
PHYSICAL REVIEW A 106, 023501 (2022)
Editors’ Suggestion

Fundamental thermal noise in antiresonant hollow-core fibers

Vincent Michaud-Belleau ,1 Eric R. Numkam Fokoua ,2 Peter Horak ,2 Natalie V. Wheeler ,2 Shuichiro Rikimi ,2

Thomas D. Bradley ,3 David J. Richardson ,2 Francesco Poletti ,2 Jérôme Genest ,1 and Radan Slavík 2,*

1Centre d’optique, photonique et laser, Université Laval, Québec, QC, Canada G1V 0A6
2Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, United Kingdom

3High-Capacity Optical Transmission Laboratory, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands

(Received 5 May 2022; accepted 12 July 2022; published 1 August 2022)

Fluctuations of the optical length induced by fundamental thermal noise are known to set the ultimate phase
resolution of fiber-based interferometers. Although this noise has been studied in detail for optical fibers made of
solid glass material, its impact on the performance of hollow-core optical fibers has not yet been assessed. In such
fibers, the guided light interacts only weakly with the glass material whose thermal and thermo-optic properties
normally determine the thermal noise level, suggesting that a difference in performance should be expected.
Based on the comparison of several interferometers optimized for phase sensitivity, we present measurements
of thermal noise in the 20 to 200 kHz range in hollow-core nested antiresonant nodeless fibers (NANF) with
their core filled with air at different pressures. In this frequency range, our measurements are in good agreement
with the adapted thermoconductive noise model we introduce, suggesting that the thermo-optic contribution
from the gas that fills the core is generally dominant, regardless of the exact hollow-core fiber design. While
we show that an antiresonant hollow-core fiber filled with air at atmospheric pressure is noisier at 1550 nm than
a silica fiber of equal optical length and mode-field area, we also demonstrate the lowest thermal noise power
per unit optical length ever measured in a fiber (≈ 1.3 × 10−17 (rad2/Hz)/m at 30 kHz) using a large-mode-
area NANF evacuated and sealed at 0.15 atm. In addition to lowering the internal pressure, we predict that the
noise density in this spectral range can be reduced by filling the core with a low-polarizability noble gas. Our
results indicate that low-loss antiresonant hollow-core fibers can compete with ultrastable cavities for the purpose
of laser frequency stabilization; when evacuated, such fibers should constitute the best option to significantly
decrease the fundamental noise floor in interferometric applications currently based on conventional solid-core
fibers.

DOI: 10.1103/PhysRevA.106.023501

I. INTRODUCTION

Optical fibers are widely used in interferometric applica-
tions thanks to their flexibility and ultralow loss, which enable
the propagation of light over several kilometers in a practical
format. Yet, stabilizing the optical path length of a long fiber
well within a single wavelength, a typical requirement in
interferometry, poses a considerable challenge in the pres-
ence of environmental perturbations such as vibrations and
temperature drifts. This challenge is especially acute in stan-
dard single-mode fiber (SMF) which displays a temperature
sensitivity on the order of 10 ppm/K at 1550 nm, dominated
by the thermo-optic coefficient of silica (TOC), a relatively
large value which often warrants temperature stabilization
at the sub-mK level [1,2]. Even when such environmental
perturbations are controlled or suppressed, early studies have
shown that the optical path length stability of an SMF (related
to the phase accumulated by a propagating laser field), just
like the propagation time stability (related to the group index),
is limited by the thermodynamic motion of the elementary
charges in the medium through which light propagates [3,4].

*Corresponding author: r.slavik@soton.ac.uk

Such fundamental thermal noise, associated to apparent local
temperature fluctuations of the fiber, depends on the ther-
mal properties of the fiber material sampled by the optical
mode and displays a variance or power which scales with the
square of the fiber temperature and with the inverse of the
mode volume [5]. Although this scaling with mode volume
strongly favors long fibers over, say, whispering gallery mode
microresonators [6] or active [7] and passive [8] fiber Bragg
gratings (in which a similar fundamental noise is observed),
thermal noise in SMF has nonetheless been shown to consti-
tute an important limitation for fiber-optic gyroscopes [9,10],
optical fiber links [11,12], optoelectronic oscillators [13], and
fiber references used for laser stabilization [14,15]. This is due
once again to the relatively large temperature sensitivity of
standard SMF, which also describes the conversion of thermo-
dynamic temperature fluctuations to path-length fluctuations
or output phase noise [16].

Fundamental thermal noise in SMF can be lowered by
increasing the fiber length, which directly increases the mode
volume. However, noise reduction appears challenging once
the length is maximized in a given application. Increasing
the mode-field area also increases the mode volume, but
only a modest improvement can be considered before bend-
ing loss becomes problematic [17]. Although it complicates
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instrument operation, lowering the fiber temperature appears
as the best approach since it reduces both the strength of
fundamental thermal noise and the thermal sensitivity in bare
SMF [18,19]. However, experimental evidence suggests that
temperature reduction may not work well below 150 K as
the thermal properties of silica undergo significant changes
[20]. Finally, although significant effort has been deployed
to reduce the intrinsic low-frequency thermal sensitivity of
SMF (relevant for environmental temperature drift), for ex-
ample, through specialized coatings and jackets [21–23],
low-sensitivity fiber supports [24,25], and dopants with neg-
ative TOC [26,27], commensurate reduction of fundamental
thermal noise in SMF has never been demonstrated. Further-
more, it is not clear whether such approaches, which focus
on tuning the low-frequency thermal behavior of the whole
fiber to minimize the effect of environmental temperature
changes, would also succeed to reduce phase noise induced
by fundamental thermal noise at the higher frequencies where
this contribution can be dominant.

Recently, interest in fundamental thermal noise minimiza-
tion has been renewed by the emergence of new optical fibers
that guide the light through a central hole, hollow-core fibers
(HCF), which are now surpassing conventional solid glass-
core SMF in almost all key properties. Critically, several
HCF designs now display propagation loss close to or even
below that of the best SMF and allow effective single-mode
operation (i.e., the loss of the higher-order modes is signif-
icantly higher than that of the fundamental mode), making
them suitable in a host of interferometric applications [28].
Hollow-core fibers have already been shown to be less temper-
ature sensitive than conventional SMF [1,2,29,30], a property
related to the weak interaction of the mode field with the
glass microstructure in addition to the relatively low TOC
of the internal gas medium (which promises improvements
with core evacuation [31]). Clearly, this low sensitivity to
temperature should translate to a weak conversion of thermo-
dynamic temperature fluctuations to path-length fluctuations,
as suggested by a first experiment with short, early-design
commercial HCFs at the limit of measurement noise [32].
Yet, a model of HCF fundamental thermal noise that goes
beyond a simple scaling of the SMF model is still lacking,
and measurements at a sufficient dynamic range to reveal its
most important properties have never been performed.

