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High-temperature virial expansion of contour Green’s functions
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High-temperature virial expansion is a powerful tool in equilibrium statistical mechanics. In this paper we
generalize this method to the study of nonequilibrium dynamics based on contour Green’s functions and present
the diagrammatic rules to calculate the virial expansion coefficients. As an application of our theory, we recover
the dynamics of a Bose gas quenched from noninteracting to finite interaction and obtain analytically the long-
time limit of the momentum distribution function of the gas, consistent with previous numerical results.
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I. INTRODUCTION

Understanding the dynamics of quantum systems far from
equilibrium is one of the most pressing problems in the-
oretical many-body physics. Although, for example, the
contour Green’s function introduced by Schwinger [1] and
Keldysh [2] provides a general theoretical frame to solve this
problem, a full description of nonequilibrium dynamics is still
mathematically challenging. Most contour-Green’s-function-
based methods presently available rely to a certain extent on a
perturbation expansion, which either requires a weak coupling
or breaks down at long times of the evolution [3]. When
dealing with quantum many-body dynamics far from equi-
librium or strongly coupled systems, refined methods beyond
straightforward perturbation expansion are demanding.

In this paper we introduce high-temperature virial ex-
pansion into the contour-Green’s-function method. Virial
expansion uses fugacity z = eβμ as an expansion parame-
ter [4], where β and μ are the inverse temperature and
chemical potential, respectively. Virial expansion is expected
to be valid when the thermal wavelength λ = √

2πβ/m is
short compared to the average interparticle distance and
long compared to the range of interactions. As a powerful
nonperturbative method, virial expansion has been widely
used in studying dilute atomic gases [5–23], in particular
strongly interacting systems, and is consistent with exper-
imental results [24–31]. However, most of its applications
are limited to equilibrium systems. Our method combines
virial expansion with the contour Green’s function and can
be applied to strongly interacting and far-from-equilibrium
systems. As an application of our theory, we consider the
dynamics of momentum distribution when a Bose gas is
quenched from noninteracting to finite interactions. This prob-
lem was recently studied by Sun et al. using an operator-based
virial expansion method [32]. We recover their results, and
moreover, compared with the operator-based approach, our
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contour-Green’s-function-based method is expected to be eas-
ier for extension to more general and complicated situations.

II. GENERAL FORMALISM

We consider a system initially in equilibrium at a given
inverse temperature β and chemical potential μ. Without loss
of generality, we assume that the system is governed by a
time-independent Hamiltonian Ĥ0 when t < 0, and the Hamil-
tonian acquires some time dependence and changes to Ĥ (t )
after t = 0.

We define the oriented contour γ which goes from t = 0 to
+∞ and then back to 0 and finally to t = −iβ, as illustrated
in Fig. 1(a). The contour γ consists of three paths: a forward
branch γ−, a backward branch γ+, and a vertical track γM . A
generic point z of γ can lie on γ−, γ+, or γM . We define by
z = t− the point of γ lying on the branch γ− with value t and
by z = t+ the point of γ lying on the branch γ+ with value t .

The Hamiltonian with arguments on γ− and γ+ is defined
according to Ĥ (z = t±) ≡ Ĥ (t ), while the Hamiltonian with
arguments on γM is defined as Ĥ (z) = ĤM ≡ Ĥ0 − μN̂ . Cor-
respondingly, the contour Green’s function is defined as [3]

G(x, z; x′, z′) ≡ −i
Tr[e−βĤMT {ψ̂H (x, z)ψ̂†

H (x′, z′)}]
Tr(e−βĤM )

,

where the subscript H denotes Heisenberg picture and T rep-
resents the contour ordering operator which orders along the
contour γ , moving operators with “later” contour arguments
to the left. By introducing the contour integral, the contour
Green’s function can be rewritten as

G(x, z; x′, z′)

≡ −i
Tr (T {exp[−i

∫
γ

dz̄Ĥ (z̄)]ψ̂ (x, z)ψ̂†(x′, z′)})

Tr (T {exp[−i
∫
γ

dz̄Ĥ (z̄)]})
.

