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Controlling higher-orbital quantum phases of ultracold atoms via coupling to optical cavities
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The orbital degree of freedom plays an important role in understanding exotic phenomena of strongly
correlated materials. In this work, we study strongly correlated ultracold bosonic gases coupled to a high-finesse
cavity, pumped by a blue-detuned laser in the transverse direction. By controlling the reflection of the pump
laser, we find that atoms can be selectively transferred to the odd-parity p-orbital band or to the even-parity
d-orbital band of a two-dimensional square lattice, accompanied by pronounced cavity-photon excitations. By
interacting with the cavity field, atoms self-organize to form stable higher-orbital superfluid and Mott-insulating
phases with orbital-density waves, as a result of cavity-induced orbital-flip hoppings. Our study opens a route to
manipulate orbital degrees of freedom in strongly correlated quantum gases via coupling to optical cavities.
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I. INTRODUCTION

In condensed matter, electrons have three attributes:
charge, spin, and orbital. Unlike charge and spin, the orbital
exhibits strongly orientational properties and plays an
important role in strongly correlated materials. For instance,
highly anisotropic hoppings between different orbitals lead
to a so-called orbital-selective Mott transition [1], and
multiorbital-involved exotic pairings led to the debate about
multiband superconductivity in heavy fermions [2]. From
the aspect of quantum simulations, ultracold quantum gases
provide a versatile platform for simulating charge and spin
degrees of freedom to probe fundamental condensed-matter
physics problems [3–7]. However, manipulating the orbital
degree of freedom by using higher Bloch bands in optical
lattices is not straightforward. On the one hand, fermionic
atoms can populate higher-orbital bands by the Pauli
principle, but that requires a high density of fermions
[6]. On the other hand, bosonic atoms can be prepared
in higher-orbital bands; however, they will decay into the
lowest band due to collisions [8–10]. Recently, fascinating
techniques have been proposed to study exotic orbital
phenomena, including a shaking lattice [11,12] and a
bipartite-lattice setup [13–17]. Observing the Fermi superfluid
and strongly correlated Mott-insulating orbital order of
ultracold gases, however, is still challenging [18–24].

Coupling ultracold atoms to a high-finesse optical cav-
ity provides another tool for studying quantum many-body
physics [25,26]. By choosing a pump-laser frequency that
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is smaller than the atomic internal transition (red detuning),
a self-organized superradiant phase has been theoretically
predicted [27–35] and experimentally observed [36–43],
where atoms break a translational symmetry by forming a
density-wave pattern induced by cavity-mediated long-range
interactions. For a quantum gas coupled to a blue-detuned
cavity, self-organization of atoms should be prohibited since
the buildup of additional repulsive potential costs energy. Sur-
prisingly, a blue-detuned self-organized superradiant phase
predicted recently [44–52] has already been observed exper-
imentally [53,54]. It turns out that the blue-detuned cavity
scatters atoms into higher-orbital bands, which triggers quan-
tum engineering of many-body multiorbital physics with
cavity setups. A remaining open question is to identify pos-
sibilities for simulating previously unrealized higher-orbital
strongly correlated phenomena of ultracold atoms via cou-
pling to optical cavities.

In this work, we present an experimentally related scheme
to realize higher-orbital quantum phases of ultracold bosonic
gases in an optical cavity, pumped by a blue-detuned laser.
Within this setup, a considerable number of atoms can be
stabilized in higher-orbital bands of the two-dimensional
(2D) square lattice due to cavity-induced orbital-flipping
processes, leading to previously untouched odd-parity p-
orbital and even-parity d-orbital many-body phases. We
find that the center-of-mass motion and orbital degree of
freedom of atoms are coupled together, resulting in an
“orbital-density-wave” order in both superfluid and Mott-
insulating phases. In addition, we show that populations
of atoms can be selectively tuned between the p- and d-
orbital bands by controlling the reflection rate of the pump
laser.
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FIG. 1. Populating higher-orbital states with ultracold atoms in
an optical cavity. (a) Atoms are prepared in an optical cavity, pumped
by a blue-detuned laser in the transverse direction with an imbalance
parameter η = E−/E+. (b) Brillouin zone of the square lattice, where
atoms are scattered from the quasimomentum state k = (0, 0) to the
excited state (π, π ), with quasimomentum distributions for the p-
and d-orbital bands shown in plots 2 and 3, respectively. (c) and
(d) Dominating scattering processes of atoms induced by the cavity,
leading to higher-orbital excitations. By controlling η, atoms can be
selectively scattered (c) into the even-parity dxy-orbital state with a
single node in both the x and y directions for η = 1 or (d) into the
odd-parity p-orbital state with a single node only in one direction for
η < 1. Here, Ji j

sd , Ji j
px py

, Ji j
spx

, and Ji j
pyd denote cavity-induced orbital-

flip hoppings between sites i and j for the s and dxy orbitals, px and
py orbitals, s and px orbitals, and py and dxy orbitals, respectively.

This paper is organized as follows: in Sec. II we introduce
the setup and our approach. Section III covers the results of
our model, and we derive the two-site model in Sec. IV. We
briefly introduce the experimental detections in Sec. V and
summarize with a discussion in Sec. VI.

II. MODEL AND METHOD

Our 2D setup is shown in Fig. 1(a), where 87Rb atoms are
loaded into a high-finesse single-mode optical cavity with a
decay rate of κ = 40ωr , with ωr being the recoil frequency.
The two-level atoms with mass m and transition frequency
ωa (ground and excited states denoted by |g〉 and |e〉, respec-
tively) are pumped by two counterpropagating blue-detuned
lasers with wavelength λp = 780.1 nm and frequency ωp in
the y direction, perpendicular to the cavity mode with fre-
quency ωc in the x direction. The pump can be realized by
applying one laser beam and reflection by a mirror, where the
reflection rate controls the imbalance of the counterpropagat-
ing laser beams η ≡ E−/E+ [54], with E+ and E− being the
electric-field amplitudes of the incident and reflected pump
lasers, respectively. In the third direction, the motion of atoms
is frozen with strong standing-wave lasers Vz = 50Er , where
Er = h2

2mλ2
p

= h̄ωr is the recoil energy.

