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Scattering hypervolume of fermions in two dimensions
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We define the three-body scattering hypervolume DF for identical spin-polarized fermions in two dimensions
by considering the wave function of three such fermions colliding at zero energy and zero orbital angular
momentum. We derive the asymptotic expansions of such a wave function when three fermions are far apart
or one pair and the third fermion are far apart, and DF appears in the coefficients of such expansions. For
weak-interaction potentials, we derive an approximate formula of DF by using the Born expansion. We then
study the shift of energy of three such fermions in a large periodic area due to DF . This shift is proportional to
DF times the square of the area of the triangle formed by the momenta of the fermions. We also calculate the
shifts of energy and of pressure of spin-polarized two-dimensional Fermi gases due to a nonzero DF and the
three-body recombination rate of spin-polarized ultracold atomic Fermi gases in two dimensions.
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I. INTRODUCTION

In quantum mechanics, the behavior of particles colliding
with low energy depends sensitively on the dimension of
space. For the zero-energy s-wave collision of two particles
in d-dimensional space, the wave function takes the following
form:

φdD =
{

1 − adD/sd−2, d > 2,

ln(s/a2D), d = 2,

at s > re, where s is the distance between the two particles, re

is the range of the interaction potential, and adD is the s-wave
scattering “length” in d-dimensional space. For identical spin-
polarized fermions, there are no two-body s-wave collisions.
The two-body wave function for p-wave collisions also de-
pends on the dimension of space. The two-body wave function
for the zero-energy p-wave collision in two dimensions is

φ(1±)(s) =
(

s

2
− 2ap

πs

)
e±iθ (1)

at s > re, where s is the spatial vector extending from one
fermion to the other and θ is the angle from the +x direction
to the direction of s, such that sx = s cos θ and sy = s sin θ . ap

is the p-wave scattering length in two dimensions, although
its dimension is length squared.

Two-dimensional (2D) atomic Bose gases [1–12] and 2D
atomic Fermi gases [13–22] have been successfully realized
in experiments. Two-dimensional Fermi gases have novel fea-
tures not encountered in three dimensions. For three identical
spin-polarized fermions in two dimensions with a short-range
interaction fine-tuned to a p-wave resonance, there are super
Efimov bound states with orbital angular momentum quantum
number L = 1 [23–26], and their binding energies obey a
universal doubly exponential scaling [23].
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For three-body collisions, there are also big differences due
to different spatial dimensions or different quantum statistics
of the particles. The scattering hypervolume was defined for
identical bosons [27], distinguishable particles [28–30], and
spin-polarized fermions [31] in three dimensions. The scat-
tering hypervolume is a three-body analog of the two-body
s-wave or p-wave scattering length.

In this paper, we define the three-body scattering hy-
pervolume DF of identical spin-polarized fermions in two
dimensions by studying the wave function of three such
fermions colliding at zero energy and zero orbital angular
momentum. We find that in two dimensions DF has the di-
mension of length raised to the sixth power, while in three
dimensions its dimension is length raised to the eighth power
[31].

This paper is organized as follows. In Sec. II, we first re-
view the two-body wave functions for identical spin-polarized
fermions in two dimensions and then derive the asymptotic
expansions of the wave function for three such fermions col-
liding at zero energy and zero orbital angular momentum;
the parameter DF appears as a coefficient in these expan-
sions. In Sec. III, we derive an approximate formula for DF

for weak-interaction potentials using the Born expansion. In
Sec. IV, we first consider three fermions in a large square
with periodic boundary conditions and derive the shifts of
their energy eigenvalues due to a nonzero DF and then con-
sider the dilute spin-polarized Fermi gas in two dimensions
and derive the shifts of its energy and pressure due to a
nonzero DF . In Sec. V, we study the dilute spin-polarized
Fermi gas in two dimensions with interaction potentials that
support two-body bound states, for which we have three-body
recombination processes and DF has a nonzero imaginary
part, and derive formulas for the rates of these processes in
terms of the imaginary part of DF . In Sec. VI we summarize
our results and discuss the generalization of the hypervol-
ume to three-body collisions with a higher orbital angular
momentum.
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II. ASYMPTOTICS OF THE THREE-BODY
WAVE FUNCTION

We consider three identical spin-polarized fermions collid-
ing with zero kinetic energy. Their wave function � satisfies
the Schrödinger equation

3∑
i=1

[
− h̄2

2m
∇2

i + V (si )

]
� + V3(s1, s2, s3)� = 0, (2)

where m is the mass of each fermion, ri is the position vector
of the ith fermion, and si ≡ r j − rk . The indices (i, j, k) =
(1, 2, 3), (2,3,1), or (3,1,2). V (si ) is the two-body potential,
and V3 is the three-body potential. We assume that the inter-
actions among these fermions are finite ranged and depend
only on the interparticle distances. We define the Jacobi coor-
dinates for later use:

Ri ≡ ri − (r j + rk )/2, (3a)

B ≡
√

(s2
1 + s2

2 + s2
3)/2 =

√
R2

i + 3

4
s2

i , (3b)

�i ≡ arctan
2Ri√

3si

. (3c)

B is called the hyperradius, and �i is the hyperangle.
Equation (2) and the translational invariance of � do not

uniquely determine the wave function for the zero-energy col-
lision. We need to also specify the asymptotic behavior of �

when the three fermions are far apart. The leading-order term
�0 in the wave function when s1, s2, and s3 go to infinity si-
multaneously should satisfy the Laplace equation (∇2

1 + ∇2
2 +

∇2
3 )�0 = 0 and scale as Bp at large B. The most important

three-body wave function for zero-energy collisions, for the
purposes of understanding ultracold collisions, should be the
one with the minimum value of p [31]. The reason is that
the larger the value of p is, the less likely it is for the three
particles to come to the range of interaction within which they
can interact. One can easily show that the minimum value of
p for three identical fermions in two dimensions is pmin = 2;
the corresponding �0 is

�0 = sxRy − syRx, (4)

and it takes the same form as one of the �0’s in three di-
mensions; here and in the following, we define s ≡ s1 and
R ≡ R1. One can verify that �0 = sixRiy − siyRix for any
i ∈ {1, 2, 3}. Unlike in three dimensions, however, we have
only one linearly independent three-body wave function for
the zero-energy collision with p = 2 in two dimensions, and
this wave function has zero total orbital angular momentum
and is rotationally invariant.

