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Motion-selective coherent population trapping for subrecoil cooling of optically trapped atoms
outside the Lamb-Dicke regime
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We propose a scheme that combines velocity-selective coherent population trapping (CPT) and Raman
sideband cooling (RSC) for subrecoil cooling of optically trapped atoms outside the Lamb-Dicke regime. This
scheme is based on an inverted Y configuration in an alkali-metal atom. It consists of a � formed by two
Raman transitions between the ground hyperfine levels and the D transition, allowing RSC along two paths
and formation of a CPT dark state. Using the state-dependent difference in vibration frequency of the atom in
a circularly polarized trap, we can tune the � to make only the motional ground state a CPT dark state. We
call this scheme motion-selective coherent population trapping (MSCPT). We write the master equations for
RSC and MSCPT and solve them numerically for a 87Rb atom in a one-dimensional optical lattice when the
Lamb-Dicke parameter is 1. Although MSCPT reaches the steady state slowly compared with RSC, the former
consistently produces colder atoms than the latter. The numerical results also show that subrecoil cooling by
MSCPT outside the Lamb-Dicke regime is possible under a favorable, yet experimentally feasible, condition.
We explain this performance quantitatively by calculating the relative darkness of each motional state. Finally,
we discuss the application of the MSCPT scheme to an optically trapped diatomic polar molecule whose Stark
shift and vibration frequency exhibit large variations depending on the rotational quantum number.
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I. INTRODUCTION

Recoil by emission of final photons is the last hurdle in
laser cooling atoms to a standstill. Besides evaporative cool-
ing, which entirely avoids laser lights, two schemes have been
developed to overcome the hurdle: Raman sideband cooling
(RSC) [1] for trapped atoms and velocity-selective coherent
population trapping (VSCPT) [2] for free atoms. Both meth-
ods achieve subrecoil cooling by using an arrangement that
makes the motional ground state dark owing to either energy
conservation or quantum interference, respectively. Although
they are efficient tools, they are applicable in rather limited
cases. Raman sideband cooling, which was originally devel-
oped for ions in a tight trap, can achieve subrecoil cooling
only when the vibrational energy spacing h̄ν of a trap is
much larger than the recoil energy ER or equivalently when
the Lamb-Dicke parameter ηLD, defined by η2

LD = ER/h̄ν, is
much less than 1. For optically trapped neutral atoms, the
condition is not satisfied unless a lattice configuration with
submicron confinement is employed [3,4] Subrecoil cooling
by VSCPT has been demonstrated only for metastable He
atoms with zero nuclear spin. Efforts to apply the scheme to
alkali-metal atoms, such as gray molasses [5], have achieved
only sub-Doppler cooling, and VSCPT is not applicable to
trapped atoms.

In this paper we propose a cooling method that combines
VSCPT and RSC so that they complement each other to
overcome the limits they have when applied separately. Using
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the method, we aim to achieve subrecoil cooling of alkali-
metal atoms in an optical trap even when the Lamb-Dicke
condition is not satisfied. If we approach the aim starting
from VSCPT, there are three main issues. (i) Owing to the
hyperfine structure, any � configuration formed by a pair of
D transitions of an alkali-metal atom has a leakage path out
of it, complicating the arrangement for coherent population
trapping (CPT) in a steady state. (ii) There is no velocity
selection for bound-state atoms and we need a scheme that
selects the motional ground state as a CPT dark state. (iii)
By itself, VSCPT is only a diffusive process [6] and an extra
cooling mechanism is needed, especially in two and three
dimensions. (i) For the leakage problem, we have proposed
an inverted Y configuration [7] consisting of a � formed by
two ground hyperfine transitions from the states |φ1〉 and |φ2〉
to the apex state |φ3〉 that is coupled to the excited state |φ4〉
by the D transition (Fig. 1). Using 7Li in an optical trap, we
have demonstrated that the CPT phenomena of the inverted Y
in a wide range of experimental parameters could be precisely
described by a leak-free � system. (ii) For the motional se-
lectivity, we use a circularly polarized trap beam. The vector
polarizability β causes |φ1〉 and |φ2〉 to have different well
depths and hence different vibration frequencies ν1 and ν2,
respectively, as shown in Fig. 2. Thus, two-photon detuning
between the motional states |φ1, χ1(n)〉 and |φ2, χ2(n)〉 de-
pends on the vibrational quantum number n, and we can tune
the � fields so that only the n = 0 pair forms a CPT dark
state. We call this scheme motion-selective coherent popula-
tion trapping (MSCPT). (iii) For the cooling, we propose to
replace two radio-frequency (rf) fields used in our previous
work [7] with two pairs of Raman beams, each of which is
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FIG. 1. (a) Raman transitions �p and �q and the D1 transition
�c in 87Rb for the cooling scheme of motion-selective coherent
population trapping. (b) Inverted Y configuration for more intuitive
visualization of the MSCPT scheme.

red detuned for the sideband cooling. From the viewpoint of
RSC, by adding the |φ2〉 → |φ3〉 transition to a usual one of
|φ1〉 → |φ3〉, we have a � configuration with the possibility of
forming a CPT state. The difference between ν1 and ν2 allows
us to select the pair of n = 0 states for CPT, providing them
extra protection from the recoil heating. Another advantage is
that there is no need for repumping atoms fallen to the |φ2〉
state, which reduces the average recoil heating for an optical
pumping cycle in MSCPT.

There are two critical parameters for the success of the
MSCPT cooling scheme: the difference 	ν12 = ν1 − ν2 that
introduces the motional selectivity and the coherence decay
rate γ12 that destroys it. Because 	ν12 is proportional to β,
heavy alkali-metal atoms with large spin-orbit coupling are
favored. For a 87Rb atom in an optical trap at a wavelength
of 980 nm, 	ν12 is 2π × 25 Hz when ηLD = 1, whereas the
full width at half maximum (FWHM) of the CPT resonance

FIG. 2. Inverted Y configuration for an atom in an optical trap.
The p and q transitions are red detuned for sideband cooling, and
difference between the vibration frequencies ν1 and ν2 is responsible
for motional selectivity. The difference is exaggerated. Here h̄ω1

and h̄ω2 are the ground-state energies of a trapped atom in the |φ1〉
and |φ2〉 states, respectively. The inset shows an arrangement of
three laser beams �Ep, �Eq, and �Ey for p and q transitions. Here the
momentum transfers h̄	�kp and h̄	�kq to an atom by the two Raman
transitions are the same.

in the inverted Y was 150 Hz in the rf experiment. Sources
that contribute to γ12 are fluctuations in magnetic field and
a phase noise between the pair of Raman beams. In Ref. [7]
we reduced γ12 to 1.5 s−1, which corresponds to a FWHM
of 0.25 Hz in rf spectroscopy, by shielding the ambient field
and controlling the current noise. The γ12 originating from the
Raman phase noise can be easily reduce below 1 s−1 using
modulation and phase-locking techniques. Nevertheless, this
implies that cooling by MSCPT requires precautions normally
reserved for precision spectroscopy. When the atomic density
is high, collisions can dephase a CPT state [8], and the D
beam, which couples |φ3〉 to |φ4〉, may mediate photoasso-
ciation and subsequent heating and loss of the atoms. In this
regard, MSCPT is best suited for cooling single atoms in an
optical lattice or a tweezer. In addition, cooling by MSCPT is
slower than that by RSC because even a pair with nonzero n
can form a partially dark superposition state, hampering the
sideband cooling. Some high-n states may also form parasitic
CPT dark states.