Assuming two unbalanced counterpropagating beams in
the y direction, i.e., the incident light E+ cos(kpy − ωpt ) and
the reflected light E− cos(kpy + ωpt ), the total electric field in

the y direction can be written as

E (y) = E0 cos(kpy − ωpt ) + ηE0cos(kpy + ωpt )

= (1 + η)E0 cos(kpy)cos(ωpt )

+ (1 − η)E0 sin(kpy) sin(ωpt ), (1)

where E− = ηE+ = ηE0 and kp denotes the wave vector of the
pumping field. Including the cavity mode in the x direction,
the effective interaction between the atoms and total electric
field of the system is described by

Ĥint = h̄�p(1 + η)cos(kpy)(σ̂+ + σ̂−)cos(ωpt )

+ h̄�p(1 − η)sin(kpy)(σ̂+ + σ̂−)sin(ωpt )

+ h̄g0cos(kcx)(σ̂+â + σ̂−â†), (2)

where σ̂− = |g〉〈e|, σ̂+ = |e〉〈g|, �p denotes the maximum
pump Rabi frequency, g0 is the atom-cavity coupling strength,
and â (â†) denotes the annihilation (creation) operator of a
cavity photon with frequency ωc. In the reference frame that
rotates at the frequency ωp, Eq. (2) can be written as

Ĥint = 1
2 h̄�p(1 + η)cos(kpy)(σ̂+ + σ̂−)

+ i
2 h̄�p(1 − η)sin(kpy)(σ̂+ − σ̂−)

+ h̄g0cos(kcx)(σ̂+â + σ̂−â†). (3)

Taking the cavity mode and atom degrees of freedom into
account, the many-body system can be described by

Ĥ =
∫

dx

[
	̂†

g (x)

(
− h̄2∇2

2m

)
	̂g(x)

+ 	̂†
e (x)

(
− h̄2∇2

2m
− h̄
a

)
	̂e(x)

]
− h̄
câ†â

+
∫

dx

[
	̂†

e (x)

(
h̄�p(1 + η)cos(kpy)

2

+ ih̄�p(1 − η)sin(kpy)

2
+ h̄g0cos(kcx)â

)
	̂g(x)

+ H.c.

]
, (4)

where 
a = ωp − ωa, 
c = ωp − ωc, and 	̂g(x) [	̂e(x)] de-
notes the atomic field operator for annihilating an atom at
position x in the ground state (excited state).

Integrating out the excited state of the atom [55,56], the
atomic system can be described by an effective Hamiltonian

Ĥ =
∫

dx	̂†(x)

(
− h̄2

2m
∇2 + ηVpcos2(kpy)

+U0cos2(kcx)â†â + V̂1,scat + V̂2,scat

)
	̂(x)

+ g

2

∫
dx	̂†(x)	̂†(x)	̂(x)	̂(x) − h̄
câ†â. (5)

	̂(x) denotes the atomic field operator for the ground
state, where the excited state has been adiabatically elimi-
nated due to the negligible spontaneous emission for very
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low temperature and large detuning 
c. Vp = h̄�2
p/
a is

the depth of the standing-wave potential created by the
pump laser in the y direction, and U0 = h̄g2

0/
a is the
light shift of a single maximally coupled atom. Here, we
choose the wave vectors of the pumping and cavity fields
to be identical, with kc = kp. The dominant term is the
interference between the pumping and cavity fields with
V̂1,scat = (1+η)

2

√
VpU0(â + â†)cos(kcx)cos(kpy) and V̂2,scat =

−i (1−η)
2

√
VpU0(â − â†)cos(kcx)sin(kpy). We remark here that

contact interactions g = 4π h̄2as
m between atoms have been

added in the many-body Hamiltonian, with as being the s-
wave scattering length.

Actually, for a blue-detuned pump laser, atoms localize in
the minima of the potential, which is shifted by λ/4 in both
the cavity and pump directions, compared to the red-detuned
case. Thus, we treat the position of the atoms as the origin of
the coordinate system, and the effective Hamiltonian can be
written as

Ĥ =
∫

dx	̂†(x)

(
− h̄2

2m
∇2 + ηVpsin2(kpy)

+U0sin2(kcx)â†â + V̂1,scat + V̂2,scat

)
	̂(x)

+ g

2

∫
dx	̂†(x)	̂†(x)	̂(x)	̂(x) − h̄
câ†â, (6)

with V̂1,scat = (1+η)
2

√
VpU0(â + â†)sin(kcx)sin(kpy) and

V̂2,scat = i (1−η)
2

√
VpU0(â − â†)sin(kcx)cos(kpy).

In a sufficiently deep lattice, we can use the tight-binding
approximation and keep finite relevant bands, such that the
system can be described by a generalized Bose-Hubbard
model (see Sec. A 1),

Ĥ = −
∑
〈i j〉,σ

Ji j
σσ b̂†

i,σ b̂ j,σ −
∑
i,σ

μσ b̂†
i,σ b̂i,σ − h̄
câ†â

+
∑

i,σ1σ2σ3σ4

Uσ1σ2σ3σ4

2
b̂†

i,σ1
b̂†

i,σ2
b̂i,σ3 b̂i,σ4 + V̂1 + V̂2, (7)

where V̂1 = (â + â†)
∑

i j (−1)i(Ji j
sd b̂†

i,sb̂ j,d + Ji j
px py b̂

†
i,px

b̂ j,py +
H.c.) and V̂2 = −i(â − â†)

∑
i j (−1)i(Ji j

spx b̂
†
i,sb̂ j,px +

Ji j
pyd b̂†

i,py
b̂ j,d + H.c.) are the cavity-induced scattering

processes, 〈i, j〉 denotes the nearest-neighbor sites, Ji j
σ1σ2 are

the on-site (i = j) and nearest-neighbor (i �= j) single-particle
hopping amplitudes, μσ ≡ Jii

σσ is the chemical potential,
and Uσ1σ2σ3σ4 is the on-site interactions. b̂i,σ denotes the
annihilation operator for the Wannier state σ at site i, with
σ denoting the s orbital and px and py orbitals with a
single node only in one direction and the dxy orbital with a
single node in both directions. All the Hubbard parameters are
obtained from band-structure calculations of the 2D square
lattice (see Sec. A 1). To validate the tight-binding model, an
external optical lattice is added in the cavity direction, which
has been set to 5Er in our simulations.

Generally, the dominating process is the cavity-induced
scattering of atoms, where the parity of the scattering and
dimension of the system play important roles. Atoms are dom-
inantly scattered to the s-orbital band for the red atom-pump

detuning due to the even parity of the scattering [36] and
excited to higher-orbital bands for the blue-detuned case, as
a result of the odd parity of the scattering [53]. In the 2D
blue-detuned system considered here, we notice that atoms
can populate in odd-parity p-orbital and even-parity d-orbital
bands, stabilizing strongly correlated higher-orbital phases.
As shown in Fig. 1(c), V̂1 scatters the atoms from the s to dxy

orbital and from the px to py orbital since V̂1 is parity odd
in both the x and y directions, which changes the parity of
orbitals in both the x and y directions. V̂2 scatters the atoms
from the s to px orbital and from the py to dxy orbital since
V̂1 is parity odd in the x direction but even in the y direction,
which changes the parity of the orbitals only in the x direction,
as shown in Fig. 1(d). In addition, due to the factor (−1)i,
we note that the interference terms V̂1 and V̂2 will transfer a
quasimomentum by (π, π ) at the same time as they flip the
orbitals, as shown in Fig. 1(b).