A. Two-body special functions

For two-body scattering in the center-of-mass frame with
collision energy E = h̄2k2/m and orbital angular momentum
quantum number l , the wave function can be separated as
ψ (s, θ ) = u(s)e±ilθ /

√
s, and the radial part u(s) satisfies

d2u

ds2
+

[
k2 − mV (s)

h̄2 − l2 − 1/4

s2

]
u = 0. (5)

We assume a finite-range interaction such that V (s) vanishes
at s > re. The analytical formula for u(s) at s > re is

u(s) = αl
√

s[Jl (ks) cot δl (k) − Yl (ks)], (6)

where Jl and Yl are the Bessel functions of the first and second
kinds, respectively. αl is an arbitrary coefficient which deter-
mines the overall amplitude of the two-body wave function.
δl (k) is the l-wave scattering phase shift, and it satisfies the
effective range expansion [32,33]:

k2l
[

cot δl (k) − 2

π
ln(kρl )

]
= − 1

al
+ 1

2
rlk

2 + O(k4), (7)

where al is the l-wave scattering length (l � 1) with dimen-
sion [length]2l . rl is called the l-wave effective range for
l �= 1, and it has dimension [length]2−2l . ρl is an arbitrary
length scale.

The wave function in the l-wave channel at s > re is

ψ (l±)(s) = −kl al [Jl (ks) cot δl (k) − Yl (ks)]e±ilθ . (8)

Here we have fixed the overall amplitude of ψ (l±) by specify-
ing the coefficient αl = −kl al .

At small collision energies, k � 1/re, the wave function
can be expanded in powers of k2 [27,29,31]:

ψ (l±)(s) = φ(l±)(s) + k2 f (l±)(s) + k4g(l±)(s) + . . . , (9)

where φ(l±)(s), f (l±)(s), g(l±)(s), . . . are called the two-body
special functions, and they satisfy

H̃φ(l±)(s) = 0, (10a)

H̃ f (l±)(s) = φ(l±)(s), (10b)

H̃g(l±)(s) = f (l±)(s), · · · , (10c)

where H̃ is defined as

H̃ ≡ −∇2
s + m

h̄2 V (s). (11)

h̄2H̃/m is the two-body Hamiltonian for the collision of two
fermions in the center-of-mass frame. The two-body special
functions will appear in the expansion of the three-body wave
function � when two fermions are held at a fixed distance and
the third fermion is far away from the other two.

φ(l±)(s) is the wave function for the zero-energy collision
of the two fermions in the l-wave channel. From Eqs. (8) and
(9) we get

φ(l±)(s) =
[

sl

(2l )!!
− 2(2l − 2)!!al

πsl

]
e±ilθ , s > re (12)

for l � 1. l must be odd for identical spin-polarized fermions
due to Fermi statistics. We use symbols p, f , h, . . . to repre-
sent l = 1, 3, 5, . . . , namely, a1 = ap, r1 = rp, a3 = a f , and
so on.

For f (l±)(s) with l = 1, we find

f (1±)(s) =
(

− 1

16
s3 + aps

π
ln

s

Rp

)
e±iθ , s > re, (13)

where Rp ≡ 2ρ1eπrp/4+1/2−γE and γE = 0.5772 · · · is Euler’s
constant. We call Rp the p-wave effective range.

The explicit formulas for f (l±) with l > 1 and g(l±) are not
listed for brevity because they are not used in this paper.
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B. The 111 expansion and the 21 expansion

Like what we did in previous works [27,29,31], we derive
two asymptotic expansions for the three-body wave function
�. When the three fermions are all far apart from each other,
such that the pairwise distances s1, s2, and s3 go to infinity
simultaneously for any fixed ratio s1 : s2 : s3, we expand � in
powers of 1/B, and this expansion is called the 111 expansion.
When two fermions are held at a fixed distance s but the third
fermion is at large distance R away from the center of mass
of the other two, we expand � in powers of 1/R, and this is
called the 21 expansion. These expansions are

� =
∞∑

p=−2

T (−p)(r1, r2, r3), (14a)

� =
∞∑

q=−1

S (−q)(R, s), (14b)

where R ≡ R1, s ≡ s1, T (−p) scales as B−p, and S (−q) scales
as R−q. Here p starts from p = −2 because the leading order
term �0 in the 111 expansion scales like B2. Because �0 ∝ R1

for any fixed s, the leading-order term in the 21 expansion
should scale like R1, so q starts from q = −1.

T (−p) satisfies the free Schrödinger equation outside of the
interaction range:

−(∇2
1 + ∇2

2 + ∇2
3

)
T (−p) = 0. (15)

If one fermion is far away from the other two, Eq. (2) becomes(
H̃ − 3

4∇2
R

)
� = 0. (16)

This leads to the following equations for S (−q):

H̃S (1) = 0, H̃S (0) = 0,

H̃S (−q) = 3
4∇2

RS (−q+2) (q � 1). (17)

We can further expand T (−p) as
∑

i t (i,−p−i) when s �
R, where t (i, j) scales like Ris j . We can also further expand
S (−q) as

∑
j t (−q, j) when s 
 re. Because the three-body wave

function � may be expanded as
∑

p T (−p) at B → ∞ and
may also be expanded as

∑
q S (−q) at R → ∞, t (i, j) in the

above two expansions should be the same. Actually, the wave
function has a double expansion � = ∑

i, j t (i, j) in the region
re � s � R.

We show the points at which t (i, j) �= 0 on the (i, j) plane
in Fig. 1. T (−p) corresponds to a straight line with slope equal
to −1 and an intercept equal to −p. S (−q) corresponds to the
vertical line i = −q in the diagram.

To derive the two expansions, we start from the leading-
order term (which fixes the overall amplitude of �) in the 111
expansion:

T (2) = �0 = (sxRy − syRx ). (18)

We then first derive S (1), then derive T (1), then derive S (0),
then derive T (0), and so on, all the way to S (−5). At every
step, we require the 111 expansion and the 21 expansion to be
consistent in the region re � s � R. See Appendix A for the
details of the derivation.

The resultant 111 expansion is

� = (sxRy − syRx )

{
1 − 3DF

2π2B6
− 4ap

π

3∑
i=1

1

s2
i

+ 32a2
p

π2B2

3∑
i=1

1

s2
i

− 160a3
p

π3B6

3∑
i=1

(
R2

i

s2
i

+ 3 ln
B2√|ap|si

)
+ O(B−7)

}
, (19)

where DF is the three-body scattering hypervolume of identical spin-polarized fermions in two dimensions and it appears at the
order of B−4 in the expansion of �. The dimension of DF is length raised to the sixth power.