Similar to the case of the equilibrium Green’s function, we
can utilize Wick’s theorem to expand a full contour Green’s
function into a free contour Green’s function, which has the
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FIG. 1. (a) Oriented contour γ in the complex time plane. The
contour consists of a forward and a backward branch along the real
axis between 0 and +∞ and a vertical track going from 0 to iβ. The
branches along the real axis are displaced from the real axis only
for graphical purposes. (b) For the calculation of the dynamics of
momentum distribution of a quenched Bose gas, the contour γ can
be shrunken to a forward branch going from 0 to t and a backward
branch going from t to 0 and does not contain the vertical branch.

form

G0(k; z1, z2) = − i

[
θ (z1, z2) ± 1

eβ(εk−μ) ∓ 1

]
e−iεk (z1−z2 ),

where εk = k2/2m, with m representing the mass of the
constituting atom, the upper (lower) sign refers to bosons
(fermions), and θ (z1, z2) represents the Heaviside function on
the contour, i.e., θ (z1, z2) = 1 if z1 is later than z2 on the
contour and zero otherwise. Here the free contour Green’s
function corresponds to a noninteracting Hamiltonian Ĥ0 =∑

i p2
i /2m.

In the high-temperature limit, the fugacity z = eβμ is
smaller than 1 and the free Green’s function can be expanded
in powers of the fugacity

G0(k; z1, z2)

= −i

[
θ (z1, z2) +

∑
n=1

(±)ne−nβεk zn

]
e−iεk (z1−z2 )

=
∑
n�0

G(0,n)(p, τ )zn, (1)

with

G(0,0)(k; z1, z2) = −iθ (z1, z2)e−iεk (z1−z2 ),

G(0,n)(k; z1, z2) = −i(±)ne−nβεp e−iεk (z1−z2 ), n � 1.

Obviously, G(0,0) is a retarded function, while G(0,n), for n �
1, is not.

Feynman diagrams are utilized to calculate the virial
expansion of the full contour Green’s function. Diagrammat-
ically, since G(0,0) is a retarded function, we represent it as a
line with an arrow following contour time order. On the other
hand, G(0,n), for n � 1, is not retarded and we represent it
as an n-times slashed line, which can be oriented in either
direction. Other diagrammatic rules are the same as usual,
except that we need to use G(0,n) instead of G0. Different
from diagrammatic rules for virial expansion of equilibrium
systems previously given in Ref. [8], we are working in real
time rather than in imaginary time; nonetheless, we adopt
diagrammatical symbols similar to those in Ref. [8].

For convenience of calculations, we would convert con-
tour integrals into standard real-time integrals and products
of functions on the contour into products of functions with
real-time arguments. Thus we define four components of the
contour Green’s function as the following functions on the real
time axis [3]:

G>(t, t ′) ≡ G(t+, t ′
−),

G<(t, t ′) ≡ G(t−, t ′
+),

GT (t, t ′) ≡ G(t−, t ′
−),

GT (t, t ′) ≡ G(t+, t ′
+).

(2)

As for the corresponding free contour Green’s functions
G>,0(k; t, t ′), G<,0(k; t, t ′), GT,0(k; t, t ′), and GT ,0(k, t, t ′),
virial expansion of them can be readily obtained from Eqs. (1)
and (2). To illustrate our method, in next section we consider
the time evolution of a Bose gas when quenched from nonin-
teracting to finite interaction.

III. QUENCH DYNAMICS OF BOSE GASES

In the following we consider a Bose gas initially in the
equilibrium state of inverse temperature β and chemical po-
tential μ, characterized by a noninteracting Hamiltonian Ĥ0.
Starting from t = 0, the interaction, described by an s-wave
scattering length as, is switched on.