In the superradiant phase, the cavity mode is macroscopi-
cally populated, such that the cavity field can be approximated
by its mean value α(t ) = 〈â(t )〉 [57]. In the steady state,
∂tα(t ) = 0, the cavity field is determined self-consistently
with

α =
∑

i

(−1)i
〈
Jii

sd b̂†
i,sb̂i,d + Jii

px py
b̂†

i,px
b̂i,py + H.c.

+ i
(
Jii

spx
b̂†

i,sb̂i,px + Jii
pyd b̂†

i,py
b̂i,d + H.c.

)〉/
(


c −
∑
i,σ

〈Jσ b̂†
i,σ b̂i,σ 〉 + iκ

)
,

where Jσ denotes the on-site matrix elements associated with
the cavity (see Sec. A 1). In the following, we will mainly
focus on the many-body phases of the atoms in the super-
radiant regime of the cavity. To obtain the steady state of
the many-body system, we numerically solve Eq. (7) in the
coherent-state approximation for the cavity mode by using
real-space bosonic dynamical mean-field theory, which pro-
vides a nonperturbative description of many-body systems
both in three and two dimensions [58–61], whose reliability
has been compared against quantum Monte Carlo simulations
[62]. Recently, a four-component bosonic dynamical mean-
field theory was developed to study multispecies bosons in the
p-orbital band [63]. Here, we implement this method to tackle
the multiband system, and the technical details are described
in Sec. A 2.

III. RESULTS

A. d-orbital population for a perfect reflection

We first discuss the physics for a perfect reflection of the
pump laser, η = 1. To characterize the many-body phases,
the mean cavity-photon number |α|2, superfluid order pa-
rameter φσ = ∑

i |〈b̂i,σ 〉|/Nlat , and orbital magnetism Ŝσ2σ1
i =

b̂†
i,σ2

Fσ2σ1 b̂i,σ1 are utilized, where Nlat denotes the total number
of lattice sites and Fσ2σ1 is the Pauli matrices for spin 1/2.
Since the pump laser globally couples to all atoms in the
cavity, the atom number in turn shifts the phase boundary. This
motivates us to fix the rescaled atom-cavity coupling Nlat × U0

in our simulations.
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FIG. 2. Phase diagram of bosonic gases trapped in an optical
cavity, pumped by a blue-detuned laser with the imbalance param-
eter η = 1, obtained from bosonic dynamical mean-field theory.
There are three many-body phases, including the s-orbital superfluid
phase (SFs) without superradiance and d-orbital superfluid (SFd ) and
Mott-insulating (MId ) phases with superradiance of the cavity field.
Insets: (a) Photon number |α|2 and d-orbital order parameter φd as
a function of the pump laser depth for a fixed chemical potential
μs/Us = 0.15, with Us being on-site interactions between atoms in
the s-orbital band, indicating a d-orbital superfluid-Mott-insulating
phase transition, and (b) real-space distribution of orbital order
〈Ŝsd

x,z〉 for the d-orbital phases with 〈Ŝsd
y 〉 = 0. Other parameters are

Nlat × U0 = 600Er , 
c = 80 ωr , and κ = 40 ωr , with Nlat being the
total number of lattice sites and U0 being the light shift per photon.

In contrast to the red-detuned case [34], we observe that
a few percent of the atoms are transferred from the s- to
dxy-orbital band with considerable cavity-photon excitations
[Fig. 2, inset (a)] by a blue-detuned pump laser, stabilizing
the d-orbital superfluid and Mott-insulating phases. As shown
in Figs. 2 and 3, three quantum phases appear, including the
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5 20 35 50
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80

Δ c
/
r

Vp /Er

SFd

SFs

(a)

+

Vp /Er

MId (ni = 2)

SFd

SFs

(b) +

FIG. 3. Phase diagram of bosonic gases pumped by a blue-
detuned laser with the imbalance parameter η = 1 as a function
of cavity detuning 
c and pump lattice depth Vp, obtained from
bosonic dynamical mean-field theory. (a) For the weak atom-cavity
coupling Nlat × U0 = 240Er , there exist s-orbital superfluid (SFs) and
d-orbital superfluid (SFd ) phases, and (b) for the strong coupling
Nlat × U0 = 400Er , there exist s-orbital superfluid (SFs), d-orbital
superfluid (SFd ), and Mott-insulating (MId ) phases. Here, the local
total filling ni = 2, and the decay rate κ = 40ωr .

s-orbital superfluid phase (SFs) with |α|2 = 0, the d-orbital
superfluid phase (SFd ) with |α|2 �= 0 and φd �= 0, and the
d-orbital Mott-insulating phase (MId ) with |α|2 �= 0 and φs =
φd = 0. As a result of the symmetry of p-orbital states, we
observe only the neglected p-orbital population, induced by
on-site interactions [19,20,64–67]. We remark here that in-
cluding even more higher-orbital states will induce additional
complications for our theoretical analysis but is not expected
to affect our results qualitatively as a result of the large band
gap in the deep lattices.

A filling-dependent phase diagram is shown in Fig. 2 as
a function of the chemical potential and pumping strength.
For a smaller chemical potential μs, the coupling between the
atoms and cavity mode is so weak that the photon number in
the cavity mode |α|2 = 0, with only the s-orbital band being
populated. By increasing the chemical potential, the d-orbital
superfluid phase appears since the scattering is a collective
effect due to all the atoms in the cavity and depends on the
total particle number. For a stronger pumping strength, more
photons are scattered into the cavity mode, and the resulting
standing wave in the cavity direction suppresses the tunneling
of atoms in the absence of superfluidity φs = φd = 0. As
shown in inset (a) in Fig. 2, we clearly observe the d-orbital
superfluid-Mott-insulating phase transition upon increasing
the depth of the pump laser. Note here that the dotted red line
corresponds to the maximum values of |α|2 for fixed μs/Us.
This line is due to the characteristics of the Bose-Hubbard
model. On the one hand, with the increase of the pump laser
strength, more photons are scattered into the cavity mode,
but on the other, the decrease in the atoms number weakens
the collective scattering effect, leading to a maximum value
of |α|2. Finally, the d-orbital Mott-insulating phase appears,
which yields a fixed atom number and stabilizes the super-
radiant phase. We note that by tuning the light shift L × U0,
a Mott-insulator phase with different filling can be achieved
(see Sec. A 3).