The resultant 21 expansion is

� = i

(
R − 8ap

πR
+ 40a2

p

π2R3
− ξ

R5
− 1920a3

p

π3R5
ln

R

R̃

)
[y(1−)(R̂)φ(1+)(s) − y(1+)(R̂)φ(1−)(s)]

+ i

(
−48ap

πR3
+ 384a2

p

π2R5

)
[y(3−)(R̂)φ(3+)(s) − y(3+)(R̂)φ(3−)(s)]

− 960iap

πR5
[y(5−)(R̂)φ(5+)(s) − y(5+)(R̂)φ(5−)(s)] + 240ia2

p

π2R5
[y(1−)(R̂) f (1+)(s) − y(1+)(R̂) f (1−)(s)] + O(R−6), (20)

where

y(l±)(R̂) ≡ (Rx ± iRy)l/Rl , (21)

R̃ = |ap|3/8R1/4
p , (22)

ξ = 3DF

2π2
− 280a3

p

π3
. (23)

For any finite-range potentials V (s) and V3(s1, s2, s3), we
may solve Eq. (2) numerically and match the solution to the
asymptotic expansions in Eqs. (19) and (20) at large inter-
fermionic distances to determine DF numerically. But if the
potentials are sufficiently weak, we may use the Born expan-
sion to calculate DF , as we do in Sec. III.

For attractive potentials whose strengths are fine-tuned
such that there is a three-body S-wave bound state (i.e., with
total orbital angular momentum quantum number L = 0) with
energy close to zero, we anticipate that DF becomes large.
When we tune the strength of attraction such that this shal-

023310-3



ZIPENG WANG AND SHINA TAN PHYSICAL REVIEW A 106, 023310 (2022)

FIG. 1. Diagram of the points representing t (i, j) on the (i, j)
plane. Each point with coordinates (i, j) represents t (i, j), which
scales like Ris j . Dots represent those points at which t (i, j) �= 0. The
term T (−p) in the 111 expansion is represented by red dashed lines
satisfying the equation i + j = −p. The term S (−q) in the 21 expan-
sion is represented by blue dashed lines satisfying the equation i =
−q.

low three-body bound state barely forms (so that there is
a metastable three-body state whose energy is positive and
has some width due to the finite lifetime), DF is large and
negative; when we increase the strength of attraction such
that this shallow three-body bound state has a small negative
energy, DF is large and positive. DF has a pole as a function of
the strength of attraction, and the pole is located at the critical
strength at which the energy of this three-body bound state is
zero.

III. APPROXIMATE FORMULA
OF DF FOR WEAK-INTERACTION POTENTIALS

For weak interactions, we analytically derive an approxi-
mate formula of DF by using the Born series:

� = �0 + ĜV�0 + (ĜV )2�0 + · · · , (24)

where V is the total interaction potential and Ĝ is the
Green’s operator (Ĝ = −Ĥ−1

0 , Ĥ0 is the three-body kinetic-
energy operator). Writing the interaction potential as V =
V3(s1, s2, s3) + ∑3

i=1 V (si ), we find

ĜV�0 = −(sxRy − syRx )

(
6

πB6
+

3∑
i=1

α2

2s2
i

+ . . .

)
, (25a)

(ĜV )2�0 = (sxRy − syRx )

×
{[ 3∑

i=1

(
β2

2s2
i

+ α2
2

2B2s2
i

)]
− 9α2α4

16B6
+ . . .

}
+ O(VV3) + O

(
V 2

3

)
, (25b)

where

αn ≡ m

h̄2

∫ ∞

0
ds sn+1V (s), (26a)

β2 ≡ m2

h̄4

∫ ∞

0
ds

∫ s

0
ds′ ss′3V (s)V (s′), (26b)

 ≡ m

h̄2

∫
ds1ds2ds3 s1s2s3V3(s1, s2, s3)S�(s1, s2, s3).

(26c)

S� = √
p(p − s1)(p − s2)(p − s3) is the area of the triangle

with sides s1, s2, and s3, where p = (s1 + s2 + s3)/2. The
integral on the right-hand side of Eq. (26c) is over all values of
s1, s2, and s3 satisfying s1 > 0, s2 > 0, s3 > 0, s1 + s2 > s3,
s2 + s3 > s1, and s3 + s1 > s2 simultaneously. The details of
the derivation are shown in Appendix B.

By comparing these results with the 111 expansion in
Eq. (19), we find the expansions of ap and DF in powers of
V (s) and V3(s1, s2, s3):

ap = π

8
(α2 − β2) + O(V 3), (27)

DF = 4π + 3π2

8
α2α4 + O(VV3) + O

(
V 2

3

) + O(V 3). (28)

For any particular two-body potential V (s), e.g., the square-
well potential, one can calculate ap analytically and verify
that the result is consistent with Eq. (27) if V is weak. Equa-
tion (28) shows that DF is quadratically dependent on the
two-body potential V if V is weak and the three-body potential
V3 is absent. On the other hand, DF is linearly dependent on
the three-body potential V3 if V3 is weak and the two-body
potential is absent.

If the interactions are not weak, one can solve the three-
body Schrödinger equation numerically at zero energy and
zero orbital angular momentum and match the resultant wave
function with the asymptotic expansion in Eq. (19) or Eq. (20)
to numerically extract the value of DF .

IV. SHIFTS OF THE ENERGY AND THE PRESSURE
OF IDENTICAL SPIN-POLARIZED FERMIONS

In this section, we first study the energy shift of three spin-
polarized fermions caused by the scattering hypervolume DF .
We then derive the shifts of the thermodynamic properties,
including the energy and the pressure, of the spin-polarized
Fermi gas due to a nonzero DF .

A. Three fermions in a large square

For the sake of simplicity, in this section we assume that the
fermions have no two-body interaction or have a fine-tuned
two-body interaction such that the two-body p-wave scatter-
ing length ap = 0 but the three-body scattering hypervolume
DF �= 0, and the 111 expansion for the zero-energy three-body
wave function in Eq. (19) is simplified as

�  (sxRy − syRx )

(
1 − 3DF

2π2B6

)
. (29)

For the purpose of calculating the energy shifts due to a
nonzero DF , the true interaction potential V (s1) + V (s2) +
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V (s3) + V3(s1, s2, s3), which in general has a complicated
dependence on the interparticle distances, is replaced by a
three-body pseudopotential Vps. We use the following pseu-
dopotential:

Vps = h̄2DF

6m

{[∇2
s ∇2

R − (∇s · ∇R )2]δ(s)δ(R)
}
, (30)

where  is a projection operator which, when acting on the
O(B−4) term in the three-body wave function, yields zero. The
operator  is an analog of the operator ∂

∂r r in the two-body
pseudopotential for s-wave collisions in Refs. [34,35]. One
can check that the pseudopotential in Eq. (30) is symmetric
under the interchange of the three fermions. The coefficient
on the right-hand side of Eq. (30) has been chosen such that

− h̄2

2m

(∇2
1 + ∇2

2 + ∇2
3

)
� + Vps� = 0. (31)

We now consider three fermions in a large square with
area A and impose the periodic boundary conditions on the
wave function. Consider an energy eigenstate in which the
momenta of the fermions are h̄k1, h̄k2, and h̄k3 in the absence
of interactions. When we introduce interactions that give rise
to a nonzero DF , the energy eigenvalue of the three-body
state is shifted by the following amount at first order in the
perturbation:

Ek1k2k3 =
∫

d2r1d2r2d2r3 |�k1k2k3 |2Vps, (32)

where �k1k2k3 is the normalized unperturbed wave function
and it can be written in terms of a Slater determinant:

�k1k2k3 = 1√
6A3/2

∣∣∣∣∣∣
eik1·r1 eik1·r2 eik1·r3

eik2·r1 eik2·r2 eik2·r3

eik3·r1 eik3·r2 eik3·r3

∣∣∣∣∣∣. (33)

We get

Ek1k2k3 = h̄2DF

3mA2
(k1 × k2 + k2 × k3 + k3 × k1)2. (34)

This energy shift is proportional to the square of the area of
the k-space triangle whose vertices are k1, k2, and k3.