What we want to calculate is the density distribution func-
tion, which is related to the Green’s function via the relation

n(k, t ) = iGT (k, t − 0+, t ).

When GT (k, t − 0+, t ) is expanded into free contour Green’s
functions, all the information we need is in the interval of
(0, t ) and the interaction vanishes on the γM branch; thus, for
our purpose it is sufficient to use a shrunken contour depicted
in Fig. 1(b). The density n(k, t ) can be expanded in powers of
fugacity

n(k, t ) = δn(1)(k, t )z + δn(2)(k, t )z2 + · · · .

To calculate the coefficient δn(p), we need to find all the Feyn-
man diagrams for GT (k, t − 0+, t ) of order zp, which contain
one G(0,p), or one G(0,p−1) and one G(0,1), or one G(0,p−2) and
one G(0,2), or one G(0,p−2) and two G(0,1), etc.

The first-order coefficient can be obtained from Fig. 2(a)
as

δn(1)(k, t ) = iGT,(0,1)(k, t − 0+, t )

= e−βεk .
(3)
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FIG. 2. (a) Lowest-order diagram contributing to δn(1)(k, t ). (b).
Second-order diagram contributing to δn(2,a)(k, t ). Here and in the
following figures, thin lines represent time contours, while thick lines
represent Feynman diagrams.

In order to calculate the second-order coefficient δn(2)(k, t ),
we consider all the diagrams with one G(0,2) or two G(0,1). The
diagram of Fig. 2(b) gives the contribution with one G(0,2),
that is,

δn(2,a)(k, t ) = iGT,(0,2)(k, t − 0+, t )

= e−2βεk ,
(4)

while the diagrams of Figs. 3 and 4 give the contribution with
two G(0,1), which are denoted by δn(2,b)(k, t ) and δn(2,c)(k, t ),
respectively, and will be calculated in the following two sec-
tions, respectively.

A. Contribution δn(2,b)(k, t )

We now consider the contribution of the diagrams in Fig. 3,
where Figs. 3(a) and 3(b) correspond to contributions from
branch γ+ and branch γ−, respectively. Both diagrams contain
the effect of interactions through the two-body T matrix. We

FIG. 3. Second-order diagram contributing to δn(2,b)(k, t ).

FIG. 4. Second-order diagram contributing to δn(2,c)(k, t ).

first calculate the contribution of Fig. 3(a), that is,

δn(2,b,1)(k, t ) =
∑

P

∫
D

dt1dt2[iGT ,(0,1)(P − k, t1 − t2)]

× [iT2(P, t2 − t1)][iGT ,(0,1)(k, t − t2)]

× [iGT ,(0,0)(k, t1 − t )],

where T2 denotes the two-body T matrix and is given by
the sum of ladder diagrams. The time integration is in the
time domain {0 < t2 < t1 < t}, corresponding to the domain
for time differences {τ1 > 0, τ2 > 0, t − τ1 − τ2 > 0}, where
τ1 = t − t1 and τ2 = t1 − t2; thus we have

δn(2,b,1)(k, t ) = i
∑

P

∫
dτ1dτ2�(τ1)�(τ2)�(t − τ1 − τ2)

× T2(P,−τ2)e−(iτ2+β )εP−k e−[i(τ1+τ2 )+β]εk eiτ1εk .

The integration on τ1 is easily done, resulting in

δn(2,b,1)(k, t )

= i
∑

P

∫
dτ2�(τ2)�(t − τ2)(t − τ2)T2(P,−τ2)

×e−(iτ2+β )(εk+εP−k ). (5)

On the other hand, the contribution of the graph of Fig. 3(b) is

δn(2,b,2)(k, t ) =
∑

P

∫
D

dt1dt2[iGT,(0,1)(P − k, t2 − t1)]

×[−iT2(P, t1 − t2)][iGT,(0,1)(k, t2 − t )]

×[iGT,(0,0)(k, t − t1)]

= [δn(2,b,1)(k, t )]∗. (6)