In spite of these difficulties, we recently demonstrated the
effectiveness of the MSCPT scheme in an experiment using
87Rb atoms in a one-dimensional (1D) optical lattice [9].
We observed CPT phenomena driven by a pair of stimulated
Raman transitions and, by employing the MSCPT scheme,
achieved lower temperature than that obtained by RSC. Fi-
nally, we envision using MSCPT to cool optically trapped
polar molecules [10], whose Stark shift exhibits a strong de-
pendence on the rotational quantum number. However, for this
application, finding an appropriate configuration for robust
CPT is a prerequisite.

In the following sections we describe the MSCPT scheme
in more detail and present the master equations and the results
of the numerical simulations. Using RSC as a benchmark, we
evaluate the performance of MSCPT in terms of the steady-
state distribution of atoms over n and the dynamics toward it.

II. MOTION-SELECTIVE COHERENT POPULATION
TRAPPING

The backbone of the MSCPT scheme is the arrowlike
configuration shown in Fig. 1(a), where we use 87Rb as
an example. In Fig. 1(b) it is transformed to an inverted
Y configuration for more intuitive visualization. It consists
of a � formed by the ground hyperfine transitions |φ1〉 =
|5S1/2, F = 2, mF = −2〉 → |φ3〉 = |F = 1, mF = −1〉 and
|φ2〉 = |F = 2, mF = −1〉 → |φ3〉, which we will call p and
q transitions, respectively, and the D1 coupling from the apex
state |φ3〉 to the excited state, |φ4〉 = |5P1/2, F = 2, mF =
−2〉. Here F is the total angular momentum and mF is its z
component. The D1 coupling opens a path for |φ3〉 to decay to
a CPT dark state via |φ4〉. Angular momentum conservation
dictates that |φ4〉 decays only to one of the three states in the
�, and the inverted Y is closed. The D1 is favored over the D2

coupling owing to the simple hyperfine structure of the 5P1/2

state. An equivalent inverted Y configuration can be identified
in all alkali-metal atoms. The master equations for the inverted
Y [11] can be reduced to those for an effective � system by
adiabatically eliminating |φ4〉 owing to its short lifetime [7].
Unlike a typical � formed by two D couplings, this effective
� allows us to choose the decay rate R of the |φ3〉 state by
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adjusting the D1 coupling strength as

R = 1

2

|�c|2/2

	2
c + 2/4

, (1)

where  is the decay rate of |φ4〉 and �c and 	c are the Rabi
frequency and the detuning of the D1 coupling, respectively.

Considering a 87Rb atom in an optical trap of a circularly
polarized Gaussian beam with peak intensity I0, the trap depth
for the |5S1/2, F, mF 〉 state is [12]

U0(F, mF ) = (α + βgF mF )2μ0cI0, (2)

where α and β are the scalar and vector polarizabilities, re-
spectively, and gF is the Landé g factor. The fractional change
in the vibration frequency of the |F, mF 〉 state with respect to
ν0 of the mF = 0 state is (β/2α)gF mF . If the Raman fields,
denoted by �p and �q in Fig. 2, are tuned to the � transition
between the pair of motional ground states, the |φ1, χ1(n)〉 and
|φ2, χ2(n)〉 states have a two-photon detuning n	ν12, making
their CPT-like superposition state progressively brighter as n
increases. Here

	ν12 = β

4α
ν0 (3)

for the configuration in Fig. 1(a).
In MSCPT, each of the |φ1, χ1(n1)〉 and |φ2, χ2(n2)〉 states

can make stimulated Raman transitions to |φ3, χ3(n3)〉 for
a range of n3. The Rabi frequency for the p transition
|φ1, χ1(n1)〉 → |φ3, χ3(n3)〉 is

�p(n3, n1) = �0
pF31(n3, n1), (4)

where �0
p is the Rabi frequency for a free atom and the

Franck-Condon factor is defined by

F31(n3, n1) = 〈χ3(n3)|ei	�kp·�r |χ1(n1)〉. (5)

Here h̄	�kp is the linear momentum transfer by the
pair of Raman beams for the p transition and �r is
the center-of-mass coordinate of the atom. Similarly, for
the q transition |φ2, χ2(n2)〉 → |φ3, χ3(n3)〉, �q(n3, n2) =
�0

qF32(n3, n2), where h̄	�kq is the momentum transfer. For
the pair {|φ1, χ1(n)〉, |φ2, χ2(n)〉} to form a CPT dark state,
the transition amplitudes for all allowed p and q transitions to
the two respective groups of |φ3, χ3(n3)〉 should interfere de-
structively. This is possible if 	�kp = 	�kq so that F31(n3, n) =
F32(n3, n) and the pair of states share the target group. The
inset in Fig. 2 shows one arrangement of laser beams for the
Raman transitions in Fig. 1(a) that satisfy 	�kp = 	�kq. Specif-
ically, the p transition is driven by �Ey = Eyx̂ cos(kyy − ωyt )
and �Ep = Epẑ cos(kpx − ωpt ) with 	�kp = �kp − �ky and the q
transition by �Ey and �Eq = Eqŷ cos(kqx − ωqt ) with 	�kq =
�kq − �ky. Here 	�kp = 	�kq to a very good approximation with
a discrepancy originating from the Zeeman shift of less than
1 MHz between |φ1〉 and |φ2〉. Because |χ1(n)〉 and |χ2(n)〉
are different, F31(n3, n) and F32(n3, n) are not identical, and
this may complicate the CPT formation as well. However,
this discrepancy affects, to first order, only the amplitudes of
|φ1, χ1(n)〉 and |φ2, χ2(n)〉 in a dark superposition state, and
the simulations show that the effects are insignificant for the
experimentally feasible range of 	ν12/ν0.