In this work, we study fundamental thermal noise in the
latest generation of hollow-core fibers [33], which guide light
using an antiresonant reflection mechanism (or inhibited cou-
pling [34]). We first review the model of fundamental thermal
noise that is usually adequate for SMF above 1 kHz, giving
simplified expressions which expose the important design pa-
rameters. We then explain how we adapt this model to the case
of an antiresonant HCF, stating our main working hypotheses.
With a carefully designed characterization setup supporting an
order of magnitude more power than what is usually achieved,
and using two long-length nested antiresonant nodeless fibers
(NANFs [28], 219 m), we measure fundamental thermal noise
in the 20 to 200 kHz range with large dynamic range and
show that its spectrum agrees with the simple model pre-
sented here, at least at room temperature and for internal gas
pressures in the 0.1 to 1 atm range. In particular, the noise
reduction associated to partial core evacuation indicates that

this fundamental noise, under such experimental conditions,
is driven by the thermo-optic contribution of the gas that fills
the core, which constitutes a fundamental hypothesis of our
model. Extrapolating our results, we finally discuss a potential
approach to minimize fundamental thermal noise in HCFs
beyond the demonstrated core evacuation.

II. THEORY

A. Solid-core fiber

A fundamental result of thermodynamics [35] is that a
system in thermal equilibrium with a heat reservoir, such as an
optical fiber or any waveguide held at a constant temperature
T , displays fluctuations of its internal energy u(t ), where t is
the time variable. Although by definition the temperature itself
does not fluctuate, it is convenient to define an “effective”
or “apparent” temperature representative of the volumetric
energy fluctuations, �T (t ) ≡ �u(t )/cv , where �u(t ) denotes
the fluctuations of u(t ) about the equilibrium value 〈u(t )〉
while cv is the isochoric volumetric heat capacity of the
system [3]. The apparent temperature fluctuations are local
and can be seen to be the result of random exchanges of
energy between neighboring domains of the system, which
still globally obeys the law of conservation of energy [36].
From the point of view of an optical mode, the variance of the
apparent temperature noise Tm(t ), which is spatially averaged
over the mode volume Vm, is given by the simple expression

〈
�T 2

m (t )
〉 = kBT 2

Vmcv

, (1)

where kB is the Boltzmann constant [3]. For the fundamental
mode in a fiber, it is usually adequate to define Vm = AmL =
πa2L, where Am is the effective mode area [37], L is the
physical fiber length, and a is the equivalent Gaussian mode
radius (e−2).

By solving the heat equation with a Langevin source [16],
or alternatively by computing the thermal admittance function
and invoking the fluctuation-dissipation theorem [38], it can
be shown that the one-sided power spectral density (PSD)
of the apparent temperature fluctuations takes the following
general form:

S(1)
�Tm

( f ) = 〈
�T 2

m (t )
〉
Q( f ), (2)

where Q( f ) is a spectral shape function which depends on
the thermal boundary conditions, thermal properties of the
material, and mode-field area, and where f is the frequency
variable. For a very large, thermally uniform fiber (“infinite”
boundary conditions, neglecting the potential impact of index-
raising dopants over the thermal properties), Q( f ) has unit
area and can be simplified as

Q( f ) = 2
π fc

Re[e j f / fc E1( j f / fc)], (3a)∫ ∞
0 Q( f )df = 1, (3b)

where Re = [·] denotes the real part, j is the imaginary unit,
and E1 is the exponential integral function. Although this
expression is different from those found in [16,38], it is ulti-
mately equivalent but has the advantage of clearly separating
the variance term (total power or PSD area) from the spec-
tral shape which is only parametrized through fc, a cutoff
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FIG. 1. Spectral shape function for the case of infinite boundary
conditions; comparison of two cutoff frequencies. Low-frequency
and high-frequency asymptotes are shown in dotted orange for
fc = 120 kHz.

frequency defined as

fc = 2kt

Amcv

, (4)

where kt and cv are the thermal conductivity and heat capacity
of the fiber material, respectively. In a typical SMF operated
around 1550 nm, fc ≈ 20 kHz, giving the shape function
illustrated in blue (uppermost at low frequencies) in Fig. 1.
Since Q( f ) has unit area, a larger cutoff frequency simply
means that the noise power of Eq. (1) is spread over a larger
bandwidth, lowering the low-frequency PSD level. In silica
SMF, such an increase of the cutoff frequency can be achieved
through reduction of the mode area (e.g., by decreasing the
operating wavelength or decreasing the core diameter under
certain conditions), as illustrated in orange (lowermost at low
frequencies) in Fig. 1 for a case where the effective mode
radius is 2.45 times smaller than that of a typical SMF.

When other, more realistic thermal boundary conditions
are assumed, the spectral shape function Q( f ) takes a dif-
ferent form which is less insightful and does not necessarily
maintain a unit area [16]. However, Eq. (3a) still accurately
describes the spectrum of high-frequency temperature fluctu-
ations. Indeed, the cutoff frequency fc can be seen to be a
ratio of thermal diffusivity to mode area; it is associated to the
averaging of temperature fluctuations, which are correlated in
time and space because of thermal conduction, over the mode
cross-sectional area. It is thus useful to define the frequency-
dependent thermal correlation length:

lt ( f ) =
√

kt

2πcv f
= a

2
( f / fc)−1/2. (5)

At those frequencies for which lt ( f ) is a few times smaller
than the cladding radius, it is appropriate to ignore the exact
form of the boundary conditions and thus use the simple form
of Q( f ), valid for an infinite cladding. In SMF, this condition
is true above approximately 100 Hz.

To relate the apparent temperature fluctuations �Tm(t ) to
phase fluctuations φ(t ) which can be measured interferometri-

cally, it is usually assumed that the optical length at any instant
is directly related to the apparent temperature [4,16,38]:

φ(t ) = 2π
λ

d (nL)
dT �Tm(t ) = 2πnLξ

λ
�Tm(t ), (6a)

ξ ≡ αL + 1
n

dn
dT , (6b)

where n is the effective index of the fundamental guided
mode, λ is the vacuum wavelength, αL is the thermal expan-
sion coefficient (TEC), dn/dT is the thermo-optic coefficient
for the effective index (or “effective TOC”), and ξ is the
temperature sensitivity. If this relation holds, the phase fluc-
tuations PSD is given by

S(1)
φ ( f ) =

(
2πnLξ

λ

)2

S(1)
�Tm

( f ), (7)

which is the main result of this section. The noise described
by Eqs. (1), (2), and (7) has been called “thermoconduc-
tive” by Foster [16] and it is qualitatively similar to the
noise previously described by Wanser [4]. It is also similar
to thermorefractive noise measured in microcavities [39] and
dielectric mirrors [40] when the TEC is much smaller than the
TOC, as is the case in fused silica. It is, however, distinct from
thermomechanical noise driven by internal damping [38], akin
to Brownian noise in ultrastable cavities [41], which is pre-
dicted to be important in the sub-kHz spectral range only [42]
and whose theoretical description is not entirely supported by
experimental data [43]. Since our experimental demonstration
is centered on the 20 to 200 kHz range, we ignore thermome-
chanical noise in this paper. Note that because the temperature
noise PSD is proportional to 1/L [Eq. (2)], the phase noise
PSD of Eq. (7) is proportional to L and not L2; this expresses
the fact that the total optical path-length fluctuation is given
by the incoherent sum of all optical path-length fluctuations
along the fiber length (i.e., any longitudinal spatial correlation
is short ranged).

