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Wigner time for electromagnetic radiation in plasma
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Wave tunneling is an intriguing phenomenon spanning different branches of physics, from quantum mechanics
to classical electrodynamics and optics. The Wigner (or phase) time is proved to be an adequate measure to
describe wave transit through a potential barrier or material layer in the tunneling regime. Here we analytically
and numerically calculate the Wigner time for electromagnetic-radiation propagation through the layer of both
lossless and lossy plasmas. It is shown that the plasma frequency is the key parameter governing the value of
Wigner time, allowing us to interpret tunneling as due to the reaction of plasma as a whole. We analyze the
Wigner time for obliquely incident waves of transverse electric (TE) and transverse magnetic (TM) polarizations
and discuss the meaning of negative Wigner times appearing in the lossy case in the low-frequency range
and close to the plasma frequency. The results show that plasma deserves attention as a perspective object for
tunneling studies.
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I. INTRODUCTION

In optics and radiophysics, propagation of electromagnetic
radiation through a finite layer of a medium by means of an
evanescent field represents a classical counterpart to quantum-
mechanical tunneling with the length of the medium layer
supporting wave propagation solely via evanescence being an
analog of a potential barrier width in quantum mechanics.
In this context, the electromagnetic analogs of the Hartman
paradox have become the subject of extensive analysis. The
essence of this paradox is the asymptotic independence of the
Wigner time (phase time) for an electron and electromagnetic
radiation from the barrier length (width) L in the limit of ex-
tremely low transmissivity of the barrier under consideration
[1,2]. The Wigner time is defined as

τϕ = dϕ

dω
, (1)

where ω is the radiation frequency and ϕ is the phase of
the complex transmission coefficient t . This notion was in-
troduced by Wigner [3] as a measure for scattering events
in quantum physics; it was further proved to be a one-
dimensional approximation of the lifetime matrix [4]. Its
independence from the barrier length (width) indicates at first
glance the possibility of seemingly superluminal propagation
since the tunneling time defined by Eq. (1) may become
shorter than the physical time t = L/c, where с is the speed
of light in vacuum. Thorough analyses performed in several
studies (see [5–8] and references therein) have led to the
following conclusions: (i) Speed may not be the relevant
term in tunneling, since there is no well-defined physical
object whose motion is traceable within the barrier region;
(ii) very-low-energy transmission coefficient defines a very
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low rate of energy transfer whenever τϕ < L/c holds; and
(iii) the Wigner time, when applied to tunneling, does not
define the signaling rate. Certain criticism has been expressed
at the very attempt to analyze time-dependent tunneling events
using time-independent equations [9,10]. However, a compar-
ison of Wigner times with the correct results based on wave
packets tunneling instead of plane waves [11] has shown very
good agreement, indicating that tunneling analysis in terms
of phase time is meaningful. Energy storage and subsequent
release in the barrier region with the relevant lifetime instead
of transit phenomena have also been suggested to characterize
the tunneling rate [12]. In addition to wave equation analysis,
photon tunneling has become a subject of discussions on
bringing about virtual photons [13] and tachyons [14].

The typical model structures for electromagnetic tunneling
are a couple of prisms with a spacer where tunneling occurs
by means of frustrated total internal reflection; a photonic
band gap material, e.g., a multilayer stack in which evanescent
modes develop for radiation frequencies within the spectral
gap (photonic stop-band) range; and an undersized waveg-
uide. There is also a certain tendency for the Wigner time
for the above structures to be defined by the inverse radiation
frequency 1/ω, as highlighted for the first time by Haibel and
Nimtz [15] and then supported to a large extent by numerical
simulations [16]. The complex generalization of the Wigner
time was introduced recently [17] to characterize light inter-
action with lossy chaotic systems having poles and zeros in
their scattering matrices.

Yet another case of electromagnetic radiation propaga-
tion via evanescent waves is transparency of thin metal
films in optics (optical response of metals can be reason-
ably described in terms of dense electron gas) and plasma
layers in a more general context including radiofrequencies
and microwaves. Evanescence becomes the only possible
way for radiation penetration through a plasma layer in
the range of negative permittivity ε < 0. In this context,
metal-film-covered glass slides used as sunglasses represent a
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genuine electromagnetic analogy to quantum-mechanical tun-
neling, which becomes apparent when the time-independent
one-dimensional Schrödinger equation is compared to the
Helmholtz equation in electrodynamics. Notably, this straight-
forward analogy was outlined already by Heisenberg at the
very dawn of quantum mechanics [18].