Combining Eqs. (5) and (6) and using the convolution theorem
for Fourier transforms, we have

δn(2,b)(k, t )

≡ δn(2,b,1)(k, t ) + δn(2,b,2)(k, t )

= −i
∑

P

e−β(εk+εP−k ) 1

2π

∫ ∞

−∞
ds t2

(
s − P2

4m
− i0+

)

× eit (s−i0+−εk−εP−k )

(s − i0+ − εk − εP−k )2
+ c.c., (7)
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where t2(s) for two identical bosons reads [33]

t2(s) = 8π

m

1

a−1 − √−ms
.

Letting s′ = s − P2/4m and q = P/2 − k, Eq. (7) is rewritten as

δn(2,b)(k, t ) = −8i
∑

q

e−β(k2/m+2q2/m+2q·k/m)e−itεq
1

2π

∫ ∞

−∞
ds′t2(s′ − i0+)

eit (s′−i0+ )

(s′ − i0+ − εq)2
+ c.c. (8)

We choose the branch cut of the function
√−s′ along the positive imaginary axis and deform the above integral on s′ along the

positive imaginary axis, which results in two extra terms according to the residue theorem. The two terms come from the pole of
t2(s) at −|Eb| = −1/ma2 (if a > 0) and the pole s′ = εq, respectively. Thus we have

δn(2,b)(k, t )

= − 32a

πβk

∫ ∞

0
dq q e−β(k2/m+2q2/m) sinh

(
2βkq

m

){
[1 − 2�(a) cos(Eb + εq)t]/Eb + (εq/Eb + 1)(εq/Eb)1/2t

(εq/Eb + 1)2

−
∫ ∞

0
ds

[
e−(s+iεq )t

(
1

1 − ei3π/4
√

s/Eb
− 1

1 − e−iπ/4
√

s/Eb

)
1

(is − εq)2
+ c.c.

]}
. (9)

B. Contribution δn(2,c)(k, t )

We now calculate the contribution of Fig. 4, which is

δn(2,c)(k, t ) = 1

2

∑
P

∑
q

∫
D

dt1dt2dt ′
1dt ′

2[iG>,(0,0)(P − k, t1 − t ′
1)][−iT2(P, t ′

1 − t ′
2)][iGT,(0,0)(k, t − t ′

1)]

× [iGT ,(0,0)(k, t1 − t )][iG<,(0,1)(P − q, t ′
2 − t2)][iT2(P, t2 − t1)][iG<,(0,1)(q, t ′

2 − t2)],

where the domain of time integration is {0 < t2 < t1 < t, 0 < t ′
2 < t ′

1 < t}. Performing the integration on t1, t2, t ′
1, t ′

2, the
remaining integral is of the form

δn(2,c)(k, t ) = 1

2

∑
P

∑
q

e−β(εq+εP−q )H (P, k, t ),

with

H (P, k, t ) =
∣∣∣∣ 1

2π

∫ ∞

−∞
ds t2

(
s − P2

4m
− i0+

)
1

(s − i0+ − εq − εP−q)(s − i0+ − εk − εP−k )
ei(s−i0+ )t

∣∣∣∣
2

.

Letting p = P/2 − q, K = P/2 − k, and s′ = s − P2/4m, δn(2,c)(k, t ) can be simplified as

δn(2,c)(k, t ) = m

2π4βk

∫ ∞

0
K dK

∫ ∞

0
d p p2e−β(p2+K2+k2 )/m sinh(2βkK/m)H (K, p, t )

and H (P, k, t ) can be rewritten as an integral on s′,

H (K, p, t ) =
∣∣∣∣ 4

m

∫ ∞

−∞
ds′ 1

a−1 − √−m(s′ − i0+)

1

(s′ − i0+ − p2/m)(s′ − i0+ − K2/m)
ei(s′−i0+ )t

∣∣∣∣
2

.

