] E. Granados, D. J. Spence, and R. P. Mildren, Deep ultraviolet
diamond Raman laser, Opt. Express 19, 10857 (2011).

[18] R. P. Mildren and A. Sabella, Highly efficient diamond Raman
laser, Opt. Lett. 34, 2811 (2009).

[19] D. J. Spence, E. Granados, and R. P. Mildren, Mode-
locked picosecond diamond Raman laser, Opt. Lett. 35, 556
(2010).

[20] W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D.
Burns, and A. J. Kemp, Continuous-wave diamond Raman
laser, Opt. Lett. 35, 2994 (2010).

[21] A. Sabella, J. A. Piper, and R. P. Mildren, Diamond Raman laser
with continuously tunable output from 3.38 to 3.80 μm, Opt.
Lett. 39, 4037 (2014).

[22] I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A.
Scarsbrook, Development of high quality single crystal dia-
mond for novel laser applications, Proc. SPIE 7838, 783819
(2010).

[23] S. Antipov, A. Sabella, R. J. Williams, O. Kitzler, D. J. Spence,
and R. P. Mildren, 1.2 kW quasi-steady-state diamond Ra-
man laser pumped by an m2 = 15 beam, Opt. Lett. 44, 2506
(2019).

[24] O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren,
Intrinsically stable high-power single longitudinal mode laser
using spatial hole burning free gain, Optica 3, 876 (2016).

[25] O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster,
N. Hempler, G. P. A. Malcolm, and D. J. Spence, Single-
longitudinal-mode ring diamond Raman laser, Opt. Lett. 42,
1229 (2017).

[26] M. Li, O. Kitzler, and D. J. Spence, Investigating single-
longitudinal-mode operation of a continuous wave second
stokes diamond Raman ring laser, Opt. Express 28, 1738
(2020).

[27] D. J. Spence, Spectral effects of stimulated Raman scattering in
crystals, Prog. Quantum Electron. 51, 1 (2017).

[28] G. P. Dzhotyan, Y. E. D’yakov, I. G. Zubarev, A. B. Mironov,
and S. I. Mikhaı̆lov, Influence of the spectral width and statistics
of a stokes signal on the efficiency of stimulated Raman scat-
tering of nonmonochromatic pump radiation, Sov. J. Quantum
Electron. 7, 783 (1977).

[29] V. G. Sidorovich, Reproduction of the pump spectrum in stim-
ulated Raman scattering, Sov. J. Quantum Electron. 8, 784
(1978).

[30] W. Trutna, Y. Park, and R. Byer, The dependence of Raman gain
on pump laser bandwidth, IEEE J. Quantum Electron. 15, 648
(1979).

[31] C. Warner and B. Bobbs, Effects of off-resonant Raman inter-
actions on multimode Stokes conversion efficiency and output
wave front, J. Opt. Soc. Am. B 3, 1345 (1986).

[32] L. A. Westling and M. G. Raymer, Intensity correlation mea-
surements in stimulated Raman generation with a multimode
laser, Phys. Rev. A 36, 4835 (1987).

[33] Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, Theory
of a far-off resonance mode-locked Raman laser in H2 with
high finesse cavity enhancement, J. Opt. Soc. Am. B 24, 2055
(2007).

[34] J. Fontanella, R. L. Johnston, J. H. Colwell, and C. Andeen,
Temperature and pressure variation of the refractive index of
diamond, Appl. Opt. 16, 2949 (1977).

[35] P. Y. Yu and M. Cardona, Temperature coefficient of the refrac-
tive index of diamond- and zinc-blende-type semiconductors,
Phys. Rev. B 2, 3193 (1970).

[36] P. Jacobson and S. Stoupin, Thermal expansion coefficient of
diamond in a wide temperature range, Diam. Relat. Mater. 97,
107469 (2019).

[37] P. Hervé and L. K. J. Vandamme, General relation between
refractive index and energy gap in semiconductors, Infrared
Phys. Tech. 35, 609 (1994).

[38] R. Loudon, The Raman effect in crystals, Adv. Phys. 13, 423
(1964).

[39] J. González, E. Moya, and J. C. Chervin, Anharmonic effects in
light scattering due to optical phonons in CuGaS2, Phys. Rev. B
54, 4707 (1996).

[40] G. Turri, S. Webster, Y. Chen, B. Wickham, A. Bennett, and
M. Bass, Index of refraction from the near-ultraviolet to the
near-infrared from a single crystal microwave-assisted CVD
diamond, Opt. Mater. Express 7, 855 (2017).

[41] P. G. Klemens, Anharmonic decay of optical phonons, Phys.
Rev. 148, 845 (1966).

[42] A. Debernardi, S. Baroni, and E. Molinari, Anharmonic Phonon
Lifetimes in Semiconductors from Density-Functional Pertur-
bation Theory, Phys. Rev. Lett. 75, 1819 (1995).

[43] M. S. Liu, L. A. Bursill, S. Prawer, and R. Beserman, Tem-
perature dependence of the first-order Raman phonon line of
diamond, Phys. Rev. B 61, 3391 (2000).

[44] V. Leask, A continuously tunable single longitudinal mode
diamond Raman laser, Master’s thesis, SUPA Department of
Physics, University of Strathclyde, Glasgow, 2019.

[45] C. Moelle, S. Klose, F. Szcs, H. Fecht, C. Johnston, P. Chalker,
and M. Werner, Measurement and calculation of the thermal
expansion coefficient of diamond, Diam. Relat. Mater. 6, 839
(1997).

[46] Diamond Materials, The CVD Diamond Booklet (Diamond
Materials, Advanced Diamond Technology, Freiburg, 2004),
https://www.diamond-materials.com/site/assets/files/1095/
cvd_diamond_booklet.pdf.

023504-8

https://doi.org/10.1063/5.0088592
https://doi.org/10.1103/PhysRevB.62.16578
https://doi.org/10.1364/OE.19.010857
https://doi.org/10.1364/OL.34.002811
https://doi.org/10.1364/OL.35.000556
https://doi.org/10.1364/OL.35.002994
https://doi.org/10.1364/OL.39.004037
https://doi.org/10.1117/12.864981
https://doi.org/10.1364/OL.44.002506
https://doi.org/10.1364/OPTICA.3.000876
https://doi.org/10.1364/OL.42.001229
https://doi.org/10.1364/OE.380644
https://doi.org/10.1016/j.pquantelec.2016.11.001
https://doi.org/10.1070/QE1977v007n06ABEH012901
https://doi.org/10.1070/QE1978v008n06ABEH010403
https://doi.org/10.1109/JQE.1979.1070054
https://doi.org/10.1364/JOSAB.3.001345
https://doi.org/10.1103/PhysRevA.36.4835
https://doi.org/10.1364/JOSAB.24.002055
https://doi.org/10.1364/AO.16.002949
https://doi.org/10.1103/PhysRevB.2.3193
https://doi.org/10.1016/j.diamond.2019.107469
https://doi.org/10.1016/1350-4495(94)90026-4
https://doi.org/10.1080/00018736400101051
https://doi.org/10.1103/PhysRevB.54.4707
https://doi.org/10.1364/OME.7.000855
https://doi.org/10.1103/PhysRev.148.845
https://doi.org/10.1103/PhysRevLett.75.1819
https://doi.org/10.1103/PhysRevB.61.3391
https://doi.org/10.1016/S0925-9635(96)00674-7
https://www.diamond-materials.com/site/assets/files/1095/cvd_diamond_booklet.pdf