III. MASTER EQUATIONS

Although the 2D configuration in the inset of Fig. 2 is a
natural realization of the MSCPT scheme, we limit our discus-
sion to the master equations and their numerical solutions in
one dimension. Extending the formalism to two dimensions is
burdensome but straightforward. However, with our comput-
ing resources, numerical simulations are feasible only in one
dimension when states with a sufficiently large n are included.
We also focus on single atoms and ignore collisions between
them.

A. Raman sideband cooling in one dimension

For 1D RSC, we consider a system consisting of only
the states |φ1, χ1(n1)〉, |φ3, χ3(n3)〉, and |φ4〉 in Fig. 2. The
Hamiltonian for this system is

HRSC = H0 + Wp + V, (6)

where H0 is for a trapped atom, Wp for the p transition, and
V for dissipative processes. Although the difference between
ν1 and ν3 is irrelevant in RSC, we distinguish |χ1〉 and |χ3〉
to ensure a formalism consistent with that of MSCPT. The
master equation for the density matrix ρ is

ih̄
dρ

dt
= [H0 + Wp, ρ] +

(
∂ρ

∂t

)
, (7)

where the second term represents the dissipative processes.
Explicitly,

H0 =
∑
j=1,3

∑
n′′

j

(h̄ω j + h̄ν jn
′′
j )|φ j, χ j (n

′′
j )〉〈φ j, χ j (n

′′
j )|,

(8a)

Wp = h̄�0
p

2
e−iω′

pt
∑
n′′

1 ,n′′
3

F31(n′′
3, n′′

1 )|φ3, χ3(n′′
3 )〉〈φ1, χ1(n′′

1 )|

+ H.c., (8b)

where h̄ω j is the energy of the lowest vibrational
state |φ j, χ j (0)〉 and ω′

p = ωy − ωp. In the 1D formal-

ism, 	�kp = kpx̂ is substituted in Eq. (5); F31(n3, n1) =
〈χ3(n3)|eikpx|χ1(n1)〉. The master equations, which include
the decay of the |φ3〉 state at the rate R in Eq. (1), can be
expressed in terms of η j j (n j, n′

j ) = ρ j j (n j, n′
j ) for j = 1, 3

and η13(n1, n3) = ρ13(n1, n3)e−iω′
pt as

η̇11(n1, n′
1) = i

�0
p

2

∑
n′′

3

{η13(n1, n′′
3 )F31(n′′

3, n′
1)

−F∗
13(n1, n′′

3 )η31(n′′
3, n′

1)}
+ i(n′

1 − n1)ν1η11(n1, n′
1) + δn1,n′

1
p1R

×
∑

n′′
3

|F13(n1, n′′
3 )|2η33(n′′

3, n′′
3 ), (9a)

η̇33(n3, n′
3) = i

�0
p

2

∑
n′′

1

{η31(n3, n′′
1 )F∗

13(n′′
1, n′

3)

−F31(n3, n′′
1 )η13(n′′

1, n′
3)}
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+{i(n′
3 − n3)ν3 − R}η33(n3, n′

3) + δn3,n′
3
p3R

×
∑

n′′
3

|F33(n3, n′′
3 )|2η33(n′′

3, n′′
3 ), (9b)

η̇13(n1, n3) = i
�0

p

2

{∑
n′′

1

η11(n1, n′′
1 )F∗

13(n′′
1, n3)

−
∑

n′′
3

F∗
13(n1, n′′

3 )η33(n′′
3, n3)

}

+
(

i[(n3 + 	n)ν3 − n1ν1] − R

2

)
× η13(n1, n3), (9c)

and η̇31(n3, n1) = η̇∗
13(n1, n3). We use the rotating-wave ap-

proximation. Here 	n, which is defined as ω′
p − (ω3 − ω1) =

−	nν3, represents the order of the red sideband. The last
terms in Eqs. (9a) and (9b) describe the decay of |φ3, χ3(n′′

3 )〉
to |φ1, χ1(n1)〉 and |φ3, χ3(n3)〉 with branching ratios p1 and
p3, respectively, as a process of emitting a photon with a
momentum h̄kp. The F factors satisfy the relation [13]

∞∑
n′′

i =0

Ei(n
′′
i )|Fi j (n

′′
i , n j )|2 − Ej (n j ) = ER, (10)

and the recoil heating by ER = h̄2k2
p/2m, where m is the

atomic mass, accompanying the decay is built into the master
equations. Here Ej (n j ) = h̄ν j (n j + 1

2 ), j = 1, 3, is the mo-
tional energy of the |χ j (n j )〉 state. However, the real process
is an excitation to |φ4〉 by an absorption and a subsequent
decay by a spontaneous emission. When averaged over the
angular distribution of the emission, the total heating is 2ER.
In numerical simulations, we take this into account by using
the branching ratios p′

1 = p1/2 and p′
3 = 1 − p1/2 to double

the number of emissions required to optically pump an atom
from |φ3〉 to |φ1〉.

In an experiment, parametric heating from trap noise and
depumping of the |φ1〉 state by an imperfect optical pumping
are common problems. The transition rate from the motional
state |χ (n)〉 to |χ (n ± 2)〉 driven by the intensity noise of a
trap beam is approximated as

Q±(n) = πν2

16
S(2ν)(n + 1 ± 1)(n ± 1), (11)

where S(2ν) is the power spectral density of the fractional
intensity noise at twice the vibration frequency [14]. Its effect
on the master equations can be included by adding η̇

Q
j j (n, n)

and η̇
Q
i j (ni, n j ) to η̇ j j (n, n) and η̇i j (ni, n j ), respectively,

η̇
Q
j j (n, n) = −Q(n)Pj (n) + Q+(n − 2)Pj (n − 2)

+ Q−(n + 2)Pj (n + 2), (12a)

η̇
Q
i j (ni, n j ) = − 1

2 {Q(ni ) + Q(n j )}ηi j (ni, n j ), (12b)

where Pj (n) = η j j (n, n) and Q(n) = Q+(n) + Q−(n). Simi-
larly, the effect of an unintended transition of the |φ1〉 state to

an excited state |φe〉 can be included by adding η̇D
j j (n, n) and

η̇D
i j (ni, n j ) to η̇ j j (n, n) and η̇i j (ni, n j ), respectively,

η̇D
j j (n, n) = −DPj (n)δ j1 + p jD

∑
n′′

1

|F j1(n j, n′′
1 )|2P1(n′′

1 ),

(13a)

η̇D
i j (ni, n j ) = − 1

2 D(δi1 + δ j1)ηi j (ni, n j ), (13b)

where D is the effective decay rate of the |φ1〉 state, and we
assume that |φe〉 has the same branching ratios p1 and p3 as
|φ4〉.