Because they are relevant to the experiments, we also map
out phase diagrams as a function of cavity detuning 
c and
pump lattice depth Vp for a fixed filling ni = ∑

σ 〈b̂†
i,σ b̂i,σ 〉 =

2, with Nlat × U0 = 240Er [Fig. 3(a)] and Nlat × U0 = 400Er

[Fig. 3(b)]. Three different phases exist for the parameters
studied here, including the SFs, SFd , and MId phases, where
the d-orbital phases occupy a large part of the phase diagrams,
indicating large opportunities for experimental observation.
As expected, both SFd and MId phases appear for a stronger
coupling between the atoms and cavity mode, as shown in
Fig. 3(b). One the other hand, only the SFd phase appears for
a weaker atom-cavity coupling, as shown in Fig. 3(a).

B. P-orbital population for an imperfect reflection

In this part, we discuss an imperfect reflection of the pump
laser, η < 1. Here, V̂2 �= 0 scatters atoms to the p-orbital band.
This process competes with the V̂1 term, which excites atoms
to the d-orbital band. Therefore, both p- and d-orbital degrees
of freedom come into play, indicating even richer physics, as
shown in Fig. 4.

We observe four stable phases, including the SFs,
SFd , (p + d)-orbital superfluid (SFp+d ), and (p + d)-orbital
Mott-insulating (MIp+d ) phases. As expected, the system is an
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FIG. 4. Phase diagram of ultracold bosonic gases trapped in an
optical cavity, pumped by a blue-detuned laser with an imbalance
parameter η = 0.8, obtained from bosonic dynamical mean-field the-
ory. (a) In addition to the d-orbital populated phase (SFd ), we observe
superposition of the px- and dxy-orbital atoms in the self-organized
superfluid (SFp+d ) and Mott-insulating (MIp+d ) phases. (b) The ratio
of total atom numbers of the p- and d-orbital bands and (c) superfluid
order parameters φpx and φd are shown as a function of the pump
laser depth for a fixed chemical potential μs/Us = 0. The inset in
(b) is a zoom of the main figure for a stronger pump strength. Other
parameters are 
c = 100ωr , κ = 40ωr , and Nlat × U0 = 1200Er .

s-orbital superfluid phase in the absence of cavity photons for
a smaller pumping strength. With the increase of the pumping
power Vp, more photons are scattered into the cavity, and
atoms organize themselves by being first excited to the dxy-
orbital band, stabilizing the SFd phase. Upon further increas-
ing pumping power, the p-orbital band is also populated, and
the system enters a new superfluid phase, SFp+d , with both px-
and dxy-orbital states being populated. Finally, in the strong
pumping limit, the system enters the Mott-insulating phase,
MIp+d , with atoms localized in a superposition of local px and
dxy orbitals. Note here that only a tiny fraction of the atoms
populates in the py-orbital state since scattering atoms to the
py orbital is a higher-order process, as shown in Fig. 1(d).

To characterize the transition between these phases, pop-
ulation ratios in different bands Nd/Np and superfluid order
parameters are utilized, as shown in Figs. 4(b) and 4(c), where
Nσ = ∑

i〈b̂†
i,σ b̂i,σ 〉. We observe that the population in the

d-orbital band increases quickly with the pumping strength.
However, the population of the p-orbital is tiny for a shallow
lattice, indicating the d-orbital phase appears first. When the
pumping strength exceeds a critical value, the p-orbital band
starts to become populated, eventually being the same order
as the d orbital, as shown in the inset of Fig. 4(b). Finally, the
atoms are localized in the absence of superfluid order param-
eters φσ = 0, indicating the appearance of a Mott-insulating
phase, as shown in Fig. 4(c).

We remark here that the population of higher-orbital states
can be tuned by the imbalance η. When η ∼ 1, V1 domi-
nates the scattering processes by transferring atoms into the
d-orbital band, and we do observe a pronounced d-orbital
population with negligible p-orbital excitations (Figs. 2 and
3). For smaller η, V2 dominates the scattering processes by ex-
citing atoms into the p-orbital band due to the relatively small
band gap between the s- and p-orbital bands. For η = 0.6,
we find that 20% of atoms populate in the p-orbital band but
with negligible population in the d-orbital band, as shown in
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(a)

+

np
nd

(b)

Vp /Er

px
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FIG. 5. (a) Phase diagram of ultracold bosonic gases trapped in
an optical cavity, pumped by a blue-detuned laser with an imperfect
reflection η = 0.6. (b) The average population of the atoms in the
p-orbital states np = ∑

i(ni,px + ni,py )/Nlat and the d-orbital state
nd = ∑

i ni,d/Nlat and (c) the order parameter φpx are shown as a
function of the pump laser depth along the line μs = 0.3Us, indicat-
ing the scattering processes involved dominant p-orbital states. The
other parameters are Nlat × U0 = 1200Er and 
c = −20ωr .

Fig. 5(b), where a new phase, the p-orbital superfluid phase
(SFp), is found, defined as |α|2 �= 0 and φp �= 0. As shown
in Fig. 5(a), there are two many-body phases, including the
s-orbital superfluid phase (SFs) in the absence of photons
in the cavity and the p-orbital superfluid phase (SFp) in the
presence of photons in the cavity. Our numerical results thus
confirm the possibility for selectively preparing atoms in dif-
ferent higher-orbital bands in an optical cavity system.

IV. ORBITAL-DENSITY WAVE IN THE
MOTT-INSULATING REGIME

In this part, we discuss the underlying physics of the self-
organized phases, especially in the strongly correlated Mott
regime. Distinct from the emergent superradiant phases with
charge-density waves for a red-detuned cavity, the excited
atoms appear with self-organized orbital-density waves for
the blue-detuned case due to cavity-induced orbital-flip hop-
pings, as shown in Fig. 2(b), where the local total filling is
homogeneous.

To characterized the many-body phenomena, orbital
degrees of freedom are mapped to pseudospins. For example,
one treats the s-orbital atoms as spin ↑ and the d-orbital
and p-orbital atoms as spin ↓ and essentially achieves
a pseudospin-1/2 system in optical lattices. Here, local
magnetism of the system is given by Ŝσ1σ2 , i.e., Ŝsd

x =
1/2(b̂†

i,sb̂i,d + b̂†
i,d b̂i,s), Ŝsd

y = i/2(−b̂†
i,sb̂i,d + b̂†

i,d b̂i,s), and

Ŝsd
z = 1/2(b̂†

i,sb̂i,s − b̂†
i,d b̂i,d ) for the s- and d-orbital degrees

of freedom. Similarly, Ŝspx
x = 1/2(b̂†

i,sb̂i,px + b̂†
i,px

b̂i,s), Ŝspx
y =

i/2(−b̂†
i,sb̂i,px + b̂†

i,px
b̂i,s), and Ŝspx

z = 1/2(b̂†
i,sb̂i,s − b̂†

i,px
b̂i,px )

for the s- and px-orbital degrees of freedom.