In this paper we analyze the Wigner time for light prop-
agating through plasma, which was overlooked in previous
publications on tunneling. We start with the brief discussion of
the ideal-plasma case studied in detail recently [19]. However,
real media always feature certain losses and the preliminary
analysis of the Wigner time for electromagnetic tunneling
through plasmas is to be complemented by the analysis taking
loss into account. Here we fill this gap by calculating the
Wigner time for light tunneling through nonideal plasma. In
contrast to the case of ideal plasma considered in Ref. [19],
introduction of loss results in the appearance of additional
features such as negative Wigner times in the low-frequency
range and close to the plasma frequency. We also discuss the
peculiarities of the Wigner time for different light polariza-
tions appearing under oblique incidence. Our approach allows
us to analyze the tunneling phenomena in realistic plasma
media.

II. TUNNELING THROUGH IDEAL PLASMA

In an ideal plasma, the permittivity obeys (only the electron
contribution is considered, since the masses of ions are much
larger than the electron mass) the known Drude relation

ε(ω) = 1 − ω2
p

ω2
, ω2

p = Ne2

mε0
, (2)

where N is the electron concentration, e is the elementary
charge, m is the electron mass, and ε0 is the vacuum per-
mittivity. It was shown that in the case of an ideal lossless
plasma, the Wigner time in the low-frequency limit ω � ωp

asymptotically tends to 2/ωp for a plasma layer in vacuum and
to 2n/ωp for a plasma layer in an ambient lossless dielectric
with refractive index n [7,19]. The relevant equation obtained
under the low-transmission assumption reads

τϕ = 2√
ω2

p − ω2

n

1 + (n2 − 1) ω2

ω2
p

(3)

and reduces for n = 1 to

τϕ = 2√
ω2

p − ω2
. (4)

The low-frequency (ω � ωp) asymptotic 2/ωp value found
for the Wigner time in the case of a lossless plasma layer
suggests that the very tunneling event in this case may be pos-
sibly interpreted as a splash or flinching of a plasma layer as a
whole, since the plasma frequency defines the extreme rate
of plasma response to electromagnetic stimuli. For a quick
reference, it is reasonable to recall plasma frequency values
for a number of representative cases. In typical metals, ωp

is of the order of 1016 Hz; in semiconductors at high optical
excitation, the nonequilibrium electron-hole plasma features
the plasma frequency in the range of 1010-1013 Hz; for a
laboratory plasma (e.g., gas discharge), it is of the order of

1010 Hz; for the ionosphere, the plasma frequency of the order
of 108 Hz gives rise to short radio wave reflection enabling
long-distance communication.

III. TUNNELING THROUGH LOSSY PLASMA

In this section we consider the simplest generalization of
Eq. (2), taking the permittivity to be

ε(ω) = 1 − ω2
p

ω2 + iγω
, (5)

where γ is the damping rate introducing loss into our model.
For simplicity, the ambient is assumed to be air with the
permittivity 1; generalization to the arbitrary environment is
straightforward. Radiation is incident on the plasma layer of
thickness L at an angle θ , so the calculations are generally de-
pendent on light polarization. The expression for the complex
transmission coefficient can be found in standard textbooks on
optics, e.g., in Ref. [20]. It is convenient to write it as

t = 1

cos β − iα sin β
= |t |eiϕ, (6)

where α = p2(ω)+cos2θ

2p(ω) cos θ
= α′ + iα′′ and β =

ω
c L

√
ε(ω) − sin2θ = β ′ + iβ ′′. The auxiliary function p(ω)

has different forms depending on polarization: For ТЕ waves,
it is pTE(ω) =

√
ε(ω) − sin2θ , whereas for ТМ waves, we

have pTM(ω) =
√

ε(ω) − sin2θ/ε(ω).
The appearance of the tunneling regime can be assessed

by considering the parameter β containing information on the
phase and damping of radiation. For a lossless material and
normal incidence, evanescent waves occur at ε(ω) < 0, when
β = ω

c L
√

ε(ω) = iβ ′′ is purely imaginary. This is the classic
case of tunneling. For the plasma with permittivity given by
Eq. (2), this occurs at frequencies ω < ωp. In the presence of
losses, the analogy between tunneling and evanescence can-
not be strictly proved, since the waves are now propagating.
However, for low losses (γ � ωp) and non-normal incidence,
the direct correspondence with the classic tunneling can be
established when the root expression in β is negative, i.e.,

ε(ω) − sin2θ ≈ cos2θ−ω2
p

ω2 < 0. This condition is satisfied for
low enough frequencies in the range depending on the inci-
dence angle, ω < ωp/ cos θ . We further consider this case of
tunnelinglike response.