B. Motion-selective coherent population trapping in one
dimension

For 1D MSCPT in Fig. 2, HMSCPT = HRSC + Wq and H0 for
a trapped atom in Eq. (8a) is augmented by

∞∑
n′′

2=0

(h̄ω2 + h̄ν2n′′
2 )|φ2, χ2(n′′

2 )〉〈φ2, χ2(n′′
2 )|. (14)

For the q transition Wq is

Wq = h̄�0
q

2
e−iω′

qt
∑
n′′

2 ,n′′
3

F32(n′′
3, n′′

2 )|φ3, χ3(n′′
3 )〉〈φ2, χ2(n′′

2 )|

+ H.c., (15)

where ω′
q = ωy − ωq. The angular momentum selection rule

and the condition |ω1 − ω2| 	 R forbid the p Raman fields
from driving the q transition and vice versa. The master equa-
tions for 1D MSCPT are listed in Appendix A. Below we
write the equation for η̇12(n1, n2) only because it includes the
critical terms that describe the motional selectivity and the
decay of the CPT coherence:

η̇12(n1, n2) = i

2

∑
n′′

3

{
�0

qη13(n1, n′′
3 )F32(n′′

3, n2)

−�0
pF∗

13(n1, n′′
3 )η32(n′′

3, n2)
}

+{i(n2ν2 − n1ν1 − δCPT) − γ12}η12(n1, n2).

(16)

Here δCPT = (ω′
p − ω′

q) − (ω2 − ω1) is the detuning of the p
and q Raman fields from the CPT resonance of the motional
ground states and γ12 is the coherence decay rate. The effects
of parametric heating and depumping can be incorporated as
done in RSC.

IV. NUMERICAL SIMULATIONS

Given experimental parameters for either RSC or MSCPT,
we are interested in the distribution P(n) = ∑

j η j j (n, n) of
atoms in a steady state and the dynamics toward it. By re-
shaping ηi j (ni, n j ) into an N-dimensional column vector x, the
master equations can be written as ẋ = Ax with an appropri-
ately defined matrix A. If the maximum n to be included in a
calculation is nc, N = 4(nc + 1)2 for 1D RSC and 9(nc + 1)2

for 1D MSCPT. A steady-state solution xs satisfies Axs = 0
under the constraint

∑
n P(n) = 1. We use the Moore-Penrose

algorithm for pseudoinversion to solve the equation. When
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nc = 100, the runtime on a personal computer [15] to obtain
xs is 3 min for RSC and 30 min for MSCPT. Time evolution
of x follows x(t ) = eAt x(0). We calculate U (τ ) = eAτ for a
time interval τ and obtain snapshots of x(t ) at t = τ, 2τ, . . .

by repeatedly applying U (τ ). We use τ near τ1/10, where τ1

is the shorter time constant of a double-exponential decay of
temperature to be discussed later. The calculation of U (τ ) is
demanding in terms of time and memory, and the runtime for
RSC with nc = 75 is 1 h. For MSCPT, we limit nc to 65 and
use single precision to calculate U (τ ) in 2 h. For the numerical
solutions, we need the values of the Franck-Condon factors
Fi j (ni, n j ). When ηLD � 1, for a given n j , the range of ni to
be calculated is large, and the evaluation of each Fi j (ni, n j )
is time consuming because the polynomial expansion of eikpx

does not converge. To efficiently calculate the F factors, we
develop recursion relations. The relations are summarized in
Appendix B. The calculated results are validated by the sum
rule

∑∞
n′′

i =0 |Fi j (n′′
i , n j )|2 = 1, based on the completeness of

|χi(ni )〉 and the unitarity of eikpx. In Appendix B we also
include the case of kp = 0 for a transition by a rf field.

As a model system, we use a 1D optical lattice in our appa-
ratus [16]. Its wavelength λOL is 980 nm, at which α = −873
and β = −25 in atomic units for 87Rb. We adjust the mini-
mum spot size w0 to 10 μm and the well depth in units of the
Boltzmann constant kB to 125 μK so that ν0 = 2π × 3.5 kHz
and ηLD 
 1 for the transverse motion. When the lattice beam
is circularly polarized, 	ν12 is 2π × 25 Hz. For a 87Rb atom
in Fig. 1(a), the branching ratios from |φ4〉 to |φ1〉, |φ2〉,
and |φ3〉 are p1 = 1

3 , p2 = 1
6 , and p3 = 1

2 , respectively. On
average, three optical pumping cycles are needed to put an
atom into |φ1〉 in RSC and two cycles to put it into either
|φ1〉 or |φ2〉 in MSCPT. However, we use p1 = 1

2 for RSC
and p1 = p2 = 1

4 for MSCPT in the following simulations
to compare the cooling efficiencies while the recoil heating
rates are the same. In addition, as discussed previously, we
use p′

1 = 1
4 for RSC and p′

1 = p′
2 = 1

8 for MSCPT to take into
account additional heating from the absorption of an optical
pumping photon. We use R, �p, and �q equal to ν0, and
γ12 = 3 × 10−4ν0 or 2π × 1 Hz as benchmark values. The
two pairs of Raman beams are tuned to δCPT = 0 so that the
n = 0 states are CPT resonant.

First, we calculate P(n) versus the order 	n of the red
sideband for both RSC and MSCPT. Figure 3(a) shows
P5 = ∑5

n=0 P(n) versus 	n and Fig. 3(b) shows T 5 =
−6h̄ν0/kB ln(1 − P5) in units of TR = ER/kB. Here TR = 175
nK and T 5 is the temperature that produces P5 under the
Maxwell-Boltzmann (MB) distribution. T 5 is a better mea-
sure of temperature than one by fitting P(n) to the MB
distribution because without atomic collisions, P(n) reflects
the details of the F factors and does not follow the MB distri-
bution. We choose P5 because dP5/dT is maximum at around
T = 3TR, the temperature range of interest in Fig. 3(b). The
minimum 	n to overcome the recoil heating in either RSC
or MSCPT is 4 when ηLD = 1. For RSC, 	n = 6 produces
the lowest T 5 owing to the radiative broadening of the Raman
transition by R. Reducing R results in the optimal order 	nopt

approaching 4 and a lower temperature; however, this is at the
expense of slower cooling. Although the simulation produces
smooth reduction of P5 to finite values when 	n � 3, it is