To model thermoconductive phase noise, we choose to
use physical values representative of the material close to the
mode field, that is, within a few thermal correlation lengths
of the fiber axis. We thus completely ignore the potential
contributions of the fiber coating and jacket. Although
these do matter at low frequencies [18,44], we heuristically
argue that these should not contribute to the apparent
temperature noise sampled by the mode field above a few
kHz. Furthermore, since our experimental demonstration
is based on a polarization-maintaining single-mode fiber
(PM-SMF) of PANDA configuration, we use values tabulated
in [45] for the slow axis of a PANDA fiber; in addition to the
dominant thermo-optic coefficient of the core and cladding
material, these take into account the impact of geometry
deformation and stress-optical effect over the effective index
n, yielding n−1dn/dT = 6.10 ppm/K. The contribution of
the boron stress-applying parts to the TEC is also considered,
yielding αL = 1.05 ppm/K for a naked fiber and presumably
also for the material close to the core. Overall, the sensitivity
of the PM-SMF is thus ξ ≈ 7.15 ppm/K, which is comparable
to the values used in standard SMF-28 for the purpose of
thermoconductive noise modeling around 1550 nm
[3,16,38,43,46]. All physical parameters used in this paper
for SMF are summarized in Table I.
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TABLE I. SMF parameters used in the thermoconductive noise
model [16,45].

Symbol Name Value

cv Volumetric heat capacitya 1.67 × 106 J m−3 K−1

kt Thermal conductivity 1.37 W m−1 K−1

a Mode-field radius (e−2) 5.25 × 10−6 m
n Effective index 1.45
dn/dT Thermo-optic coefficient 8.84 × 10−6 K−1

αL Thermal expansion coefficient 1.05 × 10−6 K−1

aAt constant volume.

B. Gas-filled hollow-core fiber

The thermoconductive noise model has been explicitly
developed (by other authors) for solid-core fibers, and here
we only considered the effect of the material close to the
core region to describe the noise at high frequencies. In this
work, we suppose that the same model still adequately de-
scribes thermal noise in gas-filled antiresonant hollow-core
fibers, heuristically replacing the glass core by a gas core
with suitable thermo-optic and thermal properties. To this
end, we make a series of simplifying assumptions; these are
later shown to adequately explain phase noise measured in
antiresonant HCFs above 20 kHz. First, we consider only
the fundamental mode and neglect the contribution the mi-
crostructure may have over the thermal properties. Basing
the model on the properties of the gas that resides in the
core cavity is especially justified in antiresonant HCF for
which the fraction of power guided in glass is 10−4 or lower
[28]. Second, we suppose that thermal expansion is negligi-
ble (αL ≈ 0), following our reasoning that material far from
the fiber axis (in this case the silica cladding, that is, the
tube which supports the microstructure) should not signif-
icantly contribute to phase noise at high frequencies. This
also implies we neglect the small structural deformation (mi-
crostructure, cladding, end faces) associated to fluctuations
of the gas’ apparent temperature in addition to the impact
of thermal boundary conditions. Third, we neglect convective
effects, which should be much slower than conduction and
should only manifest at low frequencies [47]. Finally, to keep
the model simple and to expose the main trends, we assume
the hollow core is filled with nitrogen (N2) at a pressure such
that the Knudsen number Kn, defined as the ratio of mean-free
path to capillary diameter, stays below 0.01. This constitutes
the condition to remain in the hydrodynamic flow regime [48].
For the HCF used in our experimental demonstration, this
condition is respected for an internal pressure above 0.2 atm
(20 kPa), approximately, if the capillary diameter is taken to
be similar to the core diameter (35 μm). While the gas inside
a typical hollow-core fiber is better described as a mixture
of molecules with exact partial pressures dependent on the
fabrication procedure and handling history, it should be safe to
assume that nitrogen is the dominant species under most con-
ditions; the error introduced by the presence of atmospheric
constituents (O2, CO2, etc.) is predicted to be relatively small
since the thermal and optical properties of air at standard
temperature and pressure (STP) are very similar to those of
nitrogen [cv = 855 J/(m3 K) and kt = 0.026 W/(m K) [49],

dn/dT = 910 ppb/K [50]]. The same reasoning applies to
argon which is often used as pressurization gas during fab-
rication (see Sec. IV).

Given the simplifications made here, only the thermal
(cv, kt ) and thermo-optic (dn/dT ) properties of the gas that
fills the hollow core are required to describe fundamental
thermal noise in HCF [in antiresonant HCFs, the fundamental
mode’s effective index n is a few hundreds of ppm smaller
than unity [51]; it is hence adequate to simply set n = 1
in Eq. (7)]. First, the volumetric heat capacity of diatomic
molecules can be expressed as

cv = 5p

2T
, (8)

where p is the pressure [52]. This evaluates to cv =
860 J/(m3 K) at STP. The thermal conductivity, on the other
hand, is independent of pressure in the hydrodynamic flow
regime and has a value of approximately 25.4 mW/(m K) in
N2 at 20 ◦C [53]. Taking the mode area of SMF, this means
that the cutoff frequency [Eq. (4)] is 670 kHz in nitrogen
gas, 35 times larger than it is in silica, spreading the total
noise power over a much wider bandwidth. In our demonstra-
tion, however, the mode-field radius of the HCF is 12.5 μm,
much larger than in SMF, yielding fc ≈ 120 kHz as shown
in orange (lowermost at low frequencies) in Fig. 1. Finally,
to estimate the thermo-optic coefficient dn/dT required to
model ξ [Eq. (6b)], we describe the index of the gas within
the core nc using the Lorentz-Lorenz equation [54]

n2
c − 1

n2
c + 2

= 4παN

3
≈ 2

3
(nc − 1), (9)

where α is the molecular polarizability volume (not to be
confused with the TEC αL), N is the number density, and the
last approximation is valid if nc ≈ 1, which is the case for
gases at ordinary densities. The thermo-optic coefficient of a
gas obeying this equation can be found through differentiation
of nc:

dnc

dT
≈ 2π

(
dα

dT
N + α

dN

dT

)
. (10)

The factor dN/dT would normally be assumed to be zero
in a sealed hollow-core fiber [31] since the number of gas
molecules is constant and since we ignore fluctuations of the
internal volume, making the number density invariant. The
ideal gas law can be used to write N = p/(kBT ), and the
corollary is that the pressure is normally assumed to be di-
rectly proportional to temperature. However, the thermo-optic
coefficient used in the noise model relates to local apparent
temperature fluctuations. The assumption here is that if locally
the temperature fluctuates, the pressure is still constant in the
vicinity of the fluctuation and therefore the local density also
fluctuates (dN/dT �= 0) according to the gas law, leading to
a phase fluctuation in the propagating light. Note that these
density fluctuations should be uncorrelated along the fiber
length, at least at those frequencies much larger than the ratio
of acoustic velocity to fiber length, provided that the fiber
mode does not fill the entirety of the hollow core such that
gas molecules have the possibility of moving in and out of
the guided mode. The thermo-optic coefficient should thus
be computed assuming constant local pressure (d p/dT = 0)
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TABLE II. HCF parameters used in the thermoconductive noise
model.