A. Orbital-density-wave order for filling
ni = 1 and reflection η = 1

For a perfect reflection of the blue-detuned pump laser with
η = 1, the atoms are transferred from the s- to d-orbital state
with negligible populations in the p-orbital band. Therefore,
we eliminate the terms related to p-orbital degrees of freedom

023315-5
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FIG. 6. (a) Eigenvalues En of the two-site model for perfect
reflection η = 1. (b) Long-range orders of the ground state |g1〉
with ni = 1, calculated by using the parameters obtained via band-
structure simulations. The other parameters are Nlat × U0 = 600Er ,

c = 80ωr , κ = 40ωr , and μs/Us = 0.15.

and rewrite Eq. (7) in the zero-hopping limit,

Ĥ0 = 2Re[α]
∑

i

(−1)iJii
sd (b̂†

i,sb̂i,d + H.c.)

+ Us

2

∑
i

n̂i,s(n̂i,s − 1) + Ud

2

∑
i

n̂i,d (n̂i,d − 1)

+ 2Usd n̂i,sn̂i,d + Usd

2
(b̂†

i,sb̂
†
i,sb̂i,d b̂i,d + H.c.)

−
∑
i,σ

μσ b̂†
i,σ b̂i,σ ,

where it includes the on-site interactions, scattering terms, and
chemical potential.

In the deep Mott-insulating phase with local total filling
ni = 1, the two-site Hamiltonian for sites i and i + 1 can be
written in matrix form under the basis of |s, s〉, |s, d〉, |d, s〉,
|d, d〉,

H0 =

⎛
⎜⎝

−2μs −J1 J1 0
−J1 −μs − μd 0 J1

J1 0 −μs − μd −J1

0 J1 −J1 −2μd

⎞
⎟⎠, (8)

where J1 = 2Re[α]Jii
sd and the states |σ, σ ′〉 =

b̂†
i,σ b̂†

i+1,σ ′ |0, 0〉. All the parameters are obtained from
band-structure simulations.

After diagonalizing the Hamiltonian H0, we obtain the
eigenstates

|gn〉 =
∑
σ,σ ′

An;σ,σ ′ |σ, σ ′〉

= An;s,s|s, s〉 + An;s,d |s, d〉 + An;d,s|d, s〉
+ An;d,d |d, d〉,

with energies En for n = 1, 2, 3, 4. Figure 6(a) shows the
eigenenergies as a function of the pump strength, where the
degeneracy of the ground states is broken due to the large on-
site scattering J1 and the difference in the chemical potential
between the s and d orbitals. Thus, under the ground state |g1〉
in Mott-insulating phase, the corresponding orbital-density
wave order is 〈Ŝsd

x 〉i = −〈Ŝsd
x 〉i+1, as shown in Fig. 6(b), where

〈· · · 〉i denotes the average value for site i. Note here that
the higher-order perturbations as a result of nearest-neighbor
hopping and scattering terms can be neglected, which slightly
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FIG. 7. (a) Eigenvalues En of the two-site model for perfect re-
flection η = 1. (b) Long-range orders for ni = 2 under the ground
state |g1〉, calculated by using the parameters obtained via band-
structure simulations. Other parameters are Nlat × U0 = 600Er , 
c =
80ωr , κ = 40ωr , and μs/Us = 0.8.

changes the eigenenergies but does not influence the orbital-
density wave order.

B. Orbital-density wave order for filling
ni = 2 and reflection η = 1

We now extend the discussion to the case of two atoms
per site with ni = 2 in the deep Mott-insulating phase. In the
basis of |ss, ss〉, |ss, sd〉, |ss, dd〉, |sd, ss〉, |sd, sd〉, |sd, dd〉,
|dd, ss〉, |dd, sd〉, and |dd, dd〉, the two-site Hamiltonian can
be written in matrix form (see Sec. A 4). After diagonalizing
the Hamiltonian, we obtain the eigenstates

|gn〉 =
∑

σ,σ ′,σ ′′,σ ′′′
Bn;σσ ′,σ ′′σ ′′′ |σσ ′, σ ′′σ ′′′〉

= Bn;ss,ss|ss, ss〉 + Bn;ss,sd |ss, sd〉 + Bn;ss,dd |ss, dd〉
+ Bn;sd,ss|sd, ss〉 + Bn;sd,sd |sd, sd〉 + Bn;sd,dd |sd, dd〉
+ Bn;dd,ss|dd, ss〉 + Bn;dd,sd |dd, sd〉
+ Bn;dd,dd |dd, dd〉,

with eigenvalues En for n = 1, 2, . . . , 8, 9 and J1 =
2Re[α]Jii

sd . Here, the states are defined as |σσ ′, σ ′′σ ′′′〉 =
b̂†

i,σ b̂†
i,σ ′ b̂

†
i+1,σ ′′ b̂

†
i+1,σ ′′′ |0, 0〉. For the nondegenerate ground

state |g1〉 [shown Fig. 7(a)], we also obtain 〈Ŝsd
x 〉i = −〈Ŝsd

x 〉i+1

in the d-orbital Mott-insulating phase, as shown in Fig. 7(b).

C. Orbital-density wave order for filling
ni = 1 and reflection η < 1

For an imperfect reflection of the pump laser, the field in
the pump direction is not an ideal standing wave and possesses
some running-wave component. In this case, the s-orbital
atoms can be excited to both the p- and d-orbital states. In the
absence of nearest-neighbor hopping terms, the Hamiltonian
is given by

Ĥ0 = −
∑
i,σ

μσ b̂†
i,σ b̂i,σ + 2Re[α]

×
∑

i

(−1)i
(
Jii

sd b̂†
i,sb̂i,d + Jii

px py
b̂†

i,px
b̂i,py + H.c.

)
+2Im[α]

∑
i

(−1)i
(
Jii

spx
b̂†

i,sb̂i,px + Jii
pyd b̂†

i,py
b̂i,d + H.c.

)
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FIG. 8. (a) Eigenvalues En of the two-site model for imperfect reflection η = 0.8. (b) Long-range orders for the s orbital and px orbital with
ni = 1, calculated by using the real parameters obtained via band-structure simulations. (c) Long-range orders for the s orbital and d orbital.
Other parameters are Nlat × U0 = 1200Er , 
c = 100ωr , κ = 40ωr , and μs/Us = 0.

+ 1

2

∑
i,σ,σ ′,σ ′′,σ ′′′

Uσσ ′σ ′′σ ′′′ b̂†
i,σ b̂†

i,σ ′ b̂i,σ ′′ b̂i,σ ′′′ .

Without loss of generality, we focus on the case with filling
ni = 1 in the deep Mott-insulating phase. In the basis of |s, s〉,
|s, px〉, |s, d〉, |px, s〉, |px, px〉 |px, d〉, |d, s〉, |d, px〉, and |d, d〉
the two-site Hamiltonian can be written in matrix form (see
Sec. A 4).