FIG. 3. (a) Plot of P5, the sum of the steady-state population with
the motional quantum number n below 5, versus the order 	n of the
red sideband. We use the benchmark condition described in the text.
Red squares are for RSC and blue circles are for MSCPT. (b) Plot
of T 5, the temperature calculated from P5 assuming the Maxwell-
Boltzmann distribution, in units of TR = ER/kB versus 	n. Here ER

is the recoil energy accompanying emission of a photon and kB is
the Boltzmann constant. The lowest T 5 produced by MSCPT is 2TR,
while that by RSC is 4.5TR.

an artifact of truncating n at nc. In an experiment, atoms are
expected to boil out in this condition. For MSCPT, 	nopt = 5
and P5 shows a gradual decrease away from it. Motion-
selective CPT consistently produces a lower temperature than
RSC, with the lowest T 5 of 2TR compared with 4.5TR by RSC.
If the real value of p1 = 1

3 for RSC is used, 	nopt is 7, and the
minimum T 5 is 6TR, three times higher than that by MSCPT.

The better performance of MSCPT is a consequence of
the CPT-induced darkness of the low-n states. We define the
brightness of the nth pair of states {|φ1, χ1(n)〉, |φ2, χ2(n)〉} in
MSCPT as a product of R and the population in the |φ3〉 state,

B(n) = R
nc∑

n3=0

P3(n3). (17)

The B(n) of the nth state |φ1, χ1(n)〉 in RSC can be similarly
defined. We obtain B(n) for MSCPT or RSC by solving the
master equations in a reduced Hilbert space consisting of the
nth pair or the nth state, respectively, and {|φ3, χ3(n3)〉, n3 =
0, 1, . . . , nc}. Figure 4(a) shows B(n)/R at the respective
	nopt of RSC and MSCPT. The low-n states in MSCPT are
significantly darker than those in RSC. We expect P(n) to
be inversely proportional to B(n). In Fig. 4(b), the red and
blue curves of P(0)[B(0)/B(n)]a with a = 1.7 and 1.35 show
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FIG. 4. Comparison of RSC and MSCPT in terms of the bright-
ness B(n) of the nth state. Here B(n) is defined as the product of the
effective decay rate R of the |φ3〉 state and the total population in the
|φ3〉 state. (a) Brightness B(n) for RSC (red squares) and MSCPT
(blue circles) in units of R. The low-n states in MSCPT are much
darker than those in RSC. (b) Steady-state population P(n) versus
n. Here P(n) is inversely proportional to B(n). The P(n) is fitted
by the red curve P(0)[B(0)/B(n)]1.7 for RSC and by the blue curve
P(0)[B(0)/B(n)]1.35 for MSCPT.

good agreement with P(n) of RSC and MSCPT, respectively.
One drawback of this darkness is the slowdown of the cooling
process. Figure 5 shows the evolution of T 5 under the optimal
RSC and MSCPT starting from the MB distribution at 3 μK.
Both curves follow a double-exponential decay expressed as

T 5(t ) = (Ti − Tm)e−t/τ1 + (Tm − Tf )e−t/τ2 + Tf (18)

because, unlike a simple decay of the same entities, a qual-
itative change occurs in the atomic ensemble as the cooling
proceeds. Here Ti, Tm, and Tf are the initial, middle, and final
temperatures, respectively, and τ1 and τ2 are time constants.
Although MSCPT produces a lower Tf , it is 5 times slower
than RSC; specifically, τ1 = 1.1 ms and τ2 = 7.7 ms for RSC
and τ1 = 5.2 ms and τ2 = 34 ms for MSCPT.

Next we change δCPT of MSCPT while keeping 	n =
5. Figure 6(a) shows T 5/TR versus δCPT in units of 	ν12.
The dashed horizontal line denotes T 5/TR for RSC. Ac-
cording to Eq. (16) for η̇12(n1, n2), the nth pair of states
{|φ1, χ1(n)〉, |φ2, χ2(n)〉} is CPT resonant when δCPT =
−n	ν12. As δCPT becomes negative, T 5 increases sharply as
the n = 1, 2, . . . pairs successively become dark. The mini-
mum T 5 of RSC, 4.5TR, corresponds to the average n of 4,
to which T 5 of MSCPT becomes comparable when δCPT =

FIG. 5. Evolution of T 5 for RSC (red squares) and MSCPT (blue
circles) starting from the MB distribution at 3 μK. They are fitted by
double-exponential decay curves with τ1 = 1.1 ms and τ2 = 7.7 ms
for RSC (red solid line) and τ1 = 5.2 ms and τ2 = 34 ms for MSCPT
(blue solid line).

(a)

(b)

n

P (n)

n

B(n)

T
5/

T
R

P
(0

)

δCPT/Δν12

FIG. 6. (a) Plot of T 5 in units of TR versus δCPT in units of 	ν12.
Here δCPT is the detuning of the p and q Raman fields from the CPT
resonance of the motional ground states. The red dashed horizontal
line represents T 5/TR for RSC. The inset shows P(n) when δCPT =
−5	ν12. (b) Ground-state population P(0) versus δCPT/	ν12. The
inset shows that B(n) when δCPT = 1.3	ν12 (red circles) increases
more rapidly than B(n) when δCPT = 0 (black squares). This explains
the shift of P(0) maximum to δCPT = 1.3	ν12.
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Δnopt

R/ν0

T
5/

T
R

R/ν0

τ 2
(m

s)

(a)

(b)

FIG. 7. (a) Plot of T 5/TR of RSC (red squares) and MSCPT (blue
circles) versus R = �p = �q in units of ν0. Each T 5 is obtained at
an optimal 	n for a given R. The dependence of the optimal 	n on
R is shown in the inset. (b) Time constant τ2 of RSC and MSCPT
versus R = �p = �q.

−5	ν12. The inset of Fig. 6(a) shows P(n) peaks at n = 5
when δCPT = −5	ν12. For a positive δCPT, although detuning
from the CPT resonance increases for all n pairs, that of
the n = 0 pair is still the smallest. This explains the gradual
increase in T 5 for δCPT > 0. Figure 6(b) shows P(0) versus
δCPT/	ν12. The P(0) is maximum not at δCPT = 0 but at
1.3	ν12 because dB(n)/dn or the contrast is more critical
than B(n) itself for determining P(n), and the detuning puts
B(n) on a slope near n = 0. The inset shows B(n) for δCPT = 0
(black squares) and 1.3	ν12 (red circles). The width between
the vertical dashed lines in Fig. 6(a), where MSCPT shows a
noticeable advantage, is 10	ν12 or 250 Hz. While the Raman
fields can be easily tuned to within 1 Hz or better, dδCPT/dB =
350 Hz/mG, where B is the quantization field strength, and
precise control of the B field is a more demanding task in
practice.

