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Universal dynamics of a turbulent superfluid Bose gas
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We study the emergence of universal scaling in the time-evolving momentum distribution of a harmonically
trapped three-dimensional Bose-Einstein condensate, parametrically driven to a turbulent state. We demonstrate
that the out-of-equilibrium dynamics post excitation is described by a single function due to nearby nonthermal
fixed points. The observed behavior connects the dynamics of a quantum turbulent state to several far-from-
equilibrium phenomena. We present a controllable protocol to explore universality in such systems, obtaining
the associated scaling exponents. Our experimental results thus offer a promising route to investigate the complex
dynamics of the quantum turbulent regime.
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I. INTRODUCTION

Understanding how closed many-body quantum systems
relax and thermalize when initially prepared far from equilib-
rium is one of the fundamental questions in modern physics.
The topic is relevant to many areas of research, from cosmol-
ogy [1] to high-energy physics [2]. However, despite intensive
studies, many questions are still open. Experiments based
on ultracold trapped atoms allow for a precise control and
direct observation of their quantum dynamics, accelerating
the progress in this direction [3–10]. At the same time, this
experimental approach is boosted by theoretical models that
provide a framework to describe this complex phenomenol-
ogy [11–13]. In particular, it has been recently proposed that
out-of-equilibrium quantum systems can be categorized into
classes with universal dynamical behavior, in analogy to uni-
versality arising from thermal-fixed points in theories of phase
transition [14,15]. In this dynamical counterpart, however,
universality emerges due to the presence of so-called nonther-
mal fixed points (NTFPs)—metastable states of the perturbed
quantum many-body system. At the vicinity of these points,
far-from-equilibrium systems show no traces of their initial
conditions and have their dynamical evolution characterized
by only a few parameters [15]. These ideas have successfully
described many different out-of-equilibrium phenomena in a
generalized manner [2,11,16–20].

A paradigmatic example of far-from-equilibrium dynam-
ics for which such universal description is predicted to hold
is the quantum turbulent regime in quantum fluids [11].

*Corresponding author: madeira@ifsc.usp.br

Quantum turbulence arises when many quantum vortices tan-
gle with one another [21–26] and also when nonlinear density
waves combine randomly [27]. A distinctive hallmark of the
turbulent regime is the emergence of an energy cascade that
corresponds to an atomic momentum distribution described
by a power law over a certain range of wave numbers [22,28].
This cascade mechanism is related to a nondissipative, self-
similar energy transfer between length scales and it reflects the
nonlinear dynamics of a turbulent regime [22,24,29]. There
are intrinsic difficulties to identify and characterize quan-
tum turbulence in trapped Bose-Einstein condensates (BECs)
based on the power-law behavior alone [24,25], hence alterna-
tives have been proposed, such as particle and energy fluxes
[30–33] and entropy related quantities [34].

In this work, we report the observation of universal dy-
namics of a far-from-equilibrium three-dimensional (3D),
harmonically trapped 87Rb BEC, which is driven to reach a
turbulent regime [21,22]. By performing a scaling analysis of
the time-evolving momentum distribution n(k, t ), we identify
a self-similar and universal behavior. This can be charac-
terized by a single universal function, with time and space
rescaled by characteristic exponents, α and β. We also verify
that three different excitation amplitudes lead to the same scal-
ing, suggesting a universal behavior even for distinct initial
conditions. In this context, the exponents we extract imply
a direct particle cascade, not yet reported in other systems.
Our observations in such a distinct scenario corroborate the
generality of universal dynamics near NTFPs.

This work is structured as follows. We provide a brief
description of the experimental procedure in Sec. II. In
Sec. III, we present the out-of-equilibrium momentum dis-
tributions we obtain. These are analyzed under the concept
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FIG. 1. A controllable time-varying magnetic potential Uexc with
amplitude A drives the BEC to an out-of-equilibrium state. The
driving potential acts during an excitation time texc, corresponding to
five driving periods τ , and then it is turned off. The system evolves in
the trap for a holding time t , during which there is no external energy
input

of far-from-equilibrium states close to NTFPs in Sec. IV.
In Sec. V we comment on the impact of anisotropy in our
findings. Section VI connects the results we obtained using
a two-dimensional projection of the atomic cloud to the re-
constructed three-dimensional system. Finally, we present our
conclusions in Sec. VII.