After diagonalizing the Hamiltonian, the eigenstates are
given by

|gn〉 =
∑
σ,σ ′

Cn;σ,σ ′ |σ, σ ′〉

= Cn;s,s|s, s〉 + Cn;s,px |s, px〉 + Cn;s,d |s, d〉 + Cn;px,s|px, s〉
+Cn;px,px |px, px〉 + Cn;px,d |px, d〉 + Cn;d,s|d, s〉
+Cn;d,px |d, px〉 + Cn;d,d |d, d〉,

with eigenenergies En for n = 1, 2, . . . , 8, 9, as shown in
Fig. 8(a). The long-range orders under the ground state |g1〉
are given by 〈Ŝspx

x 〉i = −〈Ŝspx
x 〉i+1 and 〈Ŝsd

x 〉i = −〈Ŝsd
x 〉i+1, as

shown in Figs. 8(b) and 8(c).

V. EXPERIMENTAL DETECTIONS

For a perfect reflection of the pump laser, only s- and d
-orbital atoms exist in the self-organized phase; the band-
mapping techniques [18,68–70] can be used to distinguish
atoms in different bands since the atoms mainly populate in
the quasimomentum state k = (0, 0) for the s-orbital state and
in k = (π, π ) for the d-orbital one. But for the imperfect
reflection, both the p- and d-orbital atoms mainly populate
at the same point, k = (π, π ). In this case, the population
in higher-orbital bands can be measured from the images by
nonadiabatically switching off the lattice [21,71,72].

VI. CONCLUSIONS

We study strongly interacting ultracold bosonic gases cou-
pled to a high-finesse optical cavity pumped by a blue-detuned
laser in the transverse direction. In contrast to the red-detuned
case, we find that atoms can be excited into higher-orbital
bands and self-organize into stable higher-orbital superfluid
and Mott-insulating phases. By controlling the reflection of
the pump laser, we find that atoms can be selectively pumped
to the p- or d-orbital band of a two-dimensional square lattice,

providing different mechanics for controlling higher-orbital
many-body phenomena. Our current setup involves only the
square lattice and a single-mode cavity. Further work can
be extended to complex lattice structures and multiple-cavity
modes, where orbital frustrations come into play, inducing
even richer many-body orbital phenomena.
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d-orbital superfluid phase (SFd ) in the presence of photons in the
cavity, and the d-orbital Mott-insulating phase (MId ) with localized
d-orbital atoms. Other parameters are 
c = 80ωr and κ = 40ωr .

APPENDIX

1. Extended Bose-Hubbard model

Following the standard procedures, the Hamiltonian

Ĥ =
∫

dx	̂†(x)

(
− h̄2

2m
∇2 + ηVpsin2(kpy)

+U0sin2(kcx)â†â + V̂1,scat + V̂2,scat

)
	̂(x)

+ g

2

∫
dx	̂†(x)	̂†(x)	̂(x)	̂(x) − h̄
câ†â, (A1)

with V̂1,scat = (1+η)
2

√
VpU0(â + â†)sin(kcx)sin(kpy) and

V̂2,scat = i (1−η)
2

√
VpU0(â − â†)sin(kcx)cos(kpy), can be

rewritten in the Wannier basis to obtain an extended
Bose-Hubbard model in sufficiently deep lattices. We
expand the atomic field operator in the Wannier basis
set 	̂(x) = ∑

i,σ b̂i,σ wσ (x − xi ), where b̂i,σ (b̂†
i,σ ) is the

annihilation (creation) operator for a Wannier state σ at site
i and wσ (x − xi ) is the Wannier function centered at x = xi

for the s-, px-, py-, and dxy-orbital states. The Bose-Hubbard
Hamiltonian with on-site interactions has the following form:

Ĥ = −
∑
〈i j〉,σ

Ji j
σσ b̂†

i,σ b̂ j,σ −
∑
i,σ

μσ b̂†
i,σ b̂i,σ − h̄
câ†â

+
∑

i,σ1σ2σ3σ4

Uσ1σ2σ3σ4

2
b̂†

i,σ1
b̂†

i,σ2
b̂i,σ3 b̂i,σ4 + V̂1 + V̂2,

(A2)

where μσ ≡ Jii
σσ is the chemical potential and the

coupling between the pump laser and cavity mode
V̂1 = (â + â†)

∑
i j (−1)i(Ji j

sd b̂†
i,sb̂ j,d + Ji j

px py b̂
†
i,px

b̂ j,py + H.c.)

and V̂2 = −i(â − â†)
∑

i j (−1)i(Ji j
spx b̂

†
i,sb̂ j,px + Ji j

pyd b̂†
i,py

b̂ j,d +
H.c.). Here, 〈i, j〉 represents the nearest-neighbor sites i and
j, the coupling matrix elements are

Ji j
σσ = −

∫
dxw∗

σ (x − xi )

(
− h̄2∇2

2m
+ Vlat

)
wσ (x − x j ),

(A3)

Ji j
sd =

∫
dxw∗

dxy
(x − xi )

√
VPU0(1 + η)

2

× sin(kcx) sin(kpy)ws(x − x j ), (A4)

Ji j
px py

=
∫

dxw∗
py

(x − xi )

√
VPU0(1 + η)

2

× sin(kcx) sin(kpy)wpx (x − x j ), (A5)

Ji j
spx

= −
∫

dxw∗
px

(x − xi )

√
VPU0(1 − η)

2

× sin(kcx) cos(kpy)ws(x − x j ), (A6)

Ji j
pyd = −

∫
dxw∗

dxy
(x − xi )

√
VPU0(1 − η)

2

× sin(kcx) cos(kpy)wpy (x − x j ), (A7)

Uσ1σ2σ3σ4 =
∫

dxw∗
σ1

(x − xi )w
∗
σ2

(x − xi )

× 4π h̄2as

m
wσ3 (x − xi )wσ4 (x − xi ), (A8)

and the on-site interaction terms read

∑
i,σ1σ2σ3σ4

Uσ1σ2σ3σ4

2
b̂†

i,σ1
b̂†

i,σ2
b̂i,σ3 b̂i,σ4 =

∑
i

( ∑
σ1 �=σ2 �=σ3 �=σ4

Ui,σ1σ2σ3σ4

(
b̂†

i,σ1
b̂†

i,σ2
b̂i,σ3 b̂i,σ4 + H.c.

) +
∑

σ

Ui,σ

2
n̂i,σ (n̂i,σ − 1)

+
∑

σ1 �=σ2

2Ui,σ1σ2 n̂i,σ1 n̂i,σ2 +
∑

σ1 �=σ2

Ui,σ1σ2

2

(
b̂†

i,σ1
b̂†

i,σ1
b̂i,σ2 b̂i,σ2 + H.c.