B. Energy shift of many fermions
and thermodynamic consequences

We generalize the energy shift to N fermions in the periodic
area A. The number density of the fermions is n = N/A. We
define the Fermi wave number kF = (4πn)1/2, the Fermi en-
ergy εF = h̄2k2

F /2m, and the Fermi temperature TF = εF /kB,
where kB is the Boltzmann constant.

1. Adiabatic shifts of energy and pressure
in the thermodynamic limit

Starting from a many-body state at a finite temperature T ,
if we introduce a nonzero DF adiabatically, the energy shift at
first order in DF is equal to the sum of the contributions from
all the triplets of fermions, namely,

�E = 1

6

∑
k1k2k3

Ek1k2k3 nk1 nk2 nk3 , (35)

where nk = (eβ(εk−μ) + 1)−1 is the Fermi-Dirac distribution
function, β = 1/kBT , εk = h̄2k2/2m is the kinetic energy of
a fermion with linear momentum h̄k, and μ is the chemical
potential. The summation over k can be replaced by a con-
tinuous integral

∑
k = A

∫
d2k/(2π )2 in the thermodynamic

limit. Carrying out the integral, we get

�E (T ) = Nh̄2DF

192π2m
k8

F T̃ 4[ f2(eβμ)]2, (36)

where T̃ = T/TF and the function fν (z) is defined as

fν (z) ≡ −Liν (−z) = 2

�(ν)

∫ ∞

0
dx

x2ν−1

1 + ex2
/z

. (37)

The number of fermions satisfies N = ∑
k

1
eβ(εk−μ)+1

, and this
leads to

μ̃ = T̃ ln(e1/T̃ − 1), (38)

where μ̃ = μ/εF .
In the low-temperature limit, T � TF ,

�E (T ) = Nh̄2DF

192π2m
k8

F

×
[

1

4
+ π2

6
T̃ 2 + π4

36
T̃ 4 + O(T̃ e−1/T̃ )

]
. (39)

In the intermediate-temperature regime, TF � T � Te,

�E (T ) = Nh̄2DF

192π2m
k8

F

[
T̃ 2 + T̃

2
+ 17

144
+ O(T̃ −1)

]
, (40)

where Te = h̄2

2mr2
e kB

. If T is comparable to or higher than Te, the
de Broglie wavelengths of the fermions will be comparable
to or shorter than the range re of interparticle interaction
potentials, and we can no longer use the effective parameter
DF to describe the system. See Fig. 2(a) for �E as a function
of the initial temperature.

The pressure of the spin-polarized Fermi gas changes by
the following amount due to the adiabatic introduction of DF :

�p = −
(

∂�E

∂A

)
S,N

= 4�E

A

= nh̄2DF

48π2m
k8

F T̃ 4[ f2(eβμ)]2.

(41)

The subscripts S and N in Eq. (41) mean that we keep the
entropy S and particle number N fixed when taking the partial
derivative. See Fig. 2(b) for �p as a function of the initial
temperature.

2. Isothermal shifts of energy and pressure
in the thermodynamic limit

If the interaction is introduced adiabatically, the tempera-
ture will increase (if DF > 0) or decrease (if DF < 0). The
change in temperature is

�T =
(

∂�E

∂S

)
N,A

. (42)
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FIG. 2. The shifts of (a) energy and (b) pressure caused by the adiabatic (red line) or isothermal (blue dashed line) introduction of DF vs
the temperature T . At T  0.424TF , the isothermal energy shift �E changes sign.

Therefore, if we introduce DF isothermally, the energy shift
�E ′ should be

�E ′ = �E − C�T =
(

1 − T
∂

∂T

)
�E , (43)

where C is the heat capacity of the noninteracting Fermi gas
at constant volume. In the low-temperature limit, T � TF ,

�E ′(T ) = Nh̄2DF

192π2m
k8

F

[
1

4
− π2

6
T̃ 2 − π4

12
T̃ 4 + O(e−1/T̃ )

]
.

(44)
In the intermediate-temperature regime, TF � T � Te,

�E ′(T ) = Nh̄2DF

192π2m
k8

F

[
−T̃ 2 + 17

144
+ O(T̃ −1)

]
. (45)

According to Eqs. (44) and (45), �E ′ changes sign as we
increase the temperature from T � TF to T 
 TF . Therefore,
there is a critical temperature Tc at which �E ′ = 0. We find

Tc  0.424TF . (46)

The pressure of the spin-polarized Fermi gas changes by
the following amount due to the isothermal introduction of
DF :

�p′ = �p − C�T

A
=

(
1 − 1

4
T

∂

∂T

)
�p. (47)

In the low-temperature limit, T � TF ,

�p′ = nh̄2DF

96π2m
k8

F

[
1

2
+ π2

6
T̃ 2 + O(e−1/T̃ )

]
. (48)

In the intermediate-temperature regime, TF � T � Te,

�p′ = nh̄2DF

96π2m
k8

F

[
T̃ 2 + 3

4
T̃ + 17

72
+ O(T̃ −1)

]
. (49)

The shifts of energy and pressure are plotted as a function
of temperature in Figs. 2(a) and 2(b), respectively.

V. THE THREE-BODY RECOMBINATION RATE

If the collision of the three particles is purely elastic, DF

is a real number. But if the two-body interactions support
bound states, then the three-body collisions are usually not
purely elastic, and the three-body recombination may happen,
which is the case for most ultracold atomic gases because
most ultracold atoms have two-body bound states. In this case
DF becomes complex and acquires a negative imaginary part,
and the three-body recombination rate constant is proportional
to the imaginary part of DF [36,37]. When the imaginary
part of DF is nonzero, the 111 expansion in Eq. (19) remains
valid, but the 21 expansion in Eq. (20) should be modified by
including terms describing bound pairs flying apart from the
third particle.