Symbol Name Value

cv Volumetric heat capacitya 860
( p

p0

)
J m−3 K−1

kt Thermal conductivityb 0.025 W m−1 K−1

a Mode-field radius (e−2) 12.5 × 10−6 m
n Effective index 1.00

dn/dT Thermo-optic coefficient 936 × 10−9
( p

p0

)
K−1

aAt constant volume.
bKn < 0.01.

instead of constant volume (p ∝ T ), even if the fiber is sealed.
This agrees with the models used in photothermal interferom-
etry, which have been developed and successfully compared
with experimental data over a frequency range similar to
that of interest here [55–58]. Under this perspective, we can
rewrite Eq. (10) using dN/dT = −p/(kBT 2) (constant pres-
sure):

dnc

dT
≈ 2π p

kBT

(
dα

dT
− α

T

)
. (11)

The second term within parentheses is typically much larger
than the first one; for example, in N2 at STP, dα

dT = 1.85 ×
10−36 m3/K while α

T = 5.95 × 10−33 m3/K [59]. We can
thus simplify

dnc

dT
≈ −2π pα

kBT 2
, (12)

which gives ξ ≈ −936 ppb/K when combining all our hy-
potheses, critically that dn/dT ≈ dnc/dT . The parameters of
the HCF used in our demonstration, at a temperature T =
20 ◦C, are summarized in Table II; this includes the pressure
dependence when appropriate (p0 = 101.3 kPa = 1 atm).

To compare the fundamental thermal noise in fibers having
distinct lengths and indices, the phase PSD can be normalized
by the optical length nL, yielding

S(1)
φ ( f )

nL
= n

(
2πξ

λ

)2 kBT 2

Amcv

Q( f ). (13)

Although another normalization could certainly be chosen,
this one is justified by the fact that the signal of interest scales
with the optical instead of physical length in most applica-
tions. Furthermore, it gives a quantity that is independent of
physical length, which is not the case of the signal-to-noise ra-
tio (SNR) which increases with it. From this normalized phase
PSD, and assuming the same wavelength, mode area, and
temperature, it is apparent that a HCF filled with nitrogen at
STP displays a much larger temperature variance than a SMF
because its heat capacity is lower by more than two orders of
magnitude. This is partially compensated by a higher cutoff
frequency, which spreads the noise over a larger bandwidth
[through Q( f )], and a weaker conversion of temperature to
optical length (through ξ ). Finally, for equal optical lengths,
the mode volume is larger in a gas than in a transparent solid
since the effective index is close to unity; this explains the
remaining factor n in the right-hand side of Eq. (13).

FIG. 2. Modeled optical-length-normalized phase PSD at λ =
1539.8 nm. Comparison between SMF and HCF filled with N2 at
three different pressures. The parameters are T = 20 ◦C and a =
5.25 μm (SMF and HCF have the same mode-field area, in contrast
to the figures shown in Sec. III).

The SMF to HCF comparison is quite different if the HCF’s
pressure is assumed to be lower than 1 atm, as shown in
Fig. 2, mostly because the detrimental impact of a reduced
heat capacity is largely compensated by the higher cutoff
frequency and lower TOC. Let us suppose here that we are
interested in frequencies below the cutoff fc so that Eq. (3a)
can be replaced by its low-frequency asymptote:

Q( f )| f 
 fc ≈ −2

π fc
ln

(
2 f

fc

)
. (14)

Neglecting the weak logarithmic dependence, this expression
shows that the spectral shape function at low frequencies is
roughly proportional to f −1

c or cv/kt . For pressures such that
Kn < 0.01, the thermal conductivity is pressure independent
and the phase noise PSD at low frequencies is therefore pro-
portional to p2 because ξ ∝ p, as suggested by the orange
curves in Fig. 2. Considerable noise reduction should thus
be possible with core evacuation. However, it is worth stating
that other fundamental noise sources can start to dominate the
spectrum at low and high frequencies if the thermoconductive
noise contribution is lowered. Ultimately, a more accurate and
detailed model able to address this point could be obtained
through finite-element simulation [41].

III. EXPERIMENT

The fundamental thermal noise of several fiber samples
was measured by comparing pairs of unbalanced Mach-
Zehnder interferometers illuminated by the same laser signal.
The advantage of this approach is that laser noise, which
is usually much larger than fundamental thermal noise, is
common to both interferometric phase outputs and can be
canceled through subtraction. This subtraction can then be
tuned in postprocessing to account for unequal interferometric
lengths and laser noise gains. Traditionally, this would in-
stead be achieved using a balanced fiber interferometer, with
laser noise rejection highly dependent on the fine adjustment
of the arm lengths. Subtracting the two phase signals also
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FIG. 3. Layout of the experimental setup showing a comparative
measurement between interferometer A (in this case SMF) and B (in
this case HCF or NANF). The dashed boxes can be switched for SMF
to SMF comparison or HCF to HCF comparison. EOM, electro-optic
phase modulator; EDFA, erbium-doped fiber amplifier; PC, polar-
ization controller; BPD, balanced photodetector; COF, crossover
filter (“A” stands for “attenuated,” “H” stand for “high-pass”); ADC,
analog-to-digital converter (digitizer). Solid lines represent fibers (all
fibers are polarization maintaining except in a HCF interferometer)
and dashed lines represent electrical cables. The dots between BPD
and COF indicate the points where the synthesizer is connected for
frequency response precharacterization. The inset shows a scanning
electron micrograph of the HCF’s cross section.

suppresses environmental fluctuations that are partially corre-
lated between the interferometers and, critically, exposes the
independent thermal noise contributions that are of interest
here. In this section, we first give information about the instru-
mentation we developed and the fiber samples we manufac-
tured, explaining the tradeoffs associated to thermoconductive
noise measurement. We then briefly describe the signal-
processing approach before presenting the main results.

A. Instrumentation

The experimental setup in which two fiber samples are
used is illustrated in Fig. 3. For clarity, we show the specific
case of a SMF to HCF comparison, but all possible fiber
combinations (SMF-SMF, HCF-HCF, SMF-HCF) are studied
below. The laser is an OEwaves WGM Gen3 with 195-THz
mean frequency (λ = 1539.8 nm) and 7-mW output power.
It is amplified using a custom-made, polarization-maintaining
erbium-doped fiber amplifier so that the optical power at
the input of each interferometer is approximately 10 mW.
The laser can be frequency modulated (internally) and phase
modulated (externally, using an EOSpace PM-085-20-PFA-
PFA-1550) for signal-processing purposes described below.

After recombination using optical 90◦ hybrids (Kylia
COH24 for SMFs and Optoplex HB-T0AFAS001-R1 for
HCFs), the interferometric signals are routed to four custom-
made balanced photodetectors (Thorlabs FGA01FC pho-
todiodes) with 2000-� transimpedance gain, 0.8 quantum
efficiency, 10-MHz bandwidth, and a 17-V saturation level
sufficient to handle the maximum possible power per photo-
diode (5 mW). In order to maintain a high dynamic range,
custom-made crossover filters (COF) are used to separate
the ac and dc parts of each signal. Each ac signal, carrying
the phase-noise information, is amplified using an EG&G
5113 preamplifier (16 V/V, 300 Hz to 1 MHz), filtered by a

500-kHz antialiasing filter (Thorlabs EF506 low-pass elec-
trical filter), and finally digitized using a GaGe CSE8389
digitizer set in the voltage range that provides the best
dynamic range (±2 V for a noise level of approximately
2 × 10−12 V2/Hz below a 50-kHz resonance, and 5 ×
10−13 V2/Hz above it). For this setup, digitizer noise is
dominant over detector noise and preamplifier noise, but sig-
nificantly weaker than shot noise. Each dc signal, carrying the
information about the fringe position, is attenuated by 20 dB
in the COF to prevent damage to the digitizer. The four ac
signals and four dc signals are simultaneously sampled at a
rate of 10 MS/s for a total duration of 0.4 s.