))
, (A9)

where Vlat = ηVp sin2(kpy) in the pump direction and Vlat = (Vcl + U0â†â) sin2(kcx) in the cavity direction, with Vcl being an
external optical lattice added in the cavity direction to validate the tight-binding model.

In order to simplify the effective Hamiltonian, we take the coherent-state approximation and represent the cavity mode by a
complex amplitude α. In this case, the system depends on only the average photon number and is given by

Ĥ = −
∑
〈i j〉,σ

Ji j
σσ

(
b̂†

i,σ b̂ j,σ + H.c.
) +

∑
i,σ1σ2σ3σ4

Uσ1σ2σ3σ4

2
b̂†

i,σ1
b̂†

i,σ2
b̂i,σ3 b̂i,σ4 −

∑
i,σ

μσ b̂†
i,σ b̂i,σ − h̄|α|2
c + 2Re[α]

×
∑

i j

(−1)i
(
Ji j

sd b̂†
i,sb̂ j,d + Ji j

px py
b̂†

i,px
b̂ j,py + H.c.

) + 2Im[α]
∑

i j

(−1)i
(
Ji j

spx
b̂†

i,sb̂ j,px + Ji j
pyd b̂†

i,py
b̂ j,d + H.c.

)
, (A10)
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where

α =
∑

i(−1)i
〈
Jii

sd b̂†
i,sb̂i,d + Jii

px py
b̂†

i,px
b̂i,py + H.c. + i

(
Jii

spx
b̂†

i,sb̂i,px + Jii
pyd b̂†

i,py
b̂i,d + H.c.

)〉

c − ∑

i,σ 〈Jσ b̂†
i,σ b̂i,σ 〉 + iκ

,

with Jσ = ∫
dxw∗

σ (x − xi )U0 sin2(kx)wσ (x − xi ) and κ being the decay rate of the cavity mode. We remark here that all the
Hubbard parameters are obtained from the band-structure simulations, where the nearest-neighbor-hopping amplitudes for
the lowest two bands are compared with the data from Ref. [66], as shown in Fig. 9. Actually, in a deep optical lattice,
the localized wave functions can be described as the product of two Wannier functions for each direction, ws(x − xi ) =
ws(x)ws(y), wpx (x − xi ) = wp(x)ws(y), wpy (x − xi ) = ws(x)wp(y), and wdxy (x − xi ) = wp(x)wp(y), where ws(x) and wp(x)
[ws(y) and wp(y)] denote the Wannier functions of the two lowest Bloch bands of a one-dimensional lattice in the x (y)
direction.

2. Bosonic dynamical mean-field theory

a. BDMFT equations

We derive a self-consistent equation within bosonic dynamical mean-field theory (BDMFT) by using the cavity method [73],
which is suitable for the high- but finite-dimensional optical lattice. The effective action of the impurity site up to subleading
order in 1/z is described in the standard way [58,73]:

S(0)
imp =

∫ β

0
dτdτ ′ ∑

σ1,σ
′
1,σ2,σ

′
2

(
b∗

0,σ1
(τ )

b0,σ1 (τ )

)T

G−1
0,σ1σ2σ

′
1σ

′
2
(τ − τ ′)

(
b0,σ2 (τ ′)
b∗

0,σ2
(τ ′)

)
−

∫ β

0
dτ

∑
〈0 j〉,σ1,σ

′
1

(−1)δσ1σ ′
1
+1

J0 j
σ1σ

′
1

[
b∗

0,σ1
(τ )φ j,σ ′

1
(τ ) + H.c.

]

+
∫ β

0
dτ

⎛
⎝∑

σ1,σ
′
1

J00
σ1σ

′
1
b∗

0,σ1
(τ )b0,σ ′

1
(τ ) + H.c. + 1

2

∑
σ1σ2σ3σ4

Uσ1σ2σ3σ4 b(0)∗
σ1

(τ )b(0)∗
σ2

(τ )b(0)
σ3

(τ )b(0)
σ4

(τ )

⎞
⎠. (A11)

To shorten the effective action, J00
σ1σ

′
1

denotes the on-site scattering induced by the cavity mode and pump laser, and J0 j
σ1σ

′
1

are
the nearest-neighbor hopping terms induced by the kinetic energy and the pump-cavity scattering. The Weiss Green’s function
(8 × 8 matrix) is defined as

G−1
0,σ1σ2σ

′
1σ

′
2
(τ − τ ′)

=
(

(∂τ ′ − μσ1 )δσ1σ2 + ∑
〈0 j〉,〈0 j′〉 J0 j

σ1σ
′
1
J0 j′
σ2σ

′
2
G1

j, j′,σ ′
1,σ

′
2
(τ, τ ′)

∑
〈0 j〉,〈0 j′〉 J0 j

σ1σ
′
1
J0 j′
σ2σ

′
2
G2

j, j′,σ ′
1,σ

′
2
(τ, τ ′)∑

〈0 j〉,〈0 j′〉 J0 j
σ1σ

′
1
J0 j′
σ2σ

′
2
G∗2

j, j′,σ ′
1,σ

′
2
(τ ′, τ ) (−∂τ ′ − μσ1 )δσ1σ2 + ∑

〈0 j〉,〈0 j′〉 J0 j
σ1σ

′
1
J0 j′
σ2σ

′
2
G1

j, j′,σ ′
1,σ

′
2
(τ ′, τ )

)
,

(A12)

and we introduce

φ j,σ1
(τ ) ≡ 〈b j,σ1 (τ )〉0 (A13)

as the superfluid order parameters and

G1
j, j′,σ ′

1,σ
′
2
(τ, τ ′) = 〈b j,σ ′

1
(τ )b∗

j′,σ ′
2
(τ ′)〉(0) − φ j,σ ′

1
(τ )φ∗

j′,σ ′
2
(τ ′), (A14)

G2
j, j′,σ ′

1,σ
′
2
(τ, τ ′) = 〈b j,σ ′

1
(τ )b j′,σ ′

2
(τ ′)〉(0) − φ j,σ ′

1
(τ )φ j′,σ ′

2
(τ ′) (A15)

as the diagonal and off-diagonal parts of the connected Green’s functions, respectively. Here, 〈· · · 〉0 takes the expectation value
in the cavity system excluding the impurity site.

b. Anderson impurity model

It is difficult to find a solver analytically for the effective action (A11). Therefore, we return to the Hamiltonian
representation to obtain BDMFT equations. The effective action (A11) can be represented by the Anderson impurity
Hamiltonian

Ĥ (0)
A = −

∑
σ

J0 j
σσ

[(
φ(0)∗

σ b̂(0)
σ + H.c.