II. EXPERIMENTAL SETUP

Our experiment begins with 87Rb BECs having N =
3.5(3) × 105 atoms in the | f = 2, m f = 2〉 internal state
in a quadrupole-Ioffe configuration (QUIC) magnetic trap
characterized by the frequencies ωr/2π = 130.7(8) Hz and
ωx/2π = 21.8(2) Hz. The initial equilibrium BEC has a
condensate fraction of 70(5)%, chemical potential μ0/kB =
124(5) nK and healing length ξ0 = 0.15(2) μm.

To drive the BEC out of equilibrium we superimpose
to the QUIC potential a controllable time-varying mag-
netic field gradient that creates a potential Uexc(r, t ) = A[1 −
cos (�t )]x′/	x, where 	x = 42 μm is a parameter related to
the potential acting on the BEC cloud along the coordinate
x of the trap, as depicted in Fig. 1. This is produced by an
additional pair of coils in an anti-Helmholtz configuration [21]
rotated by a small angle (≈5◦) with respect to the principal
axis of the QUIC trap. The prime in the x′ coordinate indicates
that it is to be calculated in the rotated frame. The application
of Uexc corresponds to an effective 3D rotation and distortion
of the original trap shape [35]. We verified that our parametric
drive couples the dipole mode to shape excitations, such as
quadrupolar and scissor modes [36].

In the experiment, we apply a continuous oscillating drive
with frequency �/2π = 132.8 Hz, during a time texc = 5τ ,
where τ = 2π/�, and the amplitude A is tuned, ranging from
from 0 to 2.8μ0. Using this protocol, we thus drive a BEC
in initial thermal equilibrium to a far-from-equilibrium state.
After the excitation is turned off, the gas is then let to evolve
in the trap for variable holding times t , where the universal
scaling dynamics occurs.

To probe the state of the gas after a time t , we turn
off the trap potential and take absorption images following
the ballistic expansion of the cloud after a time of flight
(ToF) of tToF = 30 ms. The atoms are detected using stan-
dard absorption imaging, which gives access to the density
distribution in ToF, n(r). During the expansion the momentum
of the particles is approximately conserved, thus the density

FIG. 2. Momentum distributions changing the time of flight
(tToF) for (a) a quasipure BEC and (b) an out-of-equilibrium BEC.
The momentum distribution converges rapidly for high k. The n(k)
curves overlap for tToF � 28 ms, which is consistent with mR/(h̄k).
The shaded regions correspond to the experimental uncertainties.

distribution after expansion converges to the in situ momen-
tum distribution of the cloud. Therefore, n(k) is obtained from
n(r) by defining k ≡ mr/(h̄tToF).

The ToF technique requires a kinetic-energy-dominated
state to accurately provide the in situ momentum distribution
of the cloud, such is the case of a turbulent state [37]. In
practical terms, this can be achieved for tToF sufficiently larger
than mR/(h̄k), where R is the in situ cloud size. The validity
of this method has been extensively discussed in the literature,
and this technique has been used successfully to obtain the
momentum distribution of turbulent trapped BECs in previous
works [22,28].

We assess the validity of this method by changing the
expansion time and comparing the resulting distributions, as
shown in Fig. 2 for (a) a quas-pure BEC and (b) an out-of-
equilibrium BEC. In both panels of Fig. 2, after tToF = 28 ms
all n(k) curves converge to the same distribution within the
experimental uncertainty.

III. OUT-OF-EQUILIBRIUM DISTRIBUTIONS

The momentum distribution ñ(k, t ) is obtained from the
two-dimensional projection of the cloud. Averaging and ap-
propriately transforming position (x and y) into momentum
(kx and ky) as in x = h̄tToFkx/m (and similarly for y), we
obtain the projections of the in situ momentum distributions
ñ(k), k = (k2

x + k2
y )1/2, for each instant t of the evolution time

after the excitation. The normalized momentum distribution is
given by n(k, t ) = ñ(k, t )/N (t ), where N (t ) is the total num-
ber of atoms at the holding time t . Figure 3 depicts N (t ) for
an atomic cloud in equilibrium, and also for finite excitation
amplitudes.