The Wigner time Eq. (1) can be easily computed numer-
ically for the phase extracted from Eq. (6). In general, it
depends on the layer thickness via the parameter β. However,
we can obtain an analytical estimate for τϕ neglecting the
dependence on L. Such an estimate corresponds to the con-
ditions for the Hartman paradox and therefore deserves our
attention. To simplify the expression for β, we use the same
assumptions as above, γ � ωp and ω < ωp/ cos θ . Then,

for the imaginary part, we have β ′′ ≈ ωp

c L
√

1−ω2

ω2
p
cos2θ � 1,

which corresponds to the low-transmission limit widely used
in the tunneling literature [16]. This condition is satisfied for
thick enough layers and not too close to the limiting frequency
ωp/ cos θ . The real part can be written as β ′ ≈ ( ωp

c L)
2 γ

ω
1
β ′′ �

1, so the influence of L on the phase is neglected. Then we
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FIG. 1. Frequency dependence of the Wigner time for normally
incident radiation.

obtain the approximate expression for the phase as

ϕt ≈ − arctan
α′′

1 + α′ . (7)

To calculate the Wigner time, we insert Eq. (7) into Eq. (1)
and choose the proper (for given polarization) function p(ω)
needed for evaluation of α as described after Eq. (6). The
resulting expressions are too cumbersome to be written an-
alytically, so it is convenient to present the Wigner time as a
series expansion in powers of the small damping parameter
γ /ωp (this can be readily done using a computer algebra
system). Leaving only the lowest-order terms, we have

τTE
ϕ ωp = 2 cos θ√

1 − ω2

ω2
p
cos2θ

+ γ

ωp

−1 + ω2

ω2
p
cos2θ − 2 ω4

ω4
p
cos4θ

2 ω2

ω2
p

(
1 − ω2

ω2
p
cos2θ

)2

+ O

(
γ 2

ω2
p

)
, (8)

τTM
ϕ ωp =

4 cos θ
(
1 − ω2

ω2
p

cos 2θ
)

√
1 − ω2

ω2
p
cos2θ

[
1 + (

1 − 2 ω2

ω2
p

)
cos 2θ

]

+ O

(
γ

ωp

)
. (9)

In Eq. (9), we have left only the first term of the series to be
more concise. It is easy to see that these formulas are reduced
to Eq. (4) for the normal incidence and ideal plasma (θ = 0
and γ = 0). The case of normal incidence (in the frequency
range 0 < ω < ωp) is convenient to analyze the influence of
losses. The dependence according to Eq. (4) is shown in Fig. 1
with the black line. It is seen that introducing small losses
leaves the dependence mostly unchanged, with the exception
of narrow range close to zero frequency where the Wigner
time can take even negative values. The range of negative τϕ

gets wider with increasing γ .
Let us discuss the applicability of the formulas Eqs. (8)

and (9) comparing them with the numerical calculations with

FIG. 2. Frequency dependence of the Wigner time for θ = π/3
and γ /ωp = 0.01 calculated with the approximate and exact expres-
sions. Solid lines are for the TE waves and dashed lines are for the
TM waves.

the unsimplified expression Eq. (6). The results of such a
comparison are shown in Fig. 2 for θ = π/3, γ /ωp = 0.01,
and different layer thicknesses. One can see that the general
features of Wigner time behavior are adequately described
by the approximate formulas in the full frequency range 0 <

ω < ωp/ cos θ = 2ωp. The difference between the approxi-
mate and exact results grows with increasing L and also with
approaching the boundaries of the frequency range. For exam-
ple, approaching ωp/ cos θ , the approximate expressions give
negative values, whereas the exact values grow indefinitely.
Far from these boundaries, the Wigner time almost does not
depend on the thickness that is especially evident for TE
waves.