Similar to the derivation of Eq. (9), the above integral on s′ changes into

H (K, p, t ) = 16a6

∣∣∣∣2π

[
2ie−itEb

(a2K2 + 1)(a2 p2 + 1)
�(a) − eitK2/m

(aK + i)(a2K2 − a2 p2)
− eit p2/m

(ap + i)(a2 p2 − a2K2)

]

+ i
∫ ∞

0
ds′ Ebe−s′t

(is′ − K2/m)(is′ − p2/m)

[
1

1 − (s′/Eb)1/2ei3π/4
− 1

1 − (s′/Eb)1/2e−iπ/4

]∣∣∣∣
2

.

(10)

C. Long-time limit of n(k, t )

In this section we consider the long-time limit of the den-
sity distribution function n(k, t ). Obviously, δn(1)(k, t ) and
δn(2,a)(k, t ) are essentially time independent, so in the follow-
ing we focus on the δn(2,b)(k, t ) and δn(2,c)(k, t ).

For δn(2,b)(k), the integration on s in Eq. (9) can be
seen as a Laplacian transformation of a function of s, which
should vanish in the limit of t → ∞. Moreover, the term
proportional to cos(Eb + εq)t also vanishes in the limit of
t → ∞ according to the Riemann-Lebesgue lemma. Thus we
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have

δn(2,b)(k, t )|t→∞ → − 32a

πEbβk

∫ ∞

0
dq q e−β(k2/m+2q2/m)

× sinh

(
2βkq

m

)
1 + (a2q2 + 1)qaEbt

(a2q2 + 1)2
.

For δn(2,c)(k, t ), when we expand H (K, p, t ) in Eq. (10),
the terms with integration on s and the terms proportional to
eit (K2/m−Eb) and eit (p2/m−Eb) vanish in the limit t → ∞ for the
same reason as above, which results in

δn(2,c)(k, t )|t→∞

→ 32m

π2βk

∫ ∞

0
K dK

∫ ∞

0
d p p2e−β(p2+K2+k2 )/m

× sinh(2βkK/m)

(a2K2 + 1)(a2 p2 + 1)

× [I0(K, q) + I1(K, q, t ) + I2(K, q, t )],

(11)

with

I0(K, q) = 4a6�(a)

(a2K2 + 1)(a2q2 + 1)
+ a4

(K + q)2
,

I1(K, q, t ) = 2a3 sin[t (K2 − p2)/m]

(K2 − p2)(K + p)
,

I2(K, q, t ) = 2a2(a2K p + 1){1 − cos[t (K2 − p2)/m]}
(K2 − p2)2

.

(12)

First we consider I1(K, q, t ). When t → ∞, we have

I1(K, q, t )|t→∞ → 2πa3tδ(K2 − q2)

m(K + q)

= πa3

2q2
δ(K − q).

(13)

Next we consider an integral associated with I2(K, q, t ) in
Eq. (11), i.e.,

L ≡
∫ ∞

0
d p p2 e−βp2/m

a2 p2 + 1
I2(K, q, t ).

Letting Q = p2, the above equation is rewritten as

L =
∫ ∞

0
dQ

a2(a2QK + √
Q)

a2Q + 1

e−βQ/m{1 − cos[t (K2 − Q)/m]}
(K2 − Q)2

= Re

{∫ ∞

0
dQ

a2(a2QK + √
Q)

a2Q + 1

e−βQ/m[1 − eit (Q−K2 )/m + it (Q − K2)/m]

(Q − K2)2

}
.

According to residue theorem, the above integral can be deformed to along the positive imaginary axis, resulting in

L =Re

{
i
∫ ∞

0
dQ

a2(ia2QK + √
Qeiπ/4)

ia2Q + 1

e−iβQ/m[1 − e−t (Q+iK2 )/m − t (Q + iK2)/m]

(iQ − K2)2

}
.