The effects of R, �p, and �q on the steady-state solution
and the time constants are similar, and we set R = �p = �q,
considering them as a single parameter. In Fig. 7(a) we plot
T 5/TR of RSC and MSCPT versus R. Each T 5 is obtained at
	nopt for a given R, and the dependence of 	nopt on R for
RSC (red squares) and MSCPT (blue circles) is shown in the
inset. As R becomes large, the Raman transition broadens to
increase B(n) of the low-n states, and T 5 of RSC increases at
dT 5/dR = 0.5 μK/ν0. In comparison, in MSCPT, the dark-
ness of the low-n states is further protected by CPT, and T 5 is
almost constant, indicating its robustness as a cooling method.

(b)

(a)

T
/
T

R
τ 2

(m
s)

log10(γ12/γ0
12)

T5/TR

T0/TR

FIG. 8. (a) Plot of T 5/TR (blue solid curve with circles)
and T 0/TR (green dashed curve with circles) of MSCPT versus
log10(γ12/γ

0
12). γ 0

12 = 2π × 1 Hz; T 0 is defined from the ground-
state population P(0). The red dashed line represents T 5/TR of RSC.
The shaded area is where MSCPT is both effective and experimen-
tally feasible. (b) Time constant τ2 of T 5 versus log10(γ12/γ

0
12).

Although the temperature is lower at small γ12, the cooling process
becomes slower.

However, when R is much smaller than ν0, RSC produces a
lower T 5 than MSCPT. Here the narrow Raman width causes
a steplike change in B(n) across n = 	n in RSC, whereas
in MSCPT, the finite width of the CPT resonance tends to
blur the contrast. In practice, as Fig. 7(b) shows, τ2 for both
RSC and MSCPT sharply increases as R becomes smaller.
Although not shown in the figure, at R = ν0/10, τ2 reaches
0.75 and 3 s for RSC and MSCP, respectively, making it
impractical to excessively reduce R. In the opposite limit of a
large R, the time constants of RSC become vanishingly small,
whereas those of MSCPT do not significantly change because
the cooling dynamics is limited by the diffusive process of
population trapping. The decoherence rate γ12 is one of the
most critical parameters in the MSCPT scheme. The T 5/TR

of MSCPT versus log10(γ12/γ
0
12), with γ 0

12 = 2π × 1 Hz, are
shown as a blue solid curve with circles in Fig. 8(a). The red
dashed line represents T 5/TR of RSC. When the temperature
is below TR, T 5 based on P5 is no longer a sensitive measure
of temperature, and in Fig. 8(a) we include T 0 defined from
the ground-state population P(0) using T 0 = −h̄ν0/kB ln[1 −
P(0)] as a green dashed curve with circles. The discrepancy
between T 5 and T 0 is a signature of the deviation from
the MB distribution. In the limit of a small γ12, the CPT
phenomenon becomes prominent and the atoms accumulate
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FIG. 9. (a) Plot of 	ν12 versus the lattice wavelength λOL when
w0 = 10 μm and the well depth in units of kB is 125 μK. As
λOL approaches the D1 transition, both 	ν12 and γ12 increase as
1/	D1. Here 	D1 is the detuning of λOL from the D1 transition.
(b) Plot of T 0/TR of MSCPT versus λOL for a few γ12. From the
uppermost to the lowest curve, γ12/2π = 10, 3, 1, 0.3, and 0.1 Hz.
The red dashed line represents T 0/TR of RSC. The black dashed
curve denotes T 0/TR of MSCPT when γ12 = ROL of a given λOL.
The points below the black dashed curve are unattainable in our
model system.

in the n = 0 state. When γ12 = γ 0
12/10, T 0 is as low as TR.

This implies that, using MSCPT, subrecoil cooling is possi-
ble even when ηLD = 1. However, reducing γ12 to γ 0

12/10 is
challenging. In our previous work on 7Li using rf fields [7],
we achieved γ 0

12/4, limited by the magnetic-field noise. The
final limit on γ12 for an atom in an optical lattice originates
from the scattering rate ROL of the lattice photons [17]. In our
model system of λOL = 980 nm, w0 = 10 μm, and well depth
of 125 μK, ROL = γ 0

12/6. Another difficulty associated with a
small γ12 is the increase in τ2 of T 5, as shown in Fig. 8(b).
It is difficult to calculate τ2 of T 0 at a small γ12 owing to
the slow convergence and we only estimate that it is a few
times larger than τ2 of T 5. At the other limit of γ12 larger than
30γ 0

12, Fig. 8(a) shows that MSCPT produces higher T 5 than
RSC. The mechanism for this is unclear and we suspect that
the large γ12 broadens the CPT width, reducing the contrast in
the darkness. Considering these results, the experimentally in-
teresting range is 0.1 Hz � γ12/2π � 10 Hz, which is shaded
in Fig. 8(a). We can also improve the motional selectivity
by increasing 	ν12. When λOL approaches 795 nm of the D1

transition, the ratio β/α and thereby 	ν12 at a fixed well depth
increases as 1/	D1 . Here 	D1 is the detuning of the lattice
beam from the D1 transition. Figure 9(a) shows 	ν12 versus

FIG. 10. (a) Plot of P5 of MSCPT (blue circles) and RSC (red
squares) and P0 of MSCPT (green circles) and RSC (orange squares)
versus S(2ν/2π ), the power spectral density of the fractional in-
tensity noise, in dB/Hz. Here P0 of MSCPT has a peak at S 

−115 dB/Hz. (b) Plot of P5 of MSCPT (blue circles) and RSC
(red squares) and P0 of MSCPT (green circles) and RSC (orange
squares) versus 10 log10(D/R). Here D is the effective decay rate of
the target states |φ1〉 and |φ2〉, due to their unintended transition by
the optical pumping beam, and the decay rate R of the |φ3〉 state is
equal to ν0.

λOL when w0 = 10 μm and the well depth in units of kB is
125 μK so that ηLD = 1. At λOL = 841 nm, 	ν12 is as large
as 2π × 87 Hz, facilitating the selection of the n = 0 state
by CPT. However, as λOL approaches the D1 transition, the
scattering rate ROL at a fixed well depth and consequently γ12

also increases as 1/	D1 , offsetting the advantage. Figure 9(b)
shows T 0/TR of MSCPT versus λOL for a few γ12/2π from
10 Hz of the uppermost curve to 0.1 Hz of the lowest one. The
red dashed line represents T 0/TR of RSC and the black dashed
curve shows T 0/TR of MSCPT when γ12 = ROL for a given
λOL. The points below the black dashed curve are unattainable
experimentally in our model system.