Within a short time �t , the probability that no recombina-
tion occurs is exp(−2|ImE |�t/h̄)  1 − 2|ImE |�t/h̄. Then
the probability of one recombination event is 2|ImE |�t/h̄.
Since each recombination event causes the loss of three low-
energy fermions, the change in the number of remaining
low-energy fermions in the short time dt is

dN = −1

6

∑
k1k2k3

3
2dt

h̄
|ImEk1k2k3 |nk1 nk2 nk3 . (50)

This leads to

dn

dt
= −L3n3, (51)

and the coefficient L3 is

L3 = 1

2
T̃ 4[ f2(eβμ)]2 h̄|ImDF |

m
k4

F . (52)

L3 depends on the density n and temperature T .
In the low-temperature limit, T � TF ,

L3  1

8

(
1 + 2π2

3
T̃ 2

)
h̄|ImDF |

m
k4

F . (53)
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In particular, at T = 0,

L3 = h̄|ImDF |
8m

k4
F , (54)

and L3 is proportional to n2, so dn/dt is proportional to n5.
In the intermediate-temperature regime, TF � T � Te, we

find that

L3  2m

h̄3 |ImDF |(kBT )2. (55)

In this case L3 is proportional to T 2 and is approximately inde-
pendent of n, so dn/dt is proportional to n3. In Refs. [38,39]
it was predicted that L3 ∝ T 2 for the spin-polarized Fermi gas
in three or two dimensions according to the threshold law, and
our Eq. (55) is consistent with this prediction. In Ref. [40]
the T 2 dependence of L3 was experimentally confirmed for
a two-dimensional spin-polarized Fermi gas. One can extract
the imaginary part of DF from the experimental value of L3

by using the formulas we have presented here.

VI. SUMMARY AND DISCUSSION

We have derived the asymptotic expansions of the three-
body wave function � for identical spin-polarized fermions
colliding at zero energy and zero orbital angular momentum
in two dimensions. The scattering hypervolume DF appears
at the order of B−4 in the 111 expansion of �. We find that
in two dimensions DF has the dimension of length raised to
the sixth power. In contrast, the dimension of DF for identical
spin-polarized fermions in three dimensions is length raised
to the eighth power [31].

For weak-interaction potentials, we have derived an ap-
proximate formula for DF by using the Born expansion.
For stronger interactions, one can solve the three-body
Schrödinger equation numerically at zero energy and zero
orbital angular momentum and match the resultant wave func-
tion with the asymptotic expansion formulas we have derived
in this paper to numerically extract the values of DF .

We considered three fermions in a large square with peri-
odic boundary conditions and derived the shifts of their energy
eigenvalues due to a nonzero DF and then considered the
dilute spin-polarized Fermi gas in two dimensions and derived
the shifts of its energy and pressure due to a nonzero DF .

Finally, we studied the dilute spin-polarized Fermi gas
in two dimensions with interaction potentials that support
two-body bound states, for which we have three-body recom-
bination processes and DF has a nonzero imaginary part, and
we derived formulas for the three-body recombination rate
constant L3 in terms of the imaginary part of DF and the
temperature and density of the Fermi gas.

We emphasize that the scattering hypervolume DF we have
studied in this work refers to the S-wave collisions of three
identical spin-polarized fermions in two dimensions; that is,
the total orbital angular momentum quantum number L is
zero for such collisions. One can also study the P-wave colli-
sions of these three fermions in two dimensions, with L = 1,
and define a new three-body scattering hypervolume D(P)

F by
studying the asymptotic expansions of the P-wave three-body
wave function at zero collision energy. The P-wave three-
body collisions are interesting because there is a super Efimov

effect for L = 1 near two-body p-wave resonances [23–26].
The behavior of D(P)

F near such a resonance is expected to
be related to the super Efimov effect and deserves future
investigation.
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APPENDIX A: DERIVATION OF THE 111 EXPANSION
AND THE 21 EXPANSION

We expand the three-body wave function in two forms:

� =
∞∑

p=−2

T (−p)(r1, r2, r3), (A1a)

� =
∞∑

q=−1

S (−q)(R, s), (A1b)

where T (−p) scales as B−p and S (−q) scales as R−q. The
hyperradius B and the vectors R and s are defined in the main
text.

If s � R, we can further expand T (−p) as

T (−p) =
∑

i

t (i,−p−i), (A2)

where t (i, j) scales as Ris j . If s 
 re, we can expand S (−q) as

S(−q) =
∑

j

t (−q, j). (A3)

Because the three-body wave function � may be expanded as∑
p T (−p) at B → ∞ and may also be expanded as

∑
q S (−q)

at R → ∞, t (i, j) in the above two expansions should be the
same. In fact, the wave function has a double expansion � =∑

i, j t (i, j) in the region re � s � R.
Step 1. We start from the leading-order term in the 111

expansion:

T (2) = sxRy − syRx = t (1,1), (A4)

and this indicates that S (1) is nonzero but S (2), S (3), S (4), ...are
zero. Consequently,

t (i, j) = 0 if i � 2. (A5)

Expanding T (2) at s � R, we find that

t (0,2) = t (−1,3) = t (−2,4) = t (−3,5) = · · · = 0. (A6)

Since T (3), T (4), T (5), ...are zero, we have

t (i, j) = 0 if i + j � 3. (A7)

Step 2. At s 
 re we expand S (1) as

S (1) = t (1,1) +
∑
j�0

t (1, j). (A8)

S (1) also satisfies

H̃S (1) = 0, (A9)
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where H̃ is proportional to the two-body Hamiltonian and is
defined in the main text. Therefore, S (1) takes the following
form:

S (1) = R
∑

l

[cl+φ(l+)(s) + cl−φ(l−)(s)]. (A10)

Because φ(l±) contributes a term proportional to sl , S(1)

contains a term scaling as R1sl . On the other hand, the leading-
order term on the right-hand side of Eq. (A8) is t (1,1), which
scales as R1s1. So we must have cl± = 0 for l > 1.

Expanding Eq. (A10) at s 
 re to the order s1 and using
Eq. (12), we get

t (1,1) = 1
2 R[c1+(sx + isy) + c1−(sx − isy)]. (A11)

Comparing this result with Eq. (A4), we find the coefficients
c1±:

c1+ = i

R
(Rx − iRy), (A12a)

c1− = −i

R
(Rx + iRy). (A12b)

Therefore,

S (1) = iR[y(1−)(R̂)φ(1+)(s) − y(1+)(R̂)φ(1−)(s)]. (A13)

Expanding S (1) at s 
 re, we get

t (1,0) = 0, (A14a)

t (1,−1) = − 4ap

πs2
(sxRy − syRx ), (A14b)

t (1, j) = 0, j � −2. (A14c)

Step 3. At s � R we expand T (1) as

T (1) = t (1,0) + t (0,1) + t (−1,2) + · · · = t (0,1) + t (−1,2) + · · · .