Figure 3 shows how the Wigner time computed with
Eqs. (8) and (9) depends on the main parameters of the prob-
lem. First, we fix the incidence angle (θ = π/3) and analyze
the influence of the damping rate [Fig. 3(a)]. One can see
that τϕ weakly depends on γ for TE waves, whereas for
the TM waves, τϕ decreases with γ and mostly τTM

ϕ > τTE
ϕ .

Second, we fix the damping rate (γ /ωp = 0.05) and analyze
the Wigner time for different incidence angles [Fig. 3(b)].
We see the widening of the frequency range [0, ωp/ cos θ ]
with growing angle. For TE waves, τϕ clearly shortens from
τTE
ϕ ≈ 2/ωp at θ = 0 to τTE

ϕ ≈ 1/ωp at θ = π/3. For TM
waves, in contrast, τTM

ϕ for nonzero θ is mostly larger than
in the case of normal incidence. The large values of τTM

ϕ

above the plasma frequency at low incidence angles are due
to the rapid growth of curves as we approach the frequency
ωp/ cos θ .

A characteristic feature of the solutions obtained for radi-
ation tunneling through the lossy plasma is the appearance of
negative values of the phase time (the corresponding regions
in figures above are shaded in gray). Negative values of τϕ

appear in all cases (TE and TM waves, normal or oblique inci-
dence) with increasing losses at low frequencies ω � ωp. The
appearance of τϕ < 0 can be easily demonstrated in Eq. (8)
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FIG. 3. Frequency dependence of the Wigner time for (a) differ-
ent losses at θ = π/3 and (b) different angles at γ /ωp = 0.05. Solid
lines are for the TE waves and dashed lines are for the TM waves.

where the second term becomes an infinitely growing negative
number in the low-frequency limit ω→0. The negative time at
ωp/ cos θ appears for both polarizations only in the approxi-
mate formulas and is absent in the exact calculations as seen
in Fig. 2. For the TM waves under oblique incidence and for
nonzero losses, the negative time occurs also in the vicinity
of plasma frequency that is clearly associated with plasmon

excitation by TM-polarized radiation. Negative values of the
Wigner time have been encountered before [21] but have
not received unambiguous physical interpretation. In fact, the
possibility of negative τϕ was mentioned by Wigner [3] and
was connected to the regions of phase decreasing with en-
ergy far from the scattering resonances. The negative Wigner
time resulting in unphysical negative density of modes was
reported for the pulses traversing photonic crystals and was
interpreted as due to proximity to the absorption line [11]. In
our case, the negative values of τϕ also occur near the specific
resonant or singular points (ω = 0 and ω = ωp). We believe
that the negative values of the tunneling time are devoid of
physical meaning and indicate a possible going beyond the
applicability limits of the approach used and the impossibility
of using the concept of phase time under such conditions.
Therefore, it is necessary to use and interpret the results with
caution when the problem parameters approach the intervals
for which the Wigner time becomes negative.

IV. CONCLUSION

We have studied the behavior of the Wigner time τϕ for
electromagnetic radiation tunneling through a nonideal (lossy)
plasma layer. Approximate relations for τϕ were obtained,
which, in the limit of normal incidence and zero losses, give a
known low-frequency asymptotic τϕ → 2ω−1

p . Unlike tunnel-
ing through the dielectric structures (prisms with frustrated
total internal reflection, photonic crystals, and undersized
waveguides), for which the quantity that specifies the Wigner
tunneling time in the limit of low transmittance (wide and high
barrier) is the inverse frequency of the propagating radiation,
the Wigner time for the lossless and low-loss plasmas is de-
termined by the inverse plasma frequency τϕ ∼ ω−1

p and does
not depend on the radiation frequency. For obliquely incident
radiation, the results differ depending on light polarization.
For TE waves, the result τϕ ∼ ω−1

p holds almost in the entire
low-frequency range (ω < ωp/ cos θ ), with τϕ decreasing with
the incidence angle. For TM waves, an additional singularity
appears in the dependence τϕ (ω) near the plasma frequency.
The results obtained can be used to estimate the light-pulse
transit times through realistic plasmas with the exception of
the vicinity of singular points where the phase time can take
on unphysical negative values. We believe that our approach
clarifies the physics of light tunneling as applied to a rather
simple plasma model.
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