Finally, we consider the effects of parametric heating
and an imperfect optical pumping. They are respectively
parametrized by the transition rate Q±(n) from |χ (n)〉 to
|χ (n ± 2)〉 in Eq. (11) and the effective decay rate D of the
|φ1〉 and |φ2〉 states. In Fig. 10(a), P5 and P0 of MSCPT
and RSC versus the power spectral density of the fractional
intensity noise S(2ν/2π ) in dB/Hz are plotted. The P5 of
MSCPT and RSC suffers similarly from the parametric heat-
ing and its effect becomes insignificant when S is below −125
dB/Hz. Noise can be lowered to this level by appropriate
power stabilization [18]. The P0 of MSCPT presents a peak
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at S 
 −115 dB/Hz. The incoherent transition driven by the
power noise contributes an additional dephasing rate Q(n) to
γ12 of η̇12(n, n) as expressed in Eq. (12b). Because Q±(n) is
approximately proportional to n2, the relative darkness of the
n = 0 state is increased. This is similar to cooling by selective
parametric excitation and subsequent ejection of high-n states
in an anharmonic optical trap [19]. In Fig. 10(b), P5 and
P0 of MSCPT and RSC versus 10 log10(D/R) are plotted,
where the optical pumping rate R is equal to ν0. When the
rate D of the unintended transition out of the target states
is five orders of magnitude smaller than the intended rate R,
the effect of the imperfect optical pumping is negligible. The
rate D may originate from an incorrect retardation δ of a
waveplate or misalignment δθ between the quantization axis
and the pumping beam direction. Here D/R is typically on the
order δ2 or δθ2, and these errors need to be kept below a few
times 10−3 rad. The effect of D on MSCPT is more severe
than that on RSC because D also degrades the coherence of a
CPT state. However, while the RSC scheme on an alkali-metal
atom always requires repumping, the inverted Y configuration
of MSCPT does not need it, and the target states |φ1〉 and |φ2〉
are 6.8 GHz detuned from the optical pumping transition. We
expect that, in practice, D can be maintained much smaller in
MSCPT.

V. DISCUSSION AND OUTLOOK

Although we used a 1D model for the numerical simula-
tions, the configuration of Raman beams for MSCPT in the
inset of Fig. 2 allows momentum transfer h̄	�kp = h̄	�kq in
the xy plane. If the confining potential of an optical trap is
isotropic in the xy plane, the configuration provides cooling
along the (x̂ + ŷ)/

√
2 axis only and the motion along the

(x̂ − ŷ)/
√

2 axis is cooled only diffusively. In practice, we
expect intended and unintended anisotropies as well as an-
harmonic coupling between x and y in a trapping potential
will allow 2D cooling by the configuration. In addition, for
cooling along the z axis, we may apply another Raman beam
�Ez = Ezx̂ cos(kzz − ωzt ) so that ( �Ez, �Ep) and ( �Ez, �Eq ) drive
the p and q transitions, respectively. Here, by adjusting ωz,
the transitions are tuned to the red sideband of the z motion.
Apparently, the resulting double � configuration increases the
complexity of the scheme. However, in our model system of
a 1D lattice, for example, the vibration frequencies along the
z axis and the x and y axes differ by a factor of 50, and once
an atom falls to the nz = 0 state, it decouples from �Ez because
the Raman transitions are detuned by 50ν0, while their widths
are order ν0. Here nz is the motional quantum number along z.

The configuration in Fig. 1(a) is closed, and any of the
three 5S1/2 states can play the role of the apex state |φ3〉
in Fig. 1(b). One interesting possibility is to exchange the
roles of the |F = 1, mF = −1〉 and |F = 2, mF = −1〉 states
in Fig. 1(a) so that the latter becomes |φ3〉 in Fig. 1(b). In
this configuration, 	ν12 = (3α/4β )ν0 is three times larger
than the original 	ν12 in Eq. (3), enhancing the motional
selectivity. However, whether this enhancement would lead to
lower temperature is not clear because γ12 from magnetic-field
noise is proportional to 	ν2

12. The γ12 in this configuration
is nine times larger, and unless noise of the field-generating
current is tightly controlled, the gain in 	ν12 may be lost.

In summary, we proposed a cooling scheme that combines
the ideas of velocity-selective coherent population trapping
and Raman sideband cooling. Using the master equations for
1D RSC and 1D MSCPT, we calculated the steady-state dis-
tribution over n and the time constants toward it when the
Lamb-Dicke parameter was 1, as we changed the experimen-
tal parameters such as (i) the order of the sideband and the
CPT detuning, (ii) the optical pumping rate and the Rabi
frequencies of the Raman transitions, (iii) the wavelength
and hence the vector polarizability of an Rb atom and the
decoherence rate, and (iv) the parametric heating rate and the
depumping rate. For most ranges of these parameters, MSCPT
produced colder atoms than RSC, even though the recoil heat-
ing in RSC was reduced by 1

3 by adjusting the branching ratio.
Under a favorable condition, the temperature estimated from
the n = 0 population reached the recoil temperature ER/kB or
below, indicating subrecoil cooling even outside the Lamb-
Dicke regime. This improvement in cooling was quantitatively
explained in terms of the reduction in the brightness of the
low-n states by the CPT phenomenon.

However, this improvement has consequences. First, the
MSCPT scheme is not suitable for a high-density atomic
sample. The optical pumping beam, which is near resonance
and stays on throughout the cooling process, mediates pho-
toassociation and atomic collisions destroy the coherence. The
MSCPT scheme is best for a single atom in a lattice site
or an optical tweezer. Other problems are the slow cooling
process and technical burdens to implement complex cooling
beams and to control the phase noise from various sources.
Under these challenges, a proof-of-principle experiment was
successfully carried out in our laboratory to demonstrate the
feasibility and effectiveness of the idea [9]. In the longer
term, the MSCPT scheme could be applied to cool a diatomic
polar molecule in an optical trap. Using a MgF molecule
as an example, 	ν12 of the |φ1〉 = |F = 2, mF = −2〉 and
|φ2〉 = |F = 2, mF = −1〉 states is 12% of the average of
ν1 and ν2 when the trap wavelength is 532 nm. The values
are when the molecule is in the electronic and vibrational
ground states and the first excited rotational state and its total
electronic angular momentum is 3