When t → ∞, the terms proportional to e−Qt/m are discarded and we are left with

L|t→∞ → Re

{
i
∫ ∞

0
dQ

a2(ia2QK + √
Qeiπ/4)

ia2Q + 1

e−iβQ/m[1 − t (Q + iK2)/m]

(iQ − K2)2

}
= J (K, β ) + tπKe−βK2/m, (14)

with

J (K, β ) = a2
πe−βK2/m

[ 2βK2(a2K2+1)
m + (a2K2 − 1)

]
erfi

(√
βK2

m

) + 2a2K2e−βK2/m
( a2βK2K2

m + βK2

m − 1
)
Ei

(
βK2

m

)
2K (a2K2 + 1)2

− a2
2(1 + a2K2)

√
πβK2

m + 2aK{a3K3 + eβEb[π erfc(βEb) − aK Ei(−βEb)] + aK}
2K (a2K2 + 1)2

,

where erfc, erfi, and Ei represent the complementary error function, imaginary error function, and exponential integral function,
respectively. With Eqs. (9) and (11)–(14) we have

f (k) ≡δn(2,b)(k) + δn(2,c)(k)

= − 16ma3

πβk
e−βk2/m

∫ ∞

0
K dK e−2βK2/m sinh(2βkK/m)

(a2K2 + 1)2
+ 32m

π2βk
e−βk2/m

∫ ∞

0
K dK e−βK2/m sinh(2βkK/m)

a2K2 + 1
J (K, β )

+ 32m

π2βk
e−βk2/m

∫ ∞

0
K dK

∫ ∞

0
d p p2e−β(p2+K2 )/m sinh(2βkK/m)

(a2K2 + 1)(a2 p2 + 1)
I0(K, q)

= 32m

π2βk
e−βk2/m

∫ ∞

0
K dK e−βK2/m sinh(2βkK/m)

a2K2 + 1

{
J (K, β ) − πa3

2

e−βK2/m

a2K2 + 1
+

∫ ∞

0
d p p2e−βp2 I0(K, q)

a2 p2 + 1

}
.
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FIG. 5. (a) Plot of fu as a function of kλ. The star indicates the
zero point of fu, which is at k∗ ≈ 4.514λ−1. (b) Plot of (kλ)2 fu as a
function of kλ, which is proportional to the variation of occupation
in a momentum shell with radius k long after quench up to second
order.

In unitary limit, f (k) has a simplified form

fu(k) = 32e−(kλ)2/2π

π (kλ)

∫ ∞

0
d p sinh[(kλ)p/π ]

e−p2/2π

[
e−p2/2πerfi

(
p√
2π

)
−

√
2

p

]
.

(15)

Combing Eqs. (3), (4), and (15), we obtain the long-time limit
of the momentum density distribution function in the unitary

limit up to order of z2,

n(k, t )|t→∞ ≈ e−βεk z + [e−2βεk + fu(k)]z2.

Compared with the second-order virial expansion of the initial
distribution function n(k, t )|t=0 ≈ e−βεk z + e−2βεk z2, it is ob-
vious that fu(k) represents the change of momentum density
distribution up to second order and it depends on kλ in a
nonmonotonic way, as shown in Fig. 5. From Fig. 5 it can
be seen that fu(k) has a zero point at k∗ ≈ 4.514λ−1, where
n(k∗, t )|t→∞ = n(k∗, t )|t=0. Furthermore, for k < k∗, n(k) de-
creases long after quench, while for k > k∗, n(k) increases. In
Ref. [32] the authors numerically obtained the limit density
distribution function; here we give the analytical expression.

IV. CONCLUSION

We have developed a contour-Green’s-function-based
virial expansion method, which is applicable to strong-
coupling and far-from-equilibrium situations. In addition, we
present corresponding diagrammatic rules, and analytical re-
sults could be obtained by computing a small set of diagrams
linked with few-body problems. Our approach can in princi-
ple solve more general nonequilibrium problems other than
quench dynamics and can incorporate high-order contribution
as well, although it may be harder to tackle numerically.
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