In Figs. 4(a) and 4(b) we show the integration of in-plane
density profiles, resulting in on-axis distributions, obtained
from absorption images after t = 84 ms for a BEC both in
equilibrium and driven by an amplitude A = 2.2μ0, respec-
tively. In Fig. 4(a), the usual bimodal n(k) of a BEC in
thermal equilibrium is displayed, with a high-density peak
region corresponding to the occupation of a condensate frac-
tion (the well-known Thomas-Fermi regime) and the Gaussian
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FIG. 3. Number of atoms as a function of time for the condensate
in equilibrium (A = 0), and three different excitation amplitudes,
A = 1.8, 2.0, and 2.2μ0. The shaded region corresponds to the time
window when the universal scaling is observed.

distribution (blue line) due to a thermal component. For a
BEC driven to a turbulent state, the system exhibits a broad-
ened momentum distribution. The central peak is shrunk as a
consequence of particle removal from lower momenta. At the
same time, the tails show a departure from the Gaussian shape
to an exponential dependence, as depicted in Fig. 4(b). The
latter is a signature of deviation from equilibrium caused by
the driving potential.

In Fig. 5, we show typical momentum distributions for a
fixed time t = 35 ms and different excitation amplitudes A
after performing an angular average over the in-plane momen-
tum shells of radius k. Hereafter we chose not to include error

FIG. 4. Momentum distributions for t = 84 ms integrated along
ẑ. (a) Without excitation (A = 0.0μ0), the BEC is characterized by a
central peak for low momenta and a Gaussian (blue line) distribution
for the thermal component. (b) When the excitation amplitude is
large enough, in this case A = 2.2μ0, a far-from-equilibrium turbu-
lent regime is reached, and the distribution for atoms with higher
momentum shows the transition to a clear non-Gaussian distribution.

FIG. 5. Momentum distributions n(k, t = 35 ms) for different
excitation amplitudes. The establishment of a turbulent state is
supported by the power-law behavior in the momentum range
10 μm−1 � k � 17 μm−1.

bars in the figures concerning the momentum distributions
for clarity. Typically they are of the order of 10% and do
not exceed 15%. For fixed excitation times, as A increases,
population at higher momenta grows. A power-law behav-
ior appears in the momentum distribution, n(k) ∝ k−3.1(1),
over a k range of 10 μm−1 � k � 17 μm−1 and within the
time window 20 ms � t � 70 ms for excitation amplitudes
of 1.8μ0 � A � 2.2μ0. This signals an energy cascade and
thus the emergence of a turbulent state in the sample under
consideration, as observed in other previous experiments [22].
After t ≈ 100 ms, the transient turbulent state decays, thus
relaxing toward thermalization. For A � 2.4μ0, we verified
that the final state is a thermal gas, indicating that the drive
has injected enough energy to fully deplete the condensate.

IV. UNIVERSAL SCALING

Once the system is driven out of equilibrium, we cease
the parametric excitation and let the turbulent state enter
a relaxation and thermalization dynamics, and the tempo-
ral evolution of the system is recorded. We now analyze
these distributions under the concept of universal dynam-
ics exhibited by far-from-equilibrium quantum systems close
to NTFPs [4,6,10,13,15,20]. It has been proposed [18] that
far-from-equilibrium closed systems that belong to a cer-
tain universality class should exhibit their universal character
through the distribution n(k, t ), which scales in time and mo-
mentum following the form

n(k, t ) =
( t

t0

)α

F

[( t

t0

)β

k

]
, (1)

with t0 being an arbitrary reference time within the period in
which n(k, t ) shows scaling properties. The α and β exponents
must be universal and independent of the initial conditions
of the system. This being true, it shows that, over a certain
momentum range, the distribution n(k, t ) of the decaying
turbulent system depends on space and time only through a
single universal function F (k).