2 and the nuclear spin is
1
2 . The X 2�1/2

+ → A2 �1/2 transition of MgF is at 359 nm.
In comparison, for 87Rb, 	ν12/ν0 is 0.7% at the benchmark
λOL = 980 nm and 2.5% at 841 nm. However, it is still unclear
whether the complicated level structure of the molecule will
allow an appropriate configuration for the MSCPT scheme.
One or two repumping beams will be necessary and the recoil
heating will increase. Simple simulation of the situation by
decreasing the branching ratios p1 and p2 in our model system
of Rb shows that the lowest temperature obtained by both
MSCPT and RSC increases, but the advantage of MSCPT is
maintained.
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APPENDIX A: MASTER EQUATIONS FOR 1D MOTION-SELECTIVE COHERENT POPULATION TRAPPING

For the Hamiltonian HMSCPT = H0 + Wp + Wq + V , where H0 is the sum of Eqs. (8a) and (14), Wp and Wq are given in
Eqs. (8b) and (15), respectively, and V represents the radiative decay at R, the master equations are

η̇11(n1, n′
1) = i

�0
p

2

∑
n′′

3

{η13(n1, n′′
3 )F31(n′′

3, n′
1) − F∗

13(n1, n′′
3 )η31(n′′

3, n′
1)} + i(n′

1 − n1)ν1η11(n1, n′
1)

+ δn1,n′
1
p1R

∑
n′′

3

|F13(n1, n′′
3 )|2η33(n′′

3, n′′
3 ), (A1a)

η̇22(n2, n′
2) = i

�0
q

2

∑
n′′

3

{η23(n2, n′′
3 )F32(n′′

3, n′
2) − F∗

23(n2, n′′
3 )η32(n′′

3, n′
2)} + i(n′

2 − n2)ν2η22(n2, n′
2)

+ δn2,n′
2
p2R

∑
n′′

3

|F23(n2, n′′
3 )|2η33(n′′

3, n′′
3 ), (A1b)

η̇33(n3, n′
3) = i

�0
p

2

∑
n′′

1

{η31(n3, n′′
1 )F∗

13(n′′
1, n′

3) − F31(n3, n′′
1 )η13(n′′

1, n′
3)}

+ i
�0

q

2

∑
n′′

2

{η32(n3, n′′
2 )F∗

23(n′′
2, n′

3) − F32(n3, n′′
2 )η23(n′′

2, n′
3)}

+{i(n′
3 − n3)ν3 − R}η33(n3, n′

3) + δn3,n′
3
p3R

∑
n′′

3

|F33(n3, n′′
3 )|2η33(n′′

3, n′′
3 ), (A1c)

η̇13(n1, n3) = i
�0

p

2

{ ∑
n′′

1

η11(n1, n′′
1 )F∗

13(n′′
1, n3) −

∑
n′′

3

F∗
13(n1, n′′

3 )η33(n′′
3, n3)

}

+ i
�0

q

2

∑
n′′

2

η12(n1, n′′
2 )F∗

23(n′′
2, n3) +

[
i{(n3 + 	n)ν3 − n1ν1} − R

2

]
η13(n1, n3), (A1d)

η̇23(n2, n3) = i
�0

q

2

{ ∑
n′′

2

η22(n2, n′′
2 )F∗

23(n′′
2, n3) −

∑
n′′

3

F∗
23(n2, n′′

3 )η33(n′′
3, n3)

}

+ i
�0

p

2

∑
n′′

1

η21(n2, n′′
1 )F∗

13(n′′
1, n3) +

[
i{(n3 + 	n)ν3 − n2ν2 + δCPT} − R

2

]
η23(n2, n3), (A1e)

η̇12(n1, n2) = i

2

∑
n′′

3

{�0
qη13(n1, n′′

3 )F32(n′′
3, n2) − �0

pF∗
13(n1, n′′

3 )η32(n′′
3, n2)}

+ {i(n2ν2 − n1ν1 − δCPT) − γ12}η12(n1, n2), (A1f)

η̇31(n3, n1) = η̇∗
13(n1, n3), η̇32(n3, n2) = η̇∗

23(n2, n3), and η̇21(n2, n1) = η̇∗
12(n1, n2).

APPENDIX B: RECURSION RELATIONS FOR F (n, l )

The F factor in one dimension is defined as

Fi j (ni, n j ) = 〈χi(ni )|eikpx|χ j (n j )〉. (B1)

As a specific example, we consider F31(n3, n1); set n3 = n, n1 = l , and kp = k; and omit the subscript 31 from F for simplicity.
Explicitly,

F (n, l ) = Cn(a3)Cl (a1)
∫ +∞

−∞
Hn(a3x)Hl (a1x)e−〈a2〉x2+ikxdx, (B2)

where a1 = √
ν1m/h̄ and Cl (a1) =

√
a1/π1/22l l!, with m the atomic mass. The a3 and Cn(a3) are similarly defined and 〈a2〉 =

(a2
1 + a2

3)/2. Integrating by parts and using the recursion relations of the Hermite polynomials, we obtain the recursion relation
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for F (n, l ),

F (n, l ) = i
ka1

〈a2〉

√
1

2n
F (n − 1, l ) + 	a2

2〈a2〉

√
n − 1

n
F (n − 2, l ) + a1a3

〈a2〉

√
l

n
F (n − 1, l − 1), (B3)

where 	a2 = a2
3 − a2

1. Alternatively,

F (n, l ) = i
ka3

〈a2〉

√
1

2l
F (n, l − 1) − 	a2

2〈a2〉

√
l − 1

l
F (n, l − 2) + a1a3

〈a2〉
√

n

l
F (n − 1, l − 1). (B4)

When ν1 = ν3, 	a2 = 0 and the relation is simplified.
To obtain F factor for a transition driven by a radio-frequency field, we substitute k = 0 in Eq. (B2). When ν1 = ν3, F (n, l ) =

δnl . When ν1 �= ν3, the recursion relations cannot be obtained by simply substituting k = 0 in Eqs. (B3) and (B4) and a separate
calculation yields

F (n, l ) =
√

(n − 1)(l − 1)

nl
F (n − 2, l − 2) + a1a3

〈a2〉

√
1

nl
F (n − 1, l − 1) (B5)

+ 	a2

2〈a2〉

√
n − 1

n
F (n − 2, l ) − 	a2

2〈a2〉

√
l − 1

l
F (n, l − 2).

In our previous publication on rf spectroscopy [16], we used a series expansion of Hn(aix) in terms of (ai − ā)/ā with ā =
√

〈a2〉
for i = 1, 3 to speed up the evaluation of F (n, l ). The recursion relation (B5) is much more efficient.
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