(A15)
So T (1) goes to zero at s → 0. So Eq. (15) may be written as
(∇2

1 + ∇2
2 + ∇2

3 )T (1) = 0 for p = −1, and T (1) should satisfy
this partial differential equation even at si = 0. Thus, T (1)

must be a harmonic polynomial. But we do not have any
nontrivial harmonic polynomial of degree 1 that also satisfies
the fermionic antisymmetry. We are therefore forced to take

T (1) = 0. (A16)

So

t (i, j) = 0 if i + j = 1. (A17)

Step 4. At s 
 re we expand S (0) as

S (0) = t (0,2) + t (0,1) + O(s0) = O(s0). (A18)

Combining this with the equation H̃S (0) = 0, we get

S (0) = 0. (A19)

So

t (0, j) = 0. (A20)

Step 5. At s � R we expand T (0) as

T (0) = t (1,−1) + t (0,0) + t (−1,1) + t (−2,2) + · · ·
= t (1,−1) + t (−1,1) + · · · . (A21)

t (1,−1) is shown in Eq. (A14b). T (0) should satisfy the free
Schrödinger equation outside of the interaction range, so
(−∇2

s − 3∇2
R/4)T (0) should be equal to some Dirac δ func-

tions that are nonzero only at si = 0. T (0) should also be
antisymmetric under the interchange of the fermions. We have

−∇2
s t (1,−1) = 8ap[Ry∂xδ(s) − Rx∂yδ(s)],

so (
−∇2

s − 3

4
∇2

R

)
T (0)

s1
= 8ap[Ry∂xδ(s) − Rx∂yδ(s)], (A22)

where T (0)
s1

is one term of the full T (0). Solving the above
equation, we get

T (0)
s1

= − 4ap

πs2
1

(sxRy − syRx ). (A23)

The full T (0) should also be antisymmetric under the inter-
change of the fermions, so

T (0) = −4ap

π
(sxRy − syRx )

(
1

s2
1

+ 1

s2
2

+ 1

s2
3

)
. (A24)

If s � R, we expand T (0) as
∑

n+m=0 t (n,m) and get

t (0,0) = 0, (A25a)

t (−1,1) = − 8ap

πR2
(sxRy − syRx ), (A25b)

t (−2,2) = 0, (A25c)

t (−3,3) = 2ap

πR6
(sxRy − syRx )

(
R2 − 4R2

s

)
s2, (A25d)

t (−4,4) = 0, (A25e)

t (−5,5) = − ap

2πR10
(sxRy − syRx )

× (
R4 − 12R2R2

s + 16R4
s

)
s4, · · · ,

(A25f)

where Rs ≡ R · ŝ.
Step 6. At s 
 re we expand S (−1) as

S (−1) = t (−1,1) + O(s0). (A26)

S (−1) satisfies the equation

H̃S (−1) = 3

4
∇2

RS (1) = 0. (A27)

From the above equations we deduce

S (−1) = 1

R
[d+φ(1+) + d−φ(1−)]. (A28)

S (−1) contains only the p-wave component in order to be
compatible with Eq. (A26). Expanding S (−1) at s 
 re, we
get

t (−1,1) = 1

2R
[d+(sx + isy) + d−(sx − isy)]. (A29)

Comparing this with Eq. (A25b), we find

d+ = −8api

πR
(Rx − iRy), (A30a)

d− = 8api

πR
(Rx + iRy). (A30b)
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So

S (−1) = −8api

πR
[y(1−)(R̂)φ(1+)(s) − y(1+)(R̂)φ(1−)(s)].

(A31)
Expanding S (−1) at s 
 re, we get

t (−1,0) = 0, (A32a)

t (−1,−1) = 32a2
p

π2s2R2
(sxRy − syRx ), (A32b)

t (1, j) = 0, j � −2. (A32c)

Step 7. At s � R we expand T (−1) as

T (−1) = t (1,−2) + t (0,−1) + t (−1,0) + O(s1) = O(s1). (A33)

The solution to the equation (∇2
1 + ∇2

2 + ∇2
3 )T (−1) = 0 that

is compatible with the above expansion is

T (−1) = 0. (A34)

Step 8. At s 
 re we expand S (−2) as

S (−2) = t (−2,4) + t (−2,3) + t (−2,2) + t (−2,1) +
∑
j�0

t (−2, j)

= O(s0). (A35)

S (−2) satisfies the equation

H̃S (−2) = 3
4∇2

RS (0) = 0. (A36)

So we get

S (−2) = 0. (A37)

So

t (−2, j) = 0. (A38)

Step 9. At s � R we expand T (−2) as

T (−2) =
0∑

j=−3

t (−2− j, j) + O(s1)

= t (−1,−1) + O(s1). (A39)

Solving the equation (∇2
1 + ∇2

2 + ∇2
3 )T (−2) = 0 (for only

si �= 0) and using the above expansion, we find

T (−2) = 32a2
p

π2
(sxRy − syRx )

3∑
i=1

1

B2s2
i

. (A40)

For s � R, we expand T (−2) as
∑

n+m=−2 t (n,m) and get

t (−2,0) = 0, (A41a)

t (−3,1) = 40a2
p

π2R4
(sxRy − syRx ), (A41b)

t (−4,2) = 0, (A41c)

t (−5,3) = − 2a2
p

π2R8
(sxRy − syRx )(23R2 − 32R2

s )s2, · · · .

(A41d)

Step 10. At s 
 re we expand S (−3) as

S (−3) = t (−3,3) + t (−3,1) + O(s0). (A42)

Combining this with the equation

H̃S (−3) = 3
4∇2

RS (−1) = 0, (A43)

we get

S (−3) = 1

R3

[∑
±

e±φ(3±) +
∑
±

g±φ(1±)

]
. (A44)

Here S (−3) contains the p-wave and f -wave components in
order to be compatible with Eq. (A42). Expanding S (−3) at
s 
 re, we get

t (−3,3) = 1

48R3
[e+(sx + isy)3 + e−(sx − isy)3], (A45a)

t (−3,1) = 1

2R3
[g+(sx + isy) + g−(sx − isy)]. (A45b)

Comparing these equations with Eqs. (A25d) and (A41b), we
find

e+ = −48api

πR3
(Rx − iRy)3, (A46a)

e− = 48api

πR3
(Rx + iRy)3, (A46b)

g+ = 40a2
pi

π2R
(Rx − iRy), (A46c)

g− = −40a2
pi

π2R
(Rx + iRy). (A46d)

So

S (−3) = − 48api

πR3
[y(3−)(R̂)φ(3+)(s) − y(3+)(R̂)φ(3−)(s)]

+ 40a2
pi

π2R3
[y(1−)(R̂)φ(1+)(s) − y(1+)(R̂)φ(1−)(s)].