We extracted the universal scaling exponents in Eq. (1) fol-
lowing closely the procedure adopted in Ref. [6], which was
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FIG. 6. Likelihood functions LA(α, β ) for three different excitation amplitudes, 1.8μ0 (a), 2.0μ0 (b), and 2.2μ0 (c), and the product of all
likelihood functions (d). For panels (a)–(c) we divide the function χ2(α, β ) by its minimum value, which we denote by χ2

0 (α, β ), so that the
maximum value of LA(α, β ) is the same for all excitation amplitudes. This choice does not affect the procedure to obtain the exponents, since
the Gaussian fits to the marginal likelihood functions, shown in the left and bottom panels of each figure, are just multiplied by a constant.
Note that the combined likelihood function (d) is much more localized than the individual excitation amplitudes, as we would have expected.

done in the context of a far-from-equilibrium one-dimensional
Bose gas emerging from a strong cooling quench of a three-
dimensional system. We minimized the function

χ2(α, β ) = 1

N2
t

tNt∑
t=t1

tNt∑
t0=t1

χ2
α,β (t, t0), (2)

where we average both the times t and reference times t0 over
all the Nt holding times {t1, . . . , tNt }. The function χ2

α,β (t, t0)
is given by

χ2
α,β (t, t0) =

∫ k f

ki

dk
{(t/t0)αn[(t/t0)βk, t0] − n(k, t )}2

σ [(t/t0)βk, t0]2 + σ (k, t )2
, (3)

where σ (k, t ) corresponds to the standard deviation of the
mean. The quantities n(k, t ) and σ (k, t ) are normalized by the
total number of atoms, n(k, t ) = ñ(k, t )/N (t ) and σ (k, t ) =
σ̃ (k, t )/N (t ). The integration in Eq. (3) is done over a k
range [ki, k f ]. We chose ki to be the lowest value available
from the experimental data, and k f was varied to guarantee
that the results are independent of our choice. We found that
the exponents are insensitive to variations of δk ≈ 0.5 μm−1

around k f = 10 μm−1 and δt ≈ 5 ms (i.e., increasing or
decreasing the initial and final times of the scaling window),
within reasonable limits.

The values of α and β are estimated through a likelihood
function,

LA(α, β ) = exp
[− 1

2χ2(α, β )
]
, (4)

where the subscript A is a label for the different excitation
amplitudes. In Figs. 6(a)–6(c) depict these functions for A =
1.8, 2.0, and 2.2μ0, respectively. The values of the exponents
and their uncertainties are determined from a Gaussian fit of
the marginal-likelihood functions,

Lα,A(α) =
∫

dβ LA(α, β ),

Lβ,A(β ) =
∫

dα LA(α, β ), (5)

which are shown in the bottom and left panels of Figs. 6(a)–
6(c). Since these amplitudes produced essentially the same
exponents, the values of α and β and their uncertainties are
estimated from the combined likelihood function,

L(α, β ) =
∏

A

LA(α, β ), (6)

shown in Fig. 6(d).
The temporal evolution of the system is recorded for

different excitation amplitudes, A = 1.8, 2.0, and 2.2μ0, as
shown in Figs. 7(a), 7(c) and 7(e). As we wait longer, the
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FIG. 7. (a),(c),(e) Momentum distributions of turbulent states for excitation amplitudes of A = 1.8, 2.0, and 2.2μ0 and different holding
times t . (b),(d),(f) After the rescaling, we see that all distributions collapse into a single curve, signaling universal dynamical behavior in the
turbulent regime. The exponents characterizing this universality class are α = −0.50(8) and β = −0.2(4). The vertical dashed line indicates
the cutoff ks of the infrared region, where the universal scaling following Eq. (1) is observed.

distributions evolve, promoting more population from low to
high momentum values. The rescaling of the different dis-
tributions is provided in Figs. 7(b), 7(d), and 7(f) for the
infrared region (k � ks = 7 μm−1), showing that all data for
different times fall onto a single curve, with scaling exponents
α = −0.50(8) and β = −0.2(4).