B. Fiber samples

Two PM-SMFs (Fujikura SM15-PS-U25A, PANDA, here-
after referred to as SMFs) with nominal length L = 102 m and
mode-field radius a = 5.25 μm were used for this demonstra-
tion (other relevant properties are shown in Table I). Each fiber
was spooled in a single layer on the surface of an aluminum
cylinder of diameter 10.2 cm and height 7.6 cm. We did not
attempt to minimize the length of the couplers’ pigtails that
contribute to the path imbalance, which we measured to be
3 m in total (the relevant length for fundamental thermal
noise computation is 105 m while the length relevant for
laser noise conversion is 102 m). Similarly, two antiresonant
HCF samples (NANF) with nominal length L = 219 m and
mode-field radius a = 12.5 μm were used (Table II). These
fibers were fabricated using the same stack, fuse, and two-
stage draw process reported in [33]. They were drawn to a
core diameter of approximately 35 μm and average cladding
membrane thickness of 550 nm and their loss was measured
via cutback to be 1.3 dB/km at our operating wavelength.
Note that effective single-mode propagation can be assumed
for such a length of NANF [28,33]. One HCF sample was
spooled on an aluminum cylinder similar to those used for
the SMFs (diameter 12.6 cm, height 12.7 cm) and the other
HCF was loosely spun on a standard plastic shipping spool.
The total length of the SMF pigtails contributing to the path
imbalance was estimated to be 4.5 m in both cases. Additional
information about these HCFs, including details about the
HCF to SMF interconnections, can be found in [60].

C. Fiber length optimization

The total phase noise measured by an interferometer based
on a 90◦ hybrid output coupler, hereafter referred to as an
IQ interferometer (for “in-phase and quadrature”), which is
adjusted to introduce a negligible delay in one arm and a phase
delay τ = nL/c in the other arm, can be modeled as

θ (t, τ ) = ν(t ) ∗ g(t, τ ) + φ(t, τ ) + ε(t, τ ) + μ(t, τ ), (15)

where ν(t ) is the frequency noise of the laser illuminating
the interferometer, ∗ is the convolution operator, g(t, τ ) =
2π(t/τ − 1/2) is the impulse response describing the
conceptual filter that converts laser frequency into interfero-
metric phase, with  as the unit-width boxcar function [61],
φ(t, τ ) is the phase noise induced by fundamental thermal
noise as defined in Sec. II, ε(t, τ ) is the phase noise in-
duced by environmental noise (vibrations, temperature drift,
etc.), and μ(t, τ ) is the measurement noise contribution that
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20 kHz [see Eq. (15) and definitions in the paragraph that follows].
The laser noise curve (top) assumes S(1)

ν (20 kHz) = 0.8 Hz2/Hz and
shows a cutoff due to bandwidth reduction with increase in nL,
the fundamental thermal noise (mid) is based on Eq. (7) for an
antiresonant HCF at 1 atm internal pressure, and the measurement
noise curve (bottom) supposes that shot noise is dominant with
P0 = 10 mW, η = 0.8, and a fiber transmission loss of 1.3 dB/km.
Environmental noise (mid, shaded) is traced as a possible distribution
to illustrate the typical trend with increasing fiber length; in practice,
it can take vastly different values depending on the exact environ-
mental conditions and the interferometer’s environmental sensitivity.

is converted to phase. Figure 4 illustrates phase contribu-
tions that roughly replicate our experimental conditions at
20 kHz. When shot noise is dominant, the PSD of μ(t, τ ) is
white with level S(1)

μ ( f ) = 2hν0[1 + γ (τ )−1]/(ηP0), where h
is the Planck constant, ν0 = c/λ is the laser mean frequency,
γ (τ ) is the transmittance of the delay arm, η is the pho-
todetector’s quantum efficiency, and P0 is the optical power
measured at the input of the interferometer [62]. From the
Fourier transform of g(t, τ ), the phase-noise PSD associ-
ated to converted laser frequency noise can be expressed as
[2πτ sinc( f τ )]2S(1)

ν ( f ). The bandwidth of the laser noise con-
tribution therefore diminishes with increasing path imbalance
while its low-frequency gain increases. Furthermore, the PSD
of ε(t, τ ) is usually proportional to τ 2 since environmental
perturbations tend to affect the whole fiber in a coherent
fashion. Changing the phase delay τ , i.e., changing the path
imbalance or fiber length, therefore changes the PSD level of
the four independent noise signals.

From Eq. (15) and Fig. 4, two simple conclusions can be
drawn. First, a minimum fiber length is required to bring fun-
damental thermal noise above shot noise, and this minimum
length ultimately depends on the maximum power which can
be handled by the fiber components and photodetectors (and
also on the finesse if a resonator configuration is used [63]).
In Fig. 4, given the input power and thermal noise model,
this minimum length is nL ≈ 0.2 m at 20 kHz, but it would
increase to 0.9 m at 120 kHz and 6.5 m at 500 kHz. Second,
increasing the fiber length raises laser noise and environmen-
tal noise much faster than it does fundamental thermal noise;
longer unbalanced interferometers are therefore more difficult
to stabilize and require strong laser noise suppression, extreme

laser stability, or both. For this demonstration, we assembled
219-m HCF samples (nL) since we calculated that laser noise
suppression would be sufficient (given the frequency noise of
the laser we used) for such an optical length and since our goal
was to expose fundamental thermal noise at high frequencies
with a large dynamic range. However, and as detailed below,
we found out that environmental noise, which is much more
difficult to model before the fact, constitutes the limitation of
our measurements below approximately 20 kHz. To expose
fundamental thermal noise in this acoustic frequency range,
shorter interferometers would be preferable since they are
less sensitive to thermal drift and vibrations (which tend to
be much stronger at low frequencies), though this comes at
the expense of a reduced shot-noise-limited signal-to-noise
ratio and commensurate lower measurement bandwidth. Ulti-
mately, the fiber length that is optimal to expose fundamental
thermal noise depends on the exact experimental conditions,
in particular environmental fluctuations, and is necessarily
frequency dependent.