(A47)

Expanding S (−3) at s 
 re, we get

t (−3,0) = 0, (A48a)

t (−3,−1) = − 160a3
p

π3s2R4
(sxRy − syRx ), (A48b)

t (−3,−2) = 0, (A48c)

t (−3,−3) = 768apa f i

π2R6s6
[(Rx − iRy)3(sx + isy)3

− (Rx + iRy)3(sx − isy)3], (A48d)

t (−3, j) = 0, j � −4. (A48e)

Step 11. At s � R we expand T (−3) as

T (−3) =
0∑

j=−4

t (−3− j, j) + O(s1) = O(s1). (A49)

Solving the equation (∇2
1 + ∇2

2 + ∇2
3 )T (−3) = 0 (for only

si �= 0) and using the above expansion, we find

T (−3) = 0. (A50)

So

t (i, j) = 0 if i + j = −3. (A51)
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Step 12. At s 
 re we expand S (−4) as

S (−4) = t (−4,6) + t (−4,5) + · · · + t (−4,1) + O(s0)

= O(s0). (A52)

S (−4) satisfies the equation

H̃S (−4) = 3
4∇2

RS (−2) = 0. (A53)

So we get

S (−4) = 0. (A54)

So

t (−4, j) = 0. (A55)

Step 13. At s � R we expand T (−4) as

T (−4) =
0∑

j=−5

t (−4− j, j) + O(s1)

= − 160a3
p

π3s2R4
(sxRy − syRx ) + O(s1). (A56)

Solving the equation (∇2
1 + ∇2

2 + ∇2
3 )T (−4) = 0 (for only

si �= 0) and using the above expansion, we find

T (−4) =(sxRy − syRx )

[
− 3DF

2π2B6

− 160a3
p

π3B6

∑
i

(
R2

i

s2
i

+ 3 ln
B2√|ap|si

)]
, (A57)

where DF is a new coefficient and we call it the three-body
scattering hypervolume. Its value depends on the details of
the interactions.

Expanding T (−4) at s � R as
∑

i+ j=−4 t (i, j), we get

t (−4,0) = 0, (A58a)

t (−5,1) = (sxRy − syRx )

(
− 3DF

2π2R6

+ 280a3
p

π3R6
− 480a3

p

π3R6
ln

R4

|ap|3/2s

)
, · · · .

(A58b)

Step 14. At s 
 re we expand S (−5) as

S (−5) =
∑
j�7

t (−5, j)

= t (−5,5) + t (−5,3) + t (−5,1) + O(s0). (A59)

Combining this with the equation

H̃S (−5) = 3

4
∇2

RS (−3)

= 240a2
pi

π2R6
[(Rx − iRy)φ(1+) − (Rx + iRy)φ(1−)],

(A60)

we get

S (−5) = 240a2
pi

π2R5
[y(1−)(R̂) f (1+)(s) − y(1+)(R̂) f (1−)(s)]

− 960api

πR5
[y(5−)(R̂)φ(5+)(s) − y(5+)(R̂)φ(5−)(s)]

+ 384a2
pi

π2R5
[y(3−)(R̂)φ(3+)(s) − y(3+)(R̂)φ(3−)(s)]

− ζ i

R5
[y(1−)(R̂)φ(1+)(s) − y(1+)(R̂)φ(1−)(s)], (A61)

where

ζ = 3DF

2π2
− 280a3

p

π3
+ 1920a3

p

π3
ln

R

R̃
. (A62)

We have thus derived the 111 expansion to the order B−4 and
the 21 expansion to the order R−5.

APPENDIX B: THE BORN EXPANSION OF THE
THREE-BODY WAVE FUNCTION

For weak-interaction potentials, we can expand the three-
body wave function as a Born series:

� = �0 + ĜV�0 + (ĜV )2�0 + · · · , (B1)

where �0 = sxRy − syRx is the wave function of three free
fermions, V is the interaction potential, and Ĝ = −Ĥ−1

0 is the
Green’s operator, Ĥ0 is the three-body kinetic-energy oper-
ator. We define V = V3(s1, s2, s3) + ∑3

i=1 V (si). We assume
that V (s) vanishes at s > re and that V3(s1, s2, s3) vanishes if
s1 > re or s2 > re or s3 > re.

1. The first-order term

The first-order term in the Born series is

�1(ξ) = ĜV�0 = ĜV3�0 +
3∑

i=1

ĜV (i)�0

= m

h̄2

∫
d4ξ ′ G(ξ − ξ′)V3(s′

1, s′
2, s′

3)�0(ξ′)

+ m

h̄2

3∑
i=1

∫
d4ξ ′ G(ξ − ξ′)V (i)(ξ′)�0(ξ′), (B2)

where ξ = (s, 2R/
√

3) and ξ′ = (s′, 2R′/
√

3) are four-
dimensional vectors, G is the Green’s function in four-
dimensional space,

G(ξ − ξ′) = − 1

4π2|ξ − ξ′|2 , (B3)

and V (i)(ξ′) = V (s′
i). s′

1 = s′, s′
2 = − 1

2 s′ − R′, and s′
3 =

− 1
2 s′ + R′. We write �1 as ĜV3�0 + ∑3

i=1 �
(i)
1 , where

�
(i)
1 ≡ ĜV (i)�0 =

∫
d4ξ ′ −m

4π2h̄2|ξ − ξ′|2 V (i)(ξ′) �0(ξ′)

= 4

3

∫
d2s′

∫
d2R′ −mV (s′)(s′

xR′
y − s′

yR′
x )

4π2h̄2[(si − s′)2 + 4
3 (Ri − R′)2]

.