This self-similar evolution for the infrared momentum
range is related to the transport of particles in our closed sys-
tem during the selected time window. Two global quantities
can be defined,

N =
∫

|k|�(t/t0 )−βks

dd k n(k, t ) ∝
( t

t0

)α−dβ

, (7)

M2 =
∫

|k|�(t/t0 )−βks

dd k k2 n(k, t )

N (t )
∝

( t

t0

)−2β

, (8)

where ks defines the high-momentum cutoff for the scaling
region. We determined this characteristic scale by comparing
each of the scaled momentum distributions with their average.
We considered the value ks = 7.0 μm−1, which corresponds
to a difference greater than one standard deviation.

Self-similarity in this case requires that the particle number
N̄ over that range of scaling is conserved. Figures 8(a)–8(c)
show that there is a slight decrease when the average number
of particles is evaluated in the scaling region k � ks (N̄ ∝ t−0.1
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FIG. 8. Global quantities, as defined in Eqs. (7) and (8), for the excitation amplitudes of A = 1.8, 2.0, and 2.2μ0, panels (a), (b), and (c),
respectively. The shaded region corresponds to the time window in which universal behavior is observed. The left axis is the total number of
particles N̄ over the universality range (ks � 7 μm−1) as a function of t . The mean kinetic energy M2, right axis, increases with time over the
same universal range. The curves follow the theoretical predictions, namely, N̄ ∝ tα−2β and M̄2 ∝ t−2β .

for A = 1.8μ0, for example). Since its time dependence does
not produce abrupt changes, we can consider it approximately
constant in the scaling region. As a consequence of the particle
number being approximately conserved in the dynamics, the
average kinetic energy should increase over this same range,
following M̄2 ∝ t−2β [6]. We indeed observe this buildup
of the energy in the scaling region, as can be verified in
Figs. 8(a)–8(c).

V. ANISOTROPY OF THE ATOMIC CLOUD

The momentum distributions reported in this work are ob-
tained from the expansion of cigar-shaped BECs, which are
anisotropic. In Fig. 9, we show a typical momentum distri-
bution as a function both kx and ky. The universal scaling
of Eq. (1) assumes isotropy of the momentum distribution,
i.e., it depends only on k = (k2

x + k2
y )1/2. Thus, the angular

averaging procedure reported in this work has to be justified.
In this section, we examined the momentum distributions

computed with an angular average only in the regions close
to the major axis of the expanded cloud (which corresponds

to the minor axis of the in situ cloud). We chose an angular
aperture of 30◦ around the major axis, which is denoted by
the ky/kx = tan(90◦ ± 15◦) lines in Fig. 9. In this region,
the distribution is approximately isotropic. The comparison
between the results obtained using only this portion and the
entire momentum distribution can shed light on the impact of
anisotropy in our findings.

The momentum distributions for different excitation ampli-
tudes obtained with this restricted angular average are plotted
in Figs. 10(a) and 10(c). Their normalization is chosen such
that

∫
dk k n(k) = 1 to make comparisons easier with the

momentum distributions reported in the other sections. In
Figs. 10(b) and 10(d) we employ the same exponents reported
in the main text, α = −0.50 and β = −0.2, to scale the n(k)
according to Eq. (1).

It is possible to see that, for all cases, the spread of the
curves is reduced after the scaling has been applied. Hence
anisotropy cannot play a major role in the results reported in
this work. However, it should lead to some corrections since
the collapse of all curves into a single universal function in
Figs. 10(b) and 10(d) is not as good as the one for momentum
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FIG. 9. Momentum distribution for an excitation amplitude of
A = 1.8μ0 and a holding time of t = 60 ms, which is clearly
anisotropic. Momentum distributions for other values of the excita-
tion amplitude and holding times are qualitatively similar. The lines,
given by ky/kx = tan(90◦ ± 15◦), denote two 30◦ angles centered
around the major axis of the expanded cloud.

distributions obtained with the angular average over the whole
cloud. The effect should be magnified as we increase the exci-
tation amplitude because the momentum distributions become
more elongated, which is confirmed by comparing Figs. 10(b)
and 10(d).

VI. SCALING OF A PROJECTED
MOMENTUM DISTRIBUTION

The procedure described so far involves the n(k, t ) ob-
tained from absorption images of the cloud, which correspond
to two-dimensional projections of the three-dimensional sys-
tem. A question that arises is if the exponents obtained
through the projections can be related to those of the three-
dimensional system.