)
− μσ n̂(0)

σ

]
+ 1

2

∑
σ1σ2σ3σ4

Uσ1σ2σ3σ4 b(0)∗
σ1

(τ )b(0)∗
σ2

(τ )b(0)
σ3

(τ )b(0)
σ4

(τ )

+ 2Re[α]
(
J0 j

sd b̂(0)∗
s φ

(0)
d + J0 j

px py
b̂(0)∗

px
φ(0)

py
+ H.c.

) + 2Im[α]
(
J0 j

spx
b̂(0)∗

s φ(0)
px

+ J0 j
pyd b̂(0)∗

py
φ

(0)
d + H.c.

)
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+ 2Re[α]
(
J00

sd b̂(0)∗
s b̂(0)

d + J00
px py

b̂(0)∗
px

b̂(0)
py

+ H.c.
) + 2Im[α]

(
J00

spx
b̂(0)∗

s b̂(0)
px

+ J00
pyd b̂(0)∗

py
b̂(0)

d + H.c.
)

+
∑

l

εl â
†
l âl +

∑
l,σ

(
Vσ,l â

†
l b̂(0)

σ + Wσ,l âl b̂
(0)
σ + H.c.

)
, (A16)

where the on-site terms including the chemical potential, interaction, and on-site scattering terms are directly inherited from the
Hubbard Hamiltonian. BDMFT couples two different baths, where the condensed bath of bosons is represented by the Gutzwiller
term with superfluid order parameters φ(0)

σ for the s-, px-, py-, and dxy-orbital states. The normal bath of bosons is described
by a finite number of orbitals with creation operators â†

l and energies εl , where these orbitals are coupled to the impurity
via normal-hopping amplitudes Vσ,l and anomalous-hopping amplitudes Wσ,l , which are needed to generate the off-diagonal
elements of the hybridization functions.

To obtain the solution of the impurity model, the Anderson Hamiltonian is straightforwardly implemented in the Fock basis,
and the corresponding solution can be achieved by exact diagonalization of dynamical mean-field theory [59,73].

3. Phase diagrams for different Hubbard parameters with η = 1

We remark here that there is an intermediate parameter regime for the coupling Nlat × U0 where the scattering processes
become pronounced, in contrast to the red-detuned case with larger coupling favoring self-organization of atoms. For a system
with a perfect reflection with η = 1, we observe various interesting phases in the blue-detuned system which are stable for a
large range of parameters. For example, we show the d-orbital superfluid and Mott-insulating phases for fillings ni = 1 and 2
in Fig. 2. In this section, we discuss these phases in different parameter regimes. As shown in Figs. 10(a) and 10(b), there are
also three many-body phases, including the s-orbital superfluid phase (SFs) in the absence of photons in the cavity, the d-orbital
superfluid phase (SFd ) in the presence of photons in the cavity, and the d-orbital Mott-insulating phase (MId ) with localized
d-orbital atoms.

4. The two-site Hamiltonian

a. Filling ni = 2 and reflection η = 1

In the basis of |ss, ss〉, |ss, sd〉, |ss, dd〉, |sd, ss〉, |sd, sd〉, |sd, dd〉, |dd, ss〉, |dd, sd〉, and |dd, dd〉 the two-site Hamiltonian

Ĥ0 = 2Re[α]
∑

i

(−1)iJii
sd

(
b̂†

i,sb̂i,d + H.c.
) + Us

2

∑
i

n̂i,s(n̂i,s − 1) + Ud

2

∑
i

n̂i,d (n̂i,d − 1) + 2Usd n̂i,sn̂i,d

+ Usd

2

(
b̂†

i,sb̂
†
i,sb̂i,d b̂i,d + H.c.

) −
∑
i,σ

μσ b̂†
i,σ b̂i,σ (A17)

can be written as

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0,(1,1) −J1 Usd J1 0 0 Usd 0 0
−J1 H0,(2,2) −J1 0 J1 0 0 Usd 0
Usd −J1 H0,(3,3) 0 0 J1 0 0 Usd

J1 0 0 H0,(4,4) −J1 Usd J1 0 0
0 J1 0 −J1 H0,(5,5) −J1 0 J1 0
0 0 J1 Usd −J1 H0,(6,6) 0 0 J1

Usd 0 0 J1 0 0 H0,(7,7) −J1 Usd

0 Usd 0 0 J1 0 −J1 H0,(8,8) −J1

0 0 Usd 0 0 J1 Usd −J1 H0,(9,9)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A18)

with J1 = 2Re[α]Jii
sd and H0,(1,1) = −4μs + 2Us, H0,(2,2) = −3μs − μd + Us + 2Usd , H0,(3,3) = −2μs − 2μd + Us + Ud ,

H0,(4,4) = −3μs − μd + Us + 2Usd , H0,(5,5) = −2μs − 2μd + 4Usd , H0,(6,6) = −μs − 3μd + Ud + 2Usd , H0,(7,7) = −2μs −
2μd + Us + Ud , H0,(8,8) = −μs − 3μd + Ud + 2Usd , and H0,(9,9) = −4μd + 2Ud .

b. Filling ni = 1 and reflection η < 1

In the basis of |s, s〉, |s, px〉, |s, d〉, |px, s〉, |px, px〉 |px, d〉, |d, s〉, |d, px〉, and |d, d〉 the two-site Hamiltonian

Ĥ0 = 2Re[α]
∑

i

(−1)i
(
Jii

sd b̂†
i,sb̂i,d + Jii

px py
b̂†

i,px
b̂i,py + H.c.

) + 2Im[α]
∑

i

(−1)i
(
Jii

spx
b̂†

i,sb̂i,px + Jii
pyd b̂†

i,py
b̂i,d + H.c.

)

+ 1

2

∑
i,σ,σ ′,σ ′′,σ ′′′

Uσσ ′σ ′′σ ′′′ b̂†
i,σ b̂†

i,σ ′ b̂i,σ ′′ b̂i,σ ′′′ −
∑
i,σ

μσ b̂†
i,σ b̂i,σ (A19)
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can be written as

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2μs −J2 −J1 J2 0 0 J1 0 0
−J2 −μs − μpx 0 0 J2 0 0 J1 0
−J1 0 −μs − μd 0 0 J2 0 0 J1

J2 0 0 −μs − μpx −J2 −J1 0 0 0
0 J2 0 −J2 −2μpx 0 0 0 0
0 0 J2 −J1 0 −μpx − μd 0 0 0
J1 0 0 0 0 0 −μs − μd −J2 −J1

0 J1 0 0 0 0 −J2 −μpx − μd 0
0 0 J1 0 0 0 −J1 0 −2μd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A20)

where J1 = 2Re[α]Jii
sd and J2 = 2Im[α]Jii

spx
.
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