(B4)
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Finishing this integral and taking the sum over i, we get

3∑
i=1

�
(i)
1 = −1

2
(sxRy − syRx )

3∑
i=1

[
α2(si )

s2
i

+ ᾱ0(si)

]
, (B5)

where

αn(s) ≡ m

h̄2

∫ s

0
ds′ s′n+1V (s′), (B6a)

ᾱn(s) ≡ m

h̄2

∫ ∞

s
ds′ s′n+1V (s′). (B6b)

Since V (s) is a finite-range potential which vanishes at s > re, we have αn(s) = αn ≡ m
∫ ∞

0 ds′s′n+1V (s′)/h̄2 and ᾱn(s) = 0 if
s > re. If all three si > re,

∑3
i=1 �

(i)
1 is simplified as

3∑
i=1

�
(i)
1 = −(sxRy − syRx )

3∑
i=1

α2

2s2
i

. (B7)

ĜV3�0 =
∫

d4ξ ′ −mV3(ξ′) �0(ξ′)
4π2h̄2|ξ − ξ′|2 = 4

3

∫
d2s′

∫
d2R′ −mV3(s′

1, s′
2, s′

3)(s′
xR′

y − s′
yR′

x )

4π2 h̄2
[
(s − s′)2 + 4

3 (R − R′)2
] . (B8)

Let s′
x = s′ cos α′, s′

y = s′ sin α′, R′
x = R′ cos(α′ + θ ′), R′

y = R′ sin(α′ + θ ′), sx = s cos α, sy = s sin α, Rx = R cos(α + θ ), and
Ry = R sin(α + θ ). We have ∫

d2s′
∫

d2R′ =
∫ ∞

0
ds′s′

∫ ∞

0
dR′R′

∫ π

−π

dθ ′
∫ π

−π

dα′. (B9)

Since V3 is a finite-range potential, the integral on the right-hand side of Eq. (B8) may be expanded when s and R go to infinity
for any fixed ratio s/R. Expanding this integral at large B and using the fact that V3 is an even function of θ ′ and is independent
of α′, we get

ĜV3�0 = −3mRs sin θ

π h̄2B6

∫ ∞

0
ds′

∫ ∞

0
dR′

∫ π

0
dθ ′ s′3R′3 sin2 θ ′ V3(s′

1, s′
2, s′

3) + O(B−6)

= −6m(sxRy − syRx )

π h̄2B6

∫
ds′

1ds′
2ds′

3 s′
1s′

2s′
3V3(s′

1, s′
2, s′

3)S�(s′
1, s′

2, s′
3) + O(B−6). (B10)

In the first line of Eq. (B10), s′
1 = s′, s′

2 =
√

R′2 + 1
4 s′2 + R′s′ cos θ ′, and s′

3 =
√

R′2 + 1
4 s′2 − R′s′ cos θ ′.

2. The second-order term

The second-order term in the Born series is

�2 = ĜV�1 =
∑

i j

ĜV (i)ĜV ( j)�0 +
∑

i

ĜV (i)ĜV3�0 +
∑

i

ĜV3ĜV (i)�0 + (ĜV3)2�0. (B11)

We define

�
(i j)
2 ≡ ĜV (i)ĜV ( j)�0 =

∫
d4ξ ′ −m

4π2h̄2|ξ − ξ′|2 V (i)(ξ′)� ( j)
1 (ξ′). (B12)

In particular,

�
(ii)
2 = 4

3

∫
d2s′

∫
d2R′ −mV (s′)(s′

xR′
y − s′

yR′
x )

4π2h̄2[(si − s′)2 + 4
3 (Ri − R′)2]

(
−1

2

)[
α2(s′)

s′2 + ᾱ0(s′)
]
. (B13)

If all three si > re, we can evaluate the integral to obtain

�
(ii)
2 = (sxRy − syRx )

β2

2s2
i

, (B14)

where β2 is defined as

β2 ≡ m2

h̄4

∫ ∞

0
ds

∫ s

0
ds′ ss′3V (s)V (s′). (B15)
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If j �= i, we have two different values of j for each i. For a given value of i,

∑
j �=i

�
(i j)
2 = 4

3

∫
d2s′

∫
d2R′ mV (s′)(s′

xR′
y − s′

yR′
x )

8π2h̄2[(si − s′)2 + 4
3 (Ri − R′)2]

×
[

α2
(∣∣R′ − 1

2 s′∣∣)∣∣R′ − 1
2 s′∣∣2 + ᾱ0

(∣∣∣∣R′ − 1

2
s′
∣∣∣∣) + α2(|R′ + 1

2 s′|)
|R′ + 1

2 s′|2 + ᾱ0

(∣∣∣∣R′ + 1

2
s′
∣∣∣∣)

]

=
∫

d2s′
∫

d2R′ mV (s′)
8π2h̄2

(
s′

xR′
y − s′

yR′
x

)[α2(R′)
R′2 + ᾱ0(R′)

]

×
[

1
3
4 (si − s′)2 + (

Ri − R′ − 1
2 s′)2 + 1

3
4 (si − s′)2 + (

Ri − R′ + 1
2 s′)2

]
. (B16)

We split this integral into two parts by writing

α2(R′)
R′2 + ᾱ0(R′) = α2

R′2 +
[
α2(R′) − α2

R′2 + ᾱ0(R′)
]

= fL(R′) + fS (R′), (B17)

where fS is a short-range function and fL is a long-range function of R′:

fS (R′) = α2(R′) − α2

R′2 + ᾱ0(R′) = ᾱ0(R′) − ᾱ2(R′)
R′2 , (B18a)

fL(R′) = α2

R′2 . (B18b)

The integral containing fS is

∫
d2s′

∫
d2R′ mV (s′)

8π2h̄2 (s′
xR′

y − s′
yR′

x ) fS (R′)

[
1

3
4 (si − s′)2 + (

Ri − R′ − 1
2 s′)2 + 1

3
4

(
si − s′)2 + (Ri − R′ + 1

2 s′)2

]

=
∫

d2s′
∫

d2R′ mV (s′)
8π2h̄2 (s′

xR′
y − s′

yR′
x )

[
ᾱ0(R′) − ᾱ2(R′)

R′2

][
12(si · s′)(Ri · R′)(

R2
i + 3

4 s2
i

)3 + ...

]

= −3α2α4

8B6
(sxRy − syRx ) + O(B−6), (B19)

where we have expanded the integral to the leading-order term assuming that s and R go to infinity simultaneously. The integral
containing fL is∫

d2s′
∫

d2R′ mV (s′)
8π2h̄2 (s′

xR′
y − s′

yR′
x ) fL(R′)

[
1

3
4 (si − s′)2 + (

Ri − R′ − 1
2 s′)2 + 1

3
4 (si − s′)2 + (

Ri − R′ + 1
2 s′)2

]

= (sxRy − syRx )

(
α2

2

2B2s2
i

+ 3α2α4

16B6

)
+ O(B−6). (B20)

Combining the above results, we get

∑
j �=i

�
(i j)
2 = (sxRy − syRx )

(
α2

2

2B2s2
i

− 3α2α4

16B6

)
+ O(B−6) (B21)

for any given value of i. Substituting Eqs. (B14) and (B21) into Eq. (B11), we get

�2 = (sxRy − syRx )

{[
3∑

i=1

(
β2

2s2
i

+ α2
2

2B2s2
i

)]
− 9α2α4

16B6

}
+ O(B−6) + O(VV3) + O(V 2

3 ). (B22)

We have not evaluated the terms
∑

i ĜV (i)ĜV3�0 + ∑
i ĜV3ĜV (i)�0 and (ĜV3)2�0, which are of order VV3 and V 2

3 , respectively.
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