In this section, we employed the subscripts 3D and 2D
to explicitly differentiate the three-dimensional momentum
distribution and its two-dimensional projection measured in
our experiments, respectively. To avoid a cumbersome no-
tation in all other sections, the quantities correspond to the
two-dimensional case, unless stated otherwise.

The Abel transform [38] of a spherically symmetric func-
tion n3D(k) yields its projection on a plane, n2D(k). It is an
integral transformation which can be written as

n2D(k) =
∫ ∞

k
dk′ n3D(k′)k′

√
k′2 − k2

. (9)

The inverse Abel transform has been successfully used in
previous works [22,28] to reconstruct the momentum distri-
bution of a three-dimensional cloud from the two-dimensional
absorption images.

Let us start with an isotropic (for simplicity) three-
dimensional momentum distribution that obeys the universal

scaling near a NTFP,

n3D(k, t ) =
( t

t0

)α3D

F3D

[( t

t0

)β3D

k

]
. (10)

Its projection after a time t is given by Eq. (9),

n2D(k, t ) =
∫ ∞

k
dk′

( t

t0

)α3D F3D
[(

t
t0

)β3D k′] k′
√

k′2 − k2
. (11)

Changing variables and computing the projection at
(t/t0)−β3D k,

n2D

[( t

t0

)−β3D

k, t

]
=

( t

t0

)α3D−β3D
∫ ∞

k
dk̃

F3D(k̃)k̃√
k̃2 − k2

=
( t

t0

)α3D−β3D

F2D(k), (12)

where the last equality comes from identifying the integral as
the Abel transform of the universal function, F3D(k). Finally,
computing the expression for n2D(k, t ),

n2D(k, t ) =
( t

t0

)α3D−β3D

F2D

[( t

t0

)β3D

k

]
. (13)

The expression above is the universal scaling of the projection,

n2D(k, t ) =
( t

t0

)α2D

F2D

[( t

t0

)β2D

k

]
, (14)

provided that we identify

α2D = α3D − β3D and β2D = β3D. (15)

Furthermore, if we assume α3D = 3β3D, which comes from
particle conservation in the scaling region [see Eq. (7)], we ob-
tain particle conservation in the projected system α2D = 2β2D,
and also the relation between the values of α, α2D = 2α3D/3.

These results tell us that the universal scaling of an
isotropic three-dimensional momentum distribution survives
the projection procedure. Hence, it is possible to investi-
gate the scaling of a 3D isotropic system by studying only
its 2D projection without reconstructing the 3D momentum
distribution.

The momentum distributions reported in this work are
not isotropic, as discussed in Sec. V. However, we can still
investigate if these analytical predictions hold. To this end,
we employed the inverse Abel transform [38] to reconstruct
the three-dimensional momentum distributions from their
projections,

n3D(k, t ) = − 1

π

∫ ∞

k
dk′ dn2D(k′, t )

dk′
1√

k′2 − k2
. (16)

Note that there is a derivative of the two-dimensional momen-
tum distribution with respect to the momentum, which has to
be taken numerically and introduces noise.

In Figs. 11(a), 11(d) and 11(g), we present the recon-
struction of the three-dimensional momentum distributions
from their projections using the inverse Abel transform.
They are normalized according to

∫
dk k2n3D(k) = 1 to make

comparisons with the other momentum distributions more
straightforward. We attempt the scaling using the exponents
calculated with the projections, α2D = −0.50 and β2D =
−0.2, in Figs. 11(b), 11(e) and 11(h), which fails to collapse
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FIG. 10. (a),(c) Momentum distributions for the lowest and highest excitation amplitudes considered, A = 1.8 and 2.2μ0, respectively,
obtained with the angular average over only the regions close to the major axis of the expanded cloud. (b),(d) Corresponding scaled momentum
distributions with the exponents α = −0.50 and β = −0.2.

into a single universal function. Using instead our prediction
for the three-dimensional scaling exponents, α3D = 3α2D/2 =
−0.75 and β3D = −0.2, Figs. 11(c), 11(f) and 11(i), the
agreement is improved considerably. This is another piece
of evidence that the impacts due to the anisotropy of the
momentum distribution, although present, do not influence
our main results significantly.