D. Signal processing

A series of precharacterizations of the setup were first
performed. Using an amplitude-modulated laser to directly
illuminate each of the eight photodiodes, the frequency re-
sponses Hd ( f ) were measured in order to guarantee adequate
bandwidth and common-mode rejection [Fig. 5(a)]. Similarly,
a synthesizer was connected at the input of the crossover filters
for the measurement of the frequency response Hf ( f ) in both
the ac and dc branches [Fig. 5(b)]. Finally, with the setup
configured as in Fig. 3, the laser was frequency modulated
with approximate peak-peak amplitude �ν = 1/(500 ns) =
2 MHz in order to trace a complete interferometric fringe
[Fig. 5(d)]. This allowed the extraction of the IQ parameters
of the optical 90◦ hybrids through an elliptic fit [62]. Fi-
nal measurements were taken with the frequency modulation
turned off, and the dc and ac signals [see an example in
Fig. 5(c)] were both digitally equalized to compensate the
appropriate frequency response, low-pass filtered at 500 kHz
(a frequency beyond which the frequency response inversion
is difficult because of the antialiasing filter rolloff), recom-
bined digitally, and then corrected for ellipticity. From the
fully corrected composite IQ signals, the total phase noise
θ (t ) could be extracted unambiguously, regardless of the
operating phase (fringe position) [64]. Similarly, synthetic
measurement noise signals could be constructed by instead
using ac noise signals acquired with the laser turned off. We
found that the complete precharacterization procedure only
had to be performed every hour to maintain adequate accu-
racy, mostly due to the slow drifts in polarization in the HCF
interferometers.

As suggested in Fig. 4, laser noise is largely dominant
in the output phase of each interferometer, even if a highly
stable laser is used. To suppress as much of this noise as
possible, the laser signal was phase modulated following a
triangle waveform so as to create a pilot signal (in this case
a square wave) in the output phase. This pilot signal was
then used to estimate the difference in phase delay between
both interferometers. From the complex ratio of the harmonics
found in each output spectrum, a correction function of the
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FIG. 5. Typical responses and signals. (a) Photodetector circuit
frequency responses (modulus). “PD+” and “PD−” stand for posi-
tive and negative photodiode channels, respectively, while “�” refers
to the modulus of the difference, an indicator of the common-mode
rejection level. (b) Crossover filter frequency response (modulus).
“A” stands for “attenuated” (dc part), “H” stands for “high pass”
(ac part). The dotted black line marks the transition frequency.
(c) Corrected and calibrated ac signals for both interferometers
(0.4-s duration). The larger excursions observed in HCF are due to a
stronger laser noise conversion (due to the larger path imbalance) and
stronger acoustic noise pickup. (d) IQ ellipses for the case illustrated
in Fig. 3. The dotted lines are the associated elliptical fits. Also
shown are the corrected and calibrated composite signals (no FM)
which are the complement to those shown in (c); no laser frequency
modulation (FM) is applied in these cases.

following form was computed:

Hc( f ) = 1 − e− j2π f τA

1 − e− j2π f τB
≈ τA

τB
e− jπ f (τA−τB ), (16)

where τA (τB) is the phase delay in interferometer A (B)
and the approximation is adequate for the conditions of in-
terest here. Constructing a corrected phase difference of the
form �θ ′(t ) = θA(t ) − θB(t ) ∗ hc(t ), where hc(t ) is the im-
pulse response associated to Hc( f ) and θA (θB) is the total
phase from interferometer A (B) [see Eq. (15)], instead of
�θ (t ) = θA(t ) − θB(t ) improves laser noise suppression; this
improvement is shown in Fig. 6(a) for the case of a SMF to
SMF comparison (interferometers A and B are made of SMF),
in which the delays are nearly identical (τA/τB ≈ 0.996), and
in Fig. 6(c) for the case of a SMF to HCF comparison, in
which the delays are more distinct (τA/τB ≈ 0.705). Obvi-
ously, such a correction scales all terms that contribute to
the phase measured in interferometer B [see Eq. (15)], in
particular the fundamental thermal noise that is of interest
here. However, recognizing that this noise is independent in
both interferometers and assuming that it is dominant over
environmental noise and measurement noise (which is the
criterion for the thermal noise measurement to be valid), it
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FIG. 6. Improved laser noise suppression using a periodic pi-
lot signal. In (a), the two overlapped curves (top) represent the
noise spectrum measured for each interferometer, with harmonics of
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PSD of the phase difference, without and with delay correction. A
slight improvement is visible at high frequencies. The modulus of the
correction function is shown in (b) along with the fit (dashed black).
The signal-to-noise ratio quickly decreases above 100 kHz and is
below 1 above 500 kHz (not displayed). (c), (d) Show an example of
the same correction for a SMF to HCF comparison. In this case the
pilot signal’s frequency is 1 kHz and the suppression improvement is
striking since the path imbalances are very different.

is straightforward to take this scaling into account during
analysis. Indeed, the PSD of the corrected phase difference
simply becomes

S(1)
�θ ′ ( f ) = S(1)

φA
( f ) + |Hc( f )|2S(1)

φB
( f )

≈ S(1)
φA

( f ) +
(

τA

τB

)2

S(1)
φB

( f ). (17)

The measurement noise scales in the same fashion since it is
also independent in both interferometers. It is worth stating
that this last equation is strictly valid only if the delay in each
reference arm is null. Because of pigtails, this is not true in
practice, but small corrections can be brought to Eq. (17) once
laser noise is canceled. From the corrected phase difference
�θ ′(t ), we finally computed phase power spectral densities
using Welch’s method with 80 nonoverlapping segments, a
Kaiser window (shape factor β = 10), and a zero-padding
factor of 4 to lightly smooth the display.

E. Results

We first compared the two SMF interferometers for verifi-
cation purposes. In Fig. 7, the thermoconductive noise model
[Eq. (17) with τA/τB ≈ 0.996 and the parameters found in
Table I] is superimposed on the measured phase difference
PSD, showing good agreement between 20 and 200 kHz.
Above 200 kHz, the PSD approaches the measurement noise
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FIG. 7. Difference phase PSD at λ = 1539.8 nm and T = 20 ◦C,
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(MN) floor and then quickly drops off due to the digital low-
pass filter. The small hump around 400 kHz is attributed to
nonlinear conversion of laser relative intensity noise. At the
lowest displayed frequencies, the measurement is limited by
building vibration noise, which we confirmed by installing
both SMF interferometers on vibration isolation platforms
(Minus K, 25BM-10); deactivating the platforms led to a sig-
nificant increase in the measured phase noise below 3 kHz (the
curve shown here is with the platforms activated). Between
3 and 20 kHz, the measured noise is larger than the model
by 1 to 2 dB. While it could be tempting to attribute this
offset to inadequate modeling of the thermal boundary condi-
tions, the impact of the cladding boundary manifests at lower
frequencies in SMF and it tends to decrease the noise level,
not increase it [16]. Our hypothesis is that this is again due
to vibrations, though of acoustic instead of structural origin.
Finally, the measurement noise, shown in orange in Fig. 7,
appears dominated by the sum of the two shot-noise con-
tributions (P0,A = 8.9 mW and P0,B = 9.5 mW), in particular
above the 50-kHz noise resonance where the digitizer noise
level drops abruptly. This agrees with our measurement noise
model.

We then compared the two hollow-core fibers using the
same setup (Fig. 8). In this case, we found a much higher
vibration contribution below 20 kHz; this is not surprising
given the higher intrinsic acoustic sensitivity of HCFs [65] in
addition to the fact that we did not shield the HCF interferom-
eters as much as the SMF interferometers in order to facilitate
polarization tuning. Between 20 and 200 kHz, we measured
a phase PSD that sits within 2 dB of our adapted thermocon-
ductive noise model (Table II), with a spectral shape clearly
distinct from that in SMF. However, we found that we could
significantly improve the match between measurement and
model, in both shape and level, by assuming the internal
pressure of both HCFs to be 0.7 atm instead of 1.0 atm. Al-
though it is difficult to corroborate such an observation, recent
investigations have shown that the pressure inside a HCF right
after fabrication is significantly below 1 atm [66]. Depending
on the time a hollow-core fiber is left open to the atmosphere
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FIG. 8. Difference phase PSD, HCF to HCF comparison (before
evacuation).

before being sealed, and depending on its total length [48,67],
it is possible for the internal pressure to settle to a fraction of
atmospheric pressure. While we do not know how long our
HCF samples were left unsealed postfabrication, both were
cut from adjacent sections of the drawn fiber. Furthermore,
we followed the same procedure to build the HCF to SMF
interconnections, only breaking the seal at the moment of
splicing. It therefore appears reasonable for both samples to
display a similar internal pressure of approximately 0.7 atm.

To validate this first thermoconductive noise measurement
in HCF, we also compared each of the HCF to the same
SMF, in this case applying a strong subtraction correction to
better suppress laser noise (Fig. 9). In both cases, we found a
good agreement between measurement and model, once again
assuming an internal pressure of 0.7 atm for each HCF. The
three independent measurements of HCF noise are therefore
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evacuation). In both cases, the HCF contribution (interferometer B)
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this scaling into account. The “sum” curve represents the total noise
model: SMF, HCF, and measurement noise (not shown). The vibra-
tion contribution (< 20 kHz) was particularly weak for “SMF vs
HCF #2,” perhaps because of favorable laboratory conditions at the
moment this specific measurement was taken.
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broadly consistent with one another. Obviously, we cannot
rule out the possibility that the internal pressure is actually
1 atm and that the noise model is inaccurate. However, tuning
only the mode-field radius or thermo-optic coefficient (for
example) does not improve the match as well as simply re-
ducing the internal pressure, which we take as an argument to
favor the latter explanation. Moreover, the HCF samples were
given several weeks to attain thermal equilibrium with the
laboratory environment, and laser power absorbed within the
core cannot significantly increase the gas temperature under
our experimental conditions [55]; the large temperature error
(larger than 60 ◦C) which would be required to explain the
observed discrepancy in Fig. 8 is therefore unrealistic.

We then set out to verify the central assumption of the
adapted thermoconductive noise model, which is that the
noise is driven by the thermo-optic contribution from the gas
inside the core. Following a procedure presented in [68], we
unsealed the first HCF and inserted the fiber end into a vacuum
chamber so as to lower the internal gas pressure, heating
the whole 219-m fiber to 70 ◦C to accelerate the evacuation
process. After two weeks, we re-spliced the connector (thus
sealing the fiber) and let the fiber cool down to room temper-
ature. During the splicing operation, the HCF was left open
to the atmosphere for approximately 15 min, allowing some
ingress of atmospheric air. The phase noise of this partially
evacuated fiber, interferometrically compared to a SMF fiber,
is shown in Fig. 10 (SMF vs HCF #1). Although there is
a lot of contamination by high-frequency tones in this spe-
cific case (these are also visible in the measurement noise
PSD, which is not shown, suggesting that these are not due
to the fiber samples themselves; these high-frequency tones
appear in an intermittent fashion and are thought to couple
through some of the preamplifiers), it is still clear that SMF
thermal noise dominates the total phase noise between 20
and 100 kHz. Moreover, a reasonable match between mea-
surement and model is attained by assuming that the HCF’s
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fore and after evacuation). The “sum” curve represents the total noise
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internal pressure is 0.30 atm (solid “sum” curve). We then
repeated the procedure for the second HCF sample, leaving
the open fiber end in the vacuum chamber for 6 weeks. This
time, we significantly improved the splicing procedure and
managed to seal the fiber within 4 min. This fiber’s noise PSD,
still compared to that of the reference SMF, is also shown in
Fig. 10 (SMF vs HCF No. 2); its level is slightly below that of
the first HCF and reasonably matches the thermal noise model
if we assume p = 0.15 atm (dashed “sum” curve). Finally,
we compared the HCFs to one another in order to remove
the dominant SMF contribution (Fig. 11). Clearly, venting the
HCFs lowered the phase noise PSD and slightly modified its
spectral shape, as predicted by the model. Moreover, the total
PSD is well represented by the two pressures guessed from the
comparisons to SMF in Fig. 10. From numerical simulations
(Fig. 12), these two internal pressures (0.30 and 0.15 atm)
appear physically reasonable given the evacuation time and
the time it took to seal the fibers once their ends were exposed
to the atmosphere.

Figure 13 constitutes a summary of the most important
experimental results of this paper, displaying phase PSDs that
are normalized to the total optical length. Even though it has
a larger mode area, the HCF is noisier per unit optical length
than a typical SMF, at least above approximately 10 kHz and
when the internal pressure is close to atmospheric. Reducing
the internal pressure reduces the noise as predicted by our
model, yielding a normalized phase noise level below that
of SMF between 20 and 75 kHz [assuming a pressure that
is the average between that of the two evacuated samples,
(0.30+0.15)/2 ≈ 0.23 atm]. To the best of our knowledge, the
normalized phase noise in this spectral range is the lowest ever
measured in a fiber. Our model predicts that this improvement
with respect to SMF should extend to lower frequencies, but
our measurements are contaminated by environmental fluctua-
tions in this spectral range, preventing a definitive conclusion.
Finally, if we were able to isolate only the contribution from
the better-evacuated HCF, for which we infer an internal
pressure of 0.15 atm, we would expect to see that the HCF
is significantly quieter than a typical SMF below 100 kHz
(lowermost curve at low frequencies).
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Venting is performed at 70 ◦C in a fiber with an initial pressure that
is spatially uniform at a level of 0.7 atm. Filling is performed at
20 ◦C and assumes a perfectly evacuated fiber is suddenly exposed
to atmospheric pressure at one open end. The displayed pressure
is the spatial average over the fiber length (steady-state distribution
after sealing) and the capillary diameter is assumed to be equal to the
HCF’s core diameter, d ≈ 35 μm. This model only provides a rough
estimate of the relevant timescales since the initial filling pressure
is not properly considered, since the diffusion equation becomes in-
accurate as the slip-flow regime is approached below 0.2 atm (slows
down processes), since the gas should be assumed to be compressible
(speeds up processes), and since the core is not cylindrical like
assumed here (slows down processes) [69].

IV. DISCUSSION

To our knowledge, measurement of fundamental thermal
noise in a HCF has only been previously reported by Cranch
et al. [32]. The authors built a balanced Mach-Zehnder inter-
ferometer with hollow-core photonic band-gap fibers (PBGF):
a 10-m sample of HC1550 (NKT, a = 4.5 μm) in one arm
and a 10-m sample of HC19 (NKT, a = 6.5 μm) in the other
arm. In contrast to the approach used here, they held the
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FIG. 13. Optical-length-normalized phase PSD. Summary of the
main experimental results.

FIG. 14. Phase PSD at λ = 1550 nm for nL = 20 m. The solid
blue curve is the thermoconductive noise model for a standard SMF
with a = 5.25 μm. The HCF noise measured by Cranch et al. for
nL = 2 × 10 m is shown in dashed-dotted orange; it is a few dBs
below their reference curve, calculated with nL = 29 m and a =
2.61 μm, in the 20 to 60 kHz range (not shown), but a few dBs
above the noise of a typical SMF of equal optical length (solid
blue). The dashed yellow, purple, green, and teal curves represent the
thermoconductive noise model for our large-mode-area HCF sample,
normalized to the same 20-m optical length, at 1.00, 0.70, 0.23, and
0.15 atm, respectively.

interferometer at the quadrature point to measure the phase
fluctuations. Although the measured noise spectrum in the
100 Hz to 100 kHz range changed over time, a phenomenon
attributed to multipath interference due to higher-order mode
propagation, the minimum noise level in the 20 to 60 kHz
range was shown to be approximately 2 dB lower than the
thermoconductive phase noise of a reference SMF with the
same physical length L (and thus larger optical length nL), but
only a few dBs above the detector noise. As stated in [32],
the parameters of the reference SMF are described by Bar-
tolo et al. [46]. While the minimum HCF noise measured by
Cranch et al. is lower than the thermal noise of their reference
SMF, the difference narrows to 0.4 dB when the phase PSD is
normalized by the optical length [2–10 log10(1.45) = 0.4 dB],
which we consider to be the fairest basis of comparison
as explained in Sec. II. Moreover, their reference SMF has
an anomalously small mode-field radius a = 2.61 μm (e−2),
much below the mode-field radius of their two HCF samples
or that of a standard SMF used in the telecommunications
field. The noise they measured, as far as we can tell, is thus 3
to 5 dB above that of a standard SMF (a = 5.25 μm) of equal
optical length and is comparable to the noise we measured
in a large-mode-area HCF at an internal pressure of 0.7 atm
(Fig. 14). Although the PSD they measured is lower than that
predicted by the model we developed here (when accounting
for the mode-field radii), it is likely also limited by the atmo-
spheric air inside the HCF since there is no evidence that the
HCFs were evacuated. The discrepancy between our model
and their measurements could be explained by the observed
multipath interference: higher-order modes should sample ap-
parent temperature fluctuations that are similar to those seen
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FIG. 15. Modeled optical-length-normalized phase PSD at λ =
1539.8 nm. Comparison between SMF and HCF filled with different
species (nitrogen, N2; neon, Ne; helium, He) at a pressure of 1 atm.
A mode field radius a = 5.25 μm is considered for the SMF and
a = 12.5 μm for the HCFs. The curve for helium can be considered
to constitute a noise ceiling since this molecule would normally out
diffuse of the hollow core over time, leaving a vacuum.

by the fundamental mode. Heuristically, it is therefore pos-
sible for the minimum noise to be smaller than that which
would be found in the fundamental mode only (because of
interference), preventing an adequate estimate of fundamental
thermal noise. In any case, it is clear that the newer generation
HCF used here does not display such multipath interference
and, when held at an internal pressure of 0.23 atm, displays
fundamental thermal noise that is up to 5.4 dB weaker than
that of a typical SMF in the 20 to 60 kHz range. This is due
in part to the mode with a large area in the HCF we used, but
this remains true up to 40 kHz even if we force identical mode
areas in SMF and HCF (3.3 dB instead of 5.4 dB weaker noise
at 20 kHz).

Until now, it has been assumed that the hollow-core fiber
is filled with nitrogen since it very well approximates the
thermal and optical behavior of air while being much simpler
to model. Yet, it is possible to fill a HCF with other gases than
air, and the equations presented in Sec. II B show how this can
yield a phase-noise reduction even if the core pressure is main-
tained at 1 atm. From Eq. (12), the thermo-optic coefficient is
directly proportional to the polarizability α; in general, lighter
molecules should thus produce smaller phase noise for a given
pressure and temperature. Optimizing the thermal properties
is somewhat more difficult since an assumption must be made
about the frequency range of operation. Let us suppose once
again that we are interested in frequencies below the cutoff
so that Q( f ) ∝ cv/kt [Eq. (14)]. From Eq. (13), we can then
identify kt/α

2 as a useful figure of merit for gases. This
figure of merit appears to be maximized in helium [53,59], a
molecule small enough to diffuse through the silica cladding
and out of the hollow core over a reasonable time frame [70];
this constitutes a positive side effect since phase noise is also
proportional to pressure. In theory, neon gas is also associated
to a lower noise PSD than nitrogen (Fig. 15), while argon
is only slightly better (not illustrated). Hence, filling a HCF

with gaseous He or Ne appears as a promising approach to
minimize phase noise and improve the fundamental length
stability. Nevertheless, such predictions have to be verified
experimentally since the simplifying assumptions made here
may break down and since other forms of noise may become
dominant as thermoconductive noise is lowered below the
10−17 (rad2/Hz)/m mark, the lowest measured value here
(see Fig. 13).

V. CONCLUSION

In summary, we measured fundamental thermal noise in
the latest generation of antiresonant hollow-core fibers using
219-m samples and high-throughput photodetectors to min-
imize shot noise and attain an adequate dynamic range. We
found that the spectrum of this noise is distinct in both shape
and level from that measured in standard solid-core silica
fibers (SMF). Moreover, it is well explained by an adapted
thermoconductive noise model, which only considers the ther-
mal and thermo-optic properties of the gas trapped within the
hollow core, in the 20 to 200 kHz frequency range and 0.1 to
1 atm pressure range. For equal mode-field areas and optical
lengths, we showed that an antiresonant HCF at atmospheric
pressure displays significantly larger thermoconductive phase
noise than a SMF, at least at frequencies above 1 kHz. Yet,
the model we developed also indicates that this noise can be
lowered by filling the core with low-polarizability gas such as
neon or helium or by simply evacuating the core, a prediction
supported by the experiments we performed over partially
vented HCF samples. At an internal pressure approaching
0.2 atm and around 30 kHz, our measurements reveal the
lowest phase noise PSD per unit optical length ever measured
in a fiber, 1.3 × 10−17 (rad2/Hz)/m.

These results should help refine the estimation of the fun-
damental noise floor in instruments already based on HCF,
for example, photothermal interferometers, but also in those
instruments which can benefit from an SMF-to-HCF switch
such as fiber-optic gyroscopes, optical fiber links, optoelec-
tronic oscillators, and fiber interferometers used for laser
frequency stabilization. In all related applications, a large-
mode-area NANF at a subatmospheric internal pressure may
surpass standard SMF in terms of fundamental optical length
stability. Although a more elaborate noise model and better
low-frequency measurements are required to quantify the ex-
tent of the potential improvement, an order of magnitude gain
already appears within reach in the 10 to 100 kHz range.
This high-stability potential comes in addition to other desir-
able properties of NANF such as high purity of polarization
[71], low nonlinearity [72], weak backscattering [60], and low
thermal sensitivity [44] (which can all benefit from core evac-
uation) in antiresonant HCFs displaying a transmission loss
competitive with SMF at 1550 nm [33] and lower than SMF
below 1100 nm [73]. Kilometer-scale antiresonant hollow-
core fibers, properly shielded from environmental fluctuations
and illuminated by high laser power, can therefore be consid-
ered for the most demanding interferometric applications.

The data for this work are accessible through the University
of Southampton Institutional Research Repository [74].
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