VII. CONCLUSION

Different excitation amplitudes, A = 1.8μ0, 2.0μ0, and
2.2μ0, and therefore distinct initial states, lead to the same
type of distribution with equivalent exponents. They thus be-
long to the same class of universal dynamics. For a thermally
quenched 3D, isotropic and homogeneous Bose gas, numer-
ical and analytical calculations for the infrared region have
predicted the relation α = βd (where d is the dimension of
the system) [18]. Remarkably, our anisotropic, harmonically
trapped system follows the same correspondence for the scal-
ing exponents over a range of amplitudes.

Our exponents, however, do not follow the absolute values
predicted in the numerical simulations of [18], namely, α =
1.66(12) and β = 0.55(3). This disagreement is expected for
several reasons. First of all, despite being 3D, we have a
finite system in an anisotropic trap, imposing inhomogeneity
over large spatial scales. Second, we provide a different route
from quenching protocols to reach a far-from-equilibrium
state in spinless trapped BECs. Some assumptions in [18]

such as equally populating momentum states in the initial
state preparation certainly does not hold in our case, and
may lead the dynamics to different NTFPs. Lastly, we obtain
universal scaling exponents with negative signs. This reveals
a direct particle cascade, which has been observed in pertur-
bative estimates [39] of turbulence thermalization. However,
this is the opposite of Ref. [18] and recent experiments [6,7]
of after-quench dynamics with ultracold gases. The conden-
sation process observed in thermally quenched Bose gases,
forming a quasicondensate at intermediate times via particle-
conserving transport to lower momenta, is absent here.

Surprisingly, the relation between the scaling exponents α

and β still retains the information about the system before the
projection from the absorption imaging. Ideally, it would be
interesting to implement experimental techniques that allow
us to obtain the three-dimensional momentum distribution
directly, and not only its in-plane projection as employed in
this work. Prospective studies might also focus on connecting
the analysis provided here with the concept of the inverse
Kibble-Zurek mechanism [40].

The universal scaling of Eq. (1) relies on two exponents,
which we extracted from the data, and a universal function
F (k), which we present in Figs. 7, 10, and 11. However, we
do not propose a functional form for it, because we would
need to know the mechanisms behind the observed turbulence.
The question of which type of turbulence is generated by a
given excitation is still an open one [25]. It is our intention to
investigate this in detail in future works.
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FIG. 11. (a),(d),(g) Three-dimensional momentum distributions obtained with the inverse Abel transform, Eq. (16), for A = 1.8, 2.0, and
2.2μ0, respectively. (b),(e),(h) Scaled momentum distributions using the exponents α2D = −0.50 and β2D = −0.2. (c),(f),(i) Scaled momentum
distributions using the theoretical prediction for isotropic n3D(k), α3D = 3α2D/2 = −0.75, and β3D = β2D = −0.2. Notice that the collapse into
a universal function is much better using the 3D exponents.

We hope this work serves as motivation to investigate
both anisotropy and nonhomogeneous densities in far-from-
equilibrium systems. We should point out that theoretical
works concerning NTFPs often assume isotropic and homoge-
neous conditions because these premises make the problems
more tractable. Still, we are not aware of any restrictions that
prevent the occurrence of NTFPs in anisotropic nonhomoge-
neous systems.

We observed universal behavior in an atomic superfluid
driven far from equilibrium towards a turbulent state. Our
work helps us to better understand a nonequilibrium-state

evolution while in the vicinity of NTFPs, closely resembling
recent results obtained in other out-of-equilibrium systems
[4–8]. However, our presented analysis shows the validity
of this far-from-equilibrium theory beyond the limits ex-
plored up to this point in these other experiments. Our results
are steps toward merging the quantum turbulence regime in
trapped atomic gases into a class of systems that present
dynamical universality by scaling. The obtained exponents
may motivate future theoretical studies, and our cold-atom
platform might be used to simulate different physical systems
belonging to the same